Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Fuzzy rule-based systems are one of the most important areas of application of fuzzy sets and fuzzy logic. Constituting an extension of classical rule-based systems, these have been successfully applied to a wide range of problems in different domains for which uncertainty and vagueness emerge in multiple ways. In a broad sense, fuzzy rule-based systems are rule-based systems, where fuzzy sets and fuzzy logic are used as tools for representing different forms of knowledge about the problem at hand, as well as for modeling the interactions and relationships existing between its variables. The use of fuzzy statements as one of the main constituents of the rules allows capturing and handling the potential uncertainty of the represented knowledge. On the other hand, thanks to the use of fuzzy logic, inference methods have become more robust and flexible. This chapter will mainly analyze what is a fuzzy rule-based system (from both conceptual and structural points of view), how is it built, and how can be used. The analysis will start by considering the two main conceptual components of these systems, knowledge, and reasoning, and how they are represented. Then, a review of the main structural approaches to fuzzy rule-based systems will be considered. Hierarchical fuzzy systems will also be analyzed. Once defined the components, structure and approaches to those systems, the question of design will be considered. Finally, some conclusions will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CG:

center of gravity

DNF:

disjunctive normal form

FLC:

fuzzy logic controller

FL:

fuzzy logic

FRBS:

fuzzy rule-based system

FS:

fuzzy system

KB:

knowledge base

MISO:

multiple inputs-single output

MOM:

mean of maxima

MV:

maximum value

RB:

rule base

TSK:

Takagi–Sugeno–Kang

References

  1. A. Bardossy, L. Duckstein: Fuzzy Rule-Based Modeling with Application to Geophysical, Biological and Engineering Systems (CRC, Boca Raton 1995)

    MATH  Google Scholar 

  2. Z. Chi, H. Yan, T. Pham: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition (World Scientific, Singapore 1996)

    MATH  Google Scholar 

  3. K. Hirota: Industrial Applications of Fuzzy Technology (Springer, Berlin, Heidelberg 1993)

    Book  Google Scholar 

  4. W. Pedrycz: Fuzzy Modelling: Paradigms and Practice (Kluwer Academic, Dordrecht 1996)

    Book  MATH  Google Scholar 

  5. R.R. Yager, L.A. Zadeh: An Introduction to Fuzzy Logic Applications in Intelligent Systems (Kluwer Academic, Dordrecht 1992)

    Book  MATH  Google Scholar 

  6. L.A. Zadeh: The concept of a linguistic variable and its applications to approximate reasoning – Part I, Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. L.A. Zadeh: The concept of a linguistic variable and its applications to approximate reasoning – Part II, Inf. Sci. 8(4), 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. L.A. Zadeh: The concept of a linguistic variable and its applications to approximate reasoning – Part III, Inf. Sci. 9(1), 43–80 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. L.A. Zadeh: Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. E.H. Mamdani: Applications of fuzzy algorithm for control of simple dynamic plant, Proc. IEE 121(12), 1585–1588 (1974)

    Google Scholar 

  11. E.H. Mamdani, S. Assilian: An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud. 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  12. L.X. Wang: Adaptive Fuzzy Systems and Control: Design and Analysis (Prentice Hall, Englewood Cliffs 1994)

    Google Scholar 

  13. T.J. Procyk, E.H. Mamdani: A linguistic self-organizing process controller, Automatica 15(1), 15–30 (1979)

    Article  MATH  Google Scholar 

  14. L. Magdalena: Adapting the gain of an FLC with genetic algorithms, Int. J. Approx. Reas. 17(4), 327–349 (1997)

    Article  MATH  Google Scholar 

  15. G.C. Mouzouris, J.M. Mendel: Nonsingleton fuzzy logic systems: Theory and application, IEEE Trans. Fuzzy Syst. 5, 56–71 (1997)

    Article  Google Scholar 

  16. F. Klawonn, R. Kruse: Equality relations as a basis for fuzzy control, Fuzzy Sets Syst. 54(2), 147–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.M. Mendel: Fuzzy logic systems for engineering: A tutorial, Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  18. D. Dubois, H. Prade: What are fuzzy rules and how to use them, Fuzzy Sets Syst. 84, 169–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Cordón, F. Herrera, A. Peregrín: Applicability of the fuzzy operators in the design of fuzzy logic controllers, Fuzzy Sets Syst. 86, 15–41 (1997)

    Article  MATH  Google Scholar 

  20. D. Driankov, H. Hellendoorn, M. Reinfrank: An Introduction to Fuzzy Control (Springer, Berlin, Heidelberg 1993)

    Book  MATH  Google Scholar 

  21. M. Sugeno, T. Yasukawa: A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)

    Article  Google Scholar 

  22. C.C. Lee: Fuzzy logic in control systems: Fuzzy logic controller – Part I, IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MATH  Google Scholar 

  23. C.C. Lee: Fuzzy logic in control systems: Fuzzy logic controller – Part II, IEEE Trans. Syst. Man Cybern. 20(2), 419–435 (1990)

    Article  MATH  Google Scholar 

  24. A. Bastian: How to handle the flexibility of linguistic variables with applications, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 3(4), 463–484 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Carse, T.C. Fogarty, A. Munro: Evolving fuzzy rule based controllers using genetic algorithms, Fuzzy Sets Syst. 80, 273–294 (1996)

    Article  Google Scholar 

  26. A. González, R. Pèrez, J.L. Verdegay: Learning the structure of a fuzzy rule: A genetic approach, Fuzzy Syst. Artif. Intell. 3(1), 57–70 (1994)

    Google Scholar 

  27. L. Magdalena, F. Monasterio: A fuzzy logic controller with learning through the evolution of its knowledge base, Int. J. Approx. Reas. 16(3/4), 335–358 (1997)

    Article  MATH  Google Scholar 

  28. R. Alcalá, J. Casillas, O. Cordón, F. Herrera: Building fuzzy graphs: Features and taxonomy of learning for non-grid-oriented fuzzy rule-based systems, J. Intell. Fuzzy Syst. 11(3/4), 99–119 (2001)

    Google Scholar 

  29. O. Cordón, F. Herrera: A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples, Int. J. Approx. Reas. 17(4), 369–407 (1997)

    Article  MATH  Google Scholar 

  30. L. Koczy: Fuzzy if $\ldots$ then rule models and their transformation into one another, IEEE Trans. Syst. Man Cybern. 26(5), 621–637 (1996)

    Article  Google Scholar 

  31. T. Takagi, M. Sugeno: Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  32. M. Sugeno, G.T. Kang: Structure identification of fuzzy model, Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Palm, D. Driankov, H. Hellendoorn: Model Based Fuzzy Control (Springer, Berlin, Heidelberg 1997)

    Book  MATH  Google Scholar 

  34. H. Ishibuchi, T. Nakashima: Effect of rule weights in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 9, 506–515 (2001)

    Article  Google Scholar 

  35. J.M. Mendel: Type-2 fuzzy sets and systems: An overview, Comput. Intell. Mag. IEEE 2(1), 20–29 (2007)

    Article  MathSciNet  Google Scholar 

  36. H. Jones, B. Charnomordic, D. Dubois, S. Guillaume: Practical inference with systems of gradual implicative rules, IEEE Trans. Fuzzy Syst. 17, 61–78 (2009)

    Article  Google Scholar 

  37. V. Torra: A review of the construction of hierarchical fuzzy systems, Int. J. Intell. Syst. 17(5), 531–543 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.R. Yager: On a hierarchical structure for fuzzy modeling and control, IEEE Trans. Syst. Man Cybern. 23(4), 1189–1197 (1993)

    Article  Google Scholar 

  39. R.R. Yager: On the construction of hierarchical fuzzy systems models, IEEE Trans. Syst. Man Cybern. C 28(1), 55–66 (1998)

    Article  Google Scholar 

  40. O. Cordón, F. Herrera, I. Zwir: Linguistic modeling by hierarchical systems of linguistic rules, IEEE Trans. Fuzzy Syst. 10, 2–20 (2002)

    Article  MATH  Google Scholar 

  41. E. D'Andrea, B. Lazzerini: A hierarchical approach to multi-class fuzzy classifiers, Exp. Syst. Appl. 40(9), 3828–3840 (2013)

    Article  Google Scholar 

  42. H. Takagi, N. Suzuki, T. Koda, Y. Kojima: Neural networks designed on approximate reasoning architecture and their applications, IEEE Trans. Neural Netw. 3(5), 752–760 (1992)

    Article  Google Scholar 

  43. G.V.S. Raju, J. Zhou, R.A. Kisner: Hierarchical fuzzy control, Int. J. Control 54(5), 1201–1216 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. G.A. Miller: The magical number seven, plus or minus two: Some limits on our capacity for processing information, Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  45. K. Michels, F. Klawonn, R. Kruse, A. Nürnberger: Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers (Springer, Berlin, Heidelberg 2006)

    MATH  Google Scholar 

  46. L.-X. Wang, J.M. Mendel: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Netw. 3(5), 807–813 (1992)

    Article  Google Scholar 

  47. B. Kosko: Fuzzy systems as universal approximators, IEEE Trans. Comput. 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  48. J.L. Castro: Fuzzy logic controllers are universal approximators, IEEE Trans. Syst. Man Cybern. 25(4), 629–635 (1995)

    Article  Google Scholar 

  49. R. Krishnapuram: Membership function elicitation and learning. In: Handbook of Fuzzy Computation, ed. by E.H. Ruspini, P.P. Bonissone, W. Pedrycz (IOP Publ., Bristol 1998) pp. 349–368

    Google Scholar 

  50. J.M. Alonso, L. Magdalena: HILK++: An interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers, Soft Comput. 15(10), 1959–1980 (2011)

    Article  Google Scholar 

  51. N.R. Pal, S. Chakraborty: Fuzzy rule extraction from id3-type decision trees for real data, IEEE Trans. Syst. Man Cybern. B 31(5), 745–754 (2001)

    Article  Google Scholar 

  52. M. Delgado, A.F. Gómez-Skarmeta, F. Martín: A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling, IEEE Trans. Fuzzy Syst. 5, 223–233 (1997)

    Article  Google Scholar 

  53. O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases (World Scientific, Singapore 2001)

    Book  MATH  Google Scholar 

  54. D.D. Nauck, A. Nürnberger: Neuro-fuzzy systems: A short historical review. In: Computational Intelligence in Intelligent Data Analysis, ed. by C. Moewes, A. Nürnberger (Springer, Berlin, Heidelberg 2013) pp. 91–109

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Magdalena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magdalena, L. (2015). Fuzzy Rule-Based Systems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics