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Interpretability of Fuzzy Systems:
Current Research Trends and Prospects

Jose M. Alonso, Ciro Castiello, and Corrado Mencar

Abstract Fuzzy systems are universally acknowledged as valuable toanodel
complex phenomena while preserving a readable form of kexdgé representation.
The resort to natural language for expressing the termsviedldn fuzzy rules, in
fact, is a key-factor to conjugate mathematical formalism lmgical inference with
human-centered interpretability. That makes fuzzy systspecifically suitable in
every real-world context where people are in charge of atubécisions. That is
because the self-explanatory nature of fuzzy rules prdyjisupports expert assess-
ments. Additionally, as far as interpretability is invgstied, it appears that: a) the
simple adoption of fuzzy sets in modeling is not enough taemmterpretability; b)
fuzzy knowledge representation must confront the problepneserving the overall
system accuracy, thus yielding a trade-off which is fredqyedtebated. Such issues
have attracted a growing interest in the research commaniybecame to assume
a central role in the current literature panorama of Contjmrial Intelligence. This
chapter gives an overview of the topics related to fuzzyesyshterpretability, fac-
ing the ambitious goal of proposing some answers to a nunflmyem challenging
questions: What is interpretability? Why interpretabilgyworth considering? How
to ensure interpretability, and how to assess (quantif/Finally, how to design
interpretable fuzzy models?
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1 Introduction

The key factor for the success of fuzzy logic stands in thétalaif modeling and
processingperceptiongnstead of measurements [79]. In most cases, such percep-
tions are expressed in natural language. Thus, fuzzy legéces a mathematical un-
derpinning for modeling and processing perceptions desdrin natural language.

Historically, it has been acknowledged that fuzzy systeraseadowed with the
capability to conjugate a complex behavior and a simple rijggm in terms of
linguistic rules. In many cases, the compilation of fuzzgteyns has been accom-
plishedmanually with human knowledge purposely injected in fuzzy rulesrides
to model the desired behavior (the rules could be eventtiatigd to improve the
system accuracy). In addition, the great success of fuzzig led to the develop-
ment of many algorithms aimed at acquiring knowledge frora dexpressing it
in terms of fuzzy rules). This made feasible the automatgigieof fuzzy systems
(through data-driven design techniques). Moreover, tt@al studies proved the
universal approximation capabilities of such systems.[75]

The adoption of data-driven design techniques is a commactipe nowadays.
Nevertheless, while fuzzy sets can be generally used to Inpedeeptions, some
of them do not lead to a straight interpretation in natunagjleage. In consequence,
the adoption of accuracy-driven algorithms for acquiringledge from data often
results in unintelligible models. In those cases, the fumelatal plus of fuzzy logic
is lost and the derived models are comparable to other neasumt-based models
(like neural networks) in terms of knowledge interpretipil

In a nutshell, interpretability is not granted by the adoptof fuzzy logic which
represents a necessary yet not a sufficient requirementddeling and processing
perceptions. However, interpretability is a quality trsatot easy to define and quan-
tify. Several open and challenging questions arise whilesictering interpretability
in fuzzy modelingWhatis interpretabilityAVhyinterpretability is worth consider-
ing? How toensurenterpretability? How tassesgquantify) interpretability? How
to designinterpretable fuzzy models? And so on.

The objective of this chapter is to provide some answergi@questions posed
above. Section 2 deals with the challenging task of settipgoper definition of
interpretability. Section 3 introduces the main constsagnd criteria that can be
adopted to ensure interpretability when designing inttglrle fuzzy systems. Sec-
tion 4 gives a brief overview of the soundest indexes for ssing interpretability.
Section 5 presents the most popular approaches for degifunzy systems en-
dowed with a good interpretability-accuracy trade-offct8®: 6 enumerates some
application fields where interpretability is a main conc&ection 7 sketches a num-
ber of challenging tasks which should be addressed in thefuiese. Finally, some
conclusions are drawn in Section 8.
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2 The quest for interpretability

Answering the questionWhat is interpretability?is not straightforward. Defining
interpretability is a challenging task since it deals witle fanalysis of the relation
occurring between two heterogeneous entities: a modekafythtem to be designed
(usually formalized through a mathematical definition) arldiman user (meant not
as a passive beneficiary of a system’s outcome, but as ae aetider and interpreter
of the model’'s working engine). In this sense, interprdighis a quality which is
inherent in the model and yet it refers to an act performedhbyser who is willing
to grasp and explain the meaning of the model.

To pave the way for the definition of such a relation, a commiaugd must
be settled. This could be represented by a number of fundahyoperties to be
incorporated into a model, so that its formal descriptiondmes compatible with
the user’s knowledge representation. In this way, the hunsan may interface the
mathematical model resting on concepts that appear to bebiito deal with it.
The quest for interpretability, therefore, calls for thentification of several fea-
tures. Among them, resorting to an appropriate framewarkifiowledge represen-
tation is a crucial element and the adoption of a fuzzy infeeeengine based on
fuzzy rules is straightforward to approach the linguistssed formulation of con-
cepts which is typical of the human abstract thought.

A distinguishing feature of a fuzzy rule-based model is thetde level of knowl-
edge representation. The lower level of representationnstiduted by the formal
definition of the fuzzy sets in terms of their membership fioxts, as well as the
aggregation functions used for inference. This level ofgepntation defines ttse-
manticsof a fuzzy rule-based model as it determines the behavidreofrtodel, i.e.
the input/output mapping for which it is responsible.

On the higher level of representation, knowledge is repteskin form of rules.
They define a formal structure where linguistic variablesiavolved and recipro-
cally connected by some formal operators, such as “AND”, EN4, and so on.
Linguistic variables correspond to the inputs and outpéith® model. The (sym-
bolic) values they assume are related to linguistic termishylin turn, are mapped
to the fuzzy sets defined in the lower level of representafidre formal opera-
tors are likewise mapped to the aggregation functions. mtapping provides the
interpretative transition that is quite common in the matatcal context: a formal
structure is assigned semantics by mapping symbols (Btiggerms and operators)
to objects (fuzzy sets and aggregation functions).

In principle, the mapping of linguistic terms to fuzzy sessarrbitrary. It just
suffices that identical linguistic terms are mapped to idahfuzzy sets. Of course,
this is not completely true for formal operators (e.g., tms, implications, etc.).
The corresponding aggregation functions should satisfuraber of constraints;
however some flexibility is possible. Nevertheless, theemese of symbols in the
high level of knowledge representation implies the essabfient of a number of
semiotic relations that are fundamental for the quest @rpretability of a fuzzy
model. In particular, linguistic terms — as usually pickeaiti natural language —
must be fully meaningful for the expected reader since thayotk concepts, i.e.
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mental representations that allow people to draw appr@piderences about the
entities they encounter.

Concepts and fuzzy sets, therefore, are both denoted hyiditigyterms. Addi-
tionally, concepts and fuzzy sets play a similar role: thenfer (being part of the
human knowledge) contribute to determine the behavior afragn; the latter (be-
ing the basic elements of a fuzzy rule base) contribute terdene the behavior of
a system to be modeled. As a consequence, concepts and &izzgrs implicitly
connected by means of the common linguistic terms they &aterkto, which refer
to object classes in the real world. The key essence of irgtpility is therefore
the property otointensior{80] between fuzzy sets and concepts, consisting in the
possibility of referring to similar classes of objects: Buicpossibility is assured by
the use of common linguistic terms.

Semantic cointension is a key-issue when dealing with pnéability of fuzzy
systems. It has been introduced and centered on the rolezpf &ets, but it can
be easily extended to refer to some more complex structaues, as fuzzy rules
or the whole fuzzy models. In this regard, a crisp assertimutathe importance of
cointension pronounced at the level of the whole model ismglyy the Michalski’'s
“Comprehensibility Postulate” [58]:

The results of computer induction should be symbolic descrigptibgiven entities, seman-
tically and structurally similar to those a human expert mightdiroe observing the same
entities. Components of these descriptions should be comprbleasisingle “chunks” of
information, directly interpretable in natural language,dshould relate quantitative and
gualitative concepts in an integrated fashion.

It should be observed that the above postulate has been ldediin the general
area of Machine Learning. Nevertheless, the assertion foadéichalski has im-
portant consequences in the specific area of fuzzy moddfil (00. According to
the Comprehensibility Postulate, results of computer @tida should be described
symbolically. Symbols are necessary to communicate inftion and knowledge,
hence pure numerical methods, such as neural networkspaseited for meeting
interpretability unless an interpretability-orientedspprocessing of the resulting
knowledge is performed.

The key-point of the Michalski’s postulate is the human caity of the results
of a computer induction process. The importance of the huroamponent implic-
itly suggests a novel aspect to be taken into account in tkstdor interpretabil-
ity. Actually, the semantic cointension is related to oneefaof the interpretability
process, which can be referred toasnprehensibilityof the content and behavior
of a fuzzy model. In other words, cointension concerns timeaseic interpretation
performed by a user determined to comprehend such modelh®nother hand,
when we turn to consider the cognitive capabilities of hutmieins and their intrin-
sic limitations, then a different facet of the interpretiypiprocess can be defined
in terms ofreadability of the bulk of information conveyed by a fuzzy model. In
that case, simplicity is required to perform the interptietaprocess because of the
limited ability to store information in the human brain’soshterm memory [59].
Therefore, structural measures concerning the complekityrule base affect the
cognitive efforts of a user determined to read and interpfakzzy model.
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Comprehensibility and readability represent two faceta sbmmon issue and
both of them are to be considered while assessing the ietatylity process. In
particular, this distinction should be acknowledged whetega are specifically
designed to provide a quantitative definition of interplodity.

2.1 Why isinterpretability so important?

A great number of inductive modeling techniques are culyevailable to acquire
knowledge from data. Many of these techniques provide ptiedimodels that are
very accurate and flexible enough to be applied in a wide rarfigepplications.
Nevertheless, the resulting models are usually considesdiack-boxes, i.e. mod-
els whose behavior cannot be easily explained in terms afribael structure. On
the other hand, the use of fuzzy rule-based models is a nuti@esign choice:
whenever interpretability is a key factor, fuzzy rule-tcheeodels should be natu-
rally preferred. It is worth noting that interpretability & distinguishing feature of
fuzzy rule-based models. Several reasons justify a choidéned towards inter-
pretability. They include but are not limited to:

Integration. In an interpretable fuzzy rule-based model the acquireavieuye
can be easily verified and related to the domain knowledgehafraan expert.
In particular, it is easy to verify if the acquired knowledgepresses new and
interesting relations about the data; also, the acquiresvledge can be refined
and integrated with expert knowledge.

Interaction. The use of natural language as a mean for knowledge communica
tion enables the possibility of interaction between the asel the model. Inter-
activity is meant to explore the acquired knowledge. In ficac it can be done
at symbolical level (by adding new rules or modifying exigtiones) and/or at
numerical level (by modifying the fuzzy sets denoted by Uiisgic terms; or by
adding new linguistic terms denoting new fuzzy sets).

Validation. The acquired knowledge can be easily validated against aymm
sense knowledge and domain-specific knowledge. This cipadmables the
detection of semantic inconsistencies that may have diftssauses (misleading
data involved in the inductive process, local minimum whéeesinductive pro-
cess may have been trapped, data overfitting, etc.). Thisdfianomaly detec-
tion is important to drive the inductive process towards alitptive improvement
of the acquired knowledge.

Trust. The most important reason to adopt interpretable fuzzy tsodetheir
inherent ability to convince end-users about the religbitif a model (espe-
cially those users not concerned with knowledge acquisitexhniques). An
interpretable fuzzy rule-based model is endowed with thpabdity of explain-
ing its inference process so that users may be confident onthmwduces its
outcomes. This is particularly important in such domainsnaslical diagnosis,
where a human expert is the ultimate responsible for a decisi
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2.2 A historical review

It has been long time since Zadeh'’s seminal work on fuzzy[3éisand nowadays
there are lots of fruitful research lines related to fuzayidd6]. Hence, we can state
that fuzzy sets and systems have become the subjects of aemmasearch field
counting several works both theoretical and applied inrtbedpe. Fig. 1 shows the
distribution of publications per year regarding interptelity issues. Three main
phases can be identified taking into account the historicdligon of FM.

Publications
EXPERT-DRIVEN FM . DATA-DRIVEN FM . INTERPRETABILITY-ORIENTED FM

o : L
T T T T T T T T T
1983 1984 1985 19861987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 20052006 2007 2008 2009 2010 2011 25%5’

Fig. 1 Publications per year related to interpretability issues.

From 1965 to 1990. During this initial period interpretability emerged nadlly
as the main advantage of fuzzy systems. Researchers catedndn building
fuzzy models mainly working with expert knowledge and a fémde linguis-
tic variables [78] and linguistic rules usually referredMamdani rules [52].
As a result, those designed fuzzy models were charactepizéukir high inter-
pretability. Moreover, interpretability is assumed asranmsic property of fuzzy
systems. Therefore, there are only a few publications daggiinterpretability
issues. Notice that, the first proposal of a Fuzzy Rule Bagstes (FRBS) was
presented by Mamdani who was able to augment Zadeh’s ifotiadulation al-
lowing the application of fuzzy systems to a control problérhese kinds of
fuzzy systems are also referred tofaszy logic controllersas proposed by the
author in his pioneering paper. In addition, Mamdani-ty®BSs became soon
the main tool to develop linguistic models. Of course, matheorule formats
were arising and gaining importance. In addition to Mamd&RBSs, probably
the most famous FRBSs are those proposed by Takagi and Spxgdnite pop-
ular TSK fuzzy systems, where the conclusion is a functiothefinput values.
Due to their current popularity, in the following we will uige term “fuzzy sys-
tem” to denote Mamdani-type FRBSs and their subsequentsintes.

From 1990 to 2000. In the second period the focus was set on accuracy. Re-
searchers realized that expert knowledge was not enougbatondth complex
systems. Thus, they explored the use of fuzzy machine legtachniques to au-
tomatically extract knowledge from data [44, 45]. Accoglin those designed
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fuzzy models became composed of extremely complicated fuges with high
accuracy but at the cost of disregarding interpretabilgyaaside effect. Obvi-
ously, automatically generated rules were rarely as rdadebdesired. Along
this period some researchers started claiming that fuzzgetacare not inter-
pretableper se Interpretability is a matter of careful design. Thus, iptetabil-
ity issues must be deeply analyzed and seriously discusftadugh the amount
of publications related to interpretability issues id stihall in this period, please
pay attention to the fact that publications begin to growosmgntially at the end
of this second phase.

From 2000 to 2012. After the two previous periods, researchers realized that
both expert-driven (from 1965 to 1990) and data-drivenn{fti®90 to 2000) de-
sign approaches have their own advantages and drawbatksepare somehow
complementary. For instance, expert knowledge is genarhkasy to interpret
but hard to formalize. On the contrary, knowledge derivednfidata can be ex-
tracted automatically but it becomes quite specific andterpretation is usually
hard [39]. Moreover, researchers were aware of the neediofgténto account
simultaneously interpretability and accuracy during tksign of fuzzy mod-
els. As a result, during this third phase the main challengg low to combine
expert knowledge and knowledge extracted from data, wighaim of design-
ing compact and robust systems with a good interpretataliguracy trade-off.
When considering both interpretability and accuracy in Fivp tmain strate-
gies turn up naturally [1]Linguistic Fuzzy ModelingLFM) and Precise Fuzzy
Modeling(PFM). On the one hand, in LFM system designers first focushen t
interpretability of the model, and then they try to improteaccuracy [22]. On
the other hand, in PFM designers first build a fuzzy model mé&ing its ac-
curacy, and then they try to improve its interpretabilitd]2As an alternative,
since accuracy and interpretability represent conflicogls by nature, multi-
objective fuzzy modeling strategies (considering acquean interpretability as
objectives) have become very popular [26, 42].

At the same time, there has been a great effort for formajierpretability
issues. As a result, the number of publications has growh R&searchers have
actively looked for the right definition of interpretabyliin addition, several in-
terpretability constraints have been identified. Morepirgerpretability assess-
ment has become a hot research topic. In fact, several istalplity indexes
(able to guide the FM design process) have been defined. tHeless, a uni-
versal index widely admitted is still missing. Hence, ferthiesearch on inter-
pretability issues is demanded.

Unfortunately, although the number of publications wasagng exponentially
until 2009, later it started decreasing. In 2012 the numbpublications dropped
down dramatically reaching the same levels of 2003. We witkédo emphasize
the impact of the two pioneer books [22, 23] edited in 2003yTtontributed to
make the fuzzy community aware of the need to take into adcagain inter-
pretability as a main research concern. It is worth notireg the first formal
definition of interpretability (in the fuzzy literature) wéncluded in [23]. It was
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given by Bodenhofer and Bauer [17] who established an axiortraatment of
interpretability at the level of linguistic variables.

We encourage the fuzzy community to keep paying attentiantepretability
issues because there is still a lot of research to be dorerphetability must be
the central point on system modeling. In fact, some of théelsband most recent
research topics like Precisiated Natural Language, CanmgMtith Words, and Hu-
man Centric Computing strongly rely on the interpretapitit the designed models.
The challenge is to better exploit fuzzy logic techniqueasirigproving the human-
centric character of many intelligent systems. Thereforerpretability deserves
consideration as a main research concern and the numbebbaiions should
grow again in the next years.

3 Interpretability constraints and criteria

Interpretability is a quality of fuzzy systems that is nonimdiate to quantify. Nev-
ertheless, a quantitative definition is required both faeasing the interpretability
of a fuzzy system and for designing new fuzzy systems. Thjairement is espe-
cially stringent when fuzzy systems are automatically giesi from data, through
some knowledge extraction procedure.

A common approach for defining interpretability is based lva adoption of a
number of constraints and criteria that, taken as a whotjighe for a definition of
interpretability. This approach is inherent to the suliyecbature of interpretability,
because the validity of some conditions/criteria is noversally acknowledged and
may depend on the application context.

In literature, a large number of interpretability congttaiand criteria can be
found. Some of them are widely accepted, while others ar&aearsial. The na-
ture of these constraints and criteria is also diverse. Sameeatly defined as a
mathematical condition, others have a fuzzy character heil satisfaction is a
matter of degree. This Section is addressed to give a bri¢gfgraogeneous outline
of the best known interpretability constraints and créeiiihe reader is referred to
the specialized literature for deeper insights on thisa@®r, 73].

Several ways are available to categorize interpretalibtystraints and criteria.
It could be possible to refer to their specific nature (e.gspcvs. fuzzy), to the
components of the fuzzy system where they are applied, dretal¢scription level
of the fuzzy system itself. Here, as depicted in Fig. 2, weoskoa hierarchical
organization that starts from the most basic componentsutzy system, namely
the involved fuzzy sets, and goes on toward more compleXdesach as fuzzy
partitions, fuzzy rules, up to considering the model as aletho
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Fig. 2 Interpretability constraints and criteria in different abstion levels.

3.1 Constraints and criteria for fuzzy sets

Fuzzy sets are the basic elements of fuzzy systems and theiisrto express el-
ementary yet imprecise concepts that can be denoted byidirglabels. Here we
assume that fuzzy sets are defined on a universe of discaymssented by a closed
interval of the real line (this is the case of most fuzzy systeespecially those ac-
quired from data). Thus, fuzzy sets are the building blockganslate a numeri-
cal domain in a linguistically quantified domain that can lsedito communicate
knowledge.

Generally speaking, single fuzzy sets are employed to eggkementary con-
cepts and, through the use of connectives, are combinegresent more complex
concepts. However, not all fuzzy sets can be related to elaneconcepts, since
the membership function of a fuzzy set may be very awkwardshllitiegitimate
from a mathematical viewpoint. Actually, a sub-class ofzjusets should be con-
sidered, so that its members can be easily associated temiam concepts and
tagged by the corresponding linguistic labels. Fuzzy sitsi® sub-class must ver-
ify a number of basic interpretability constraints, indhugt

Normality. At least one element of the universe of discourse is a prpé&otyr the
fuzzy set, i.e. itis characterized by a full membership degA normal fuzzy set
represents a concept that fully qualifies at least one eleofethe universe of
discourse, i.e. the concept has at least one example tlilis fill On the other
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hand, a sub-normal fuzzy set is usually a consequence ofialpamtradiction
(it is easy to show that the degree of inclusion of a sub-nbfozay set in the
empty set is non-zero).

Continuity.  The membership function is continuous on the universe abdisse.
As a matter of fact, most concepts that can be naturally sepited through fuzzy
sets derive from a perceptual act, which comes from extstimalli that usually
vary in continuity. Therefore, continuous fuzzy sets artdvén accordance with
the perceptive nature of the represented concepts.

Convexity. In a convex fuzzy set, given three elements linearly placethe axis
related to the universe of discourse, the degree of memipeyéthe middle ele-
ment is always greater than or equal to the minimum membedsggree of the
side elements [63]. This constraint encodes the rule tlapibperty is satisfied
by two elements, then it is also satisfied by an element ddtééween them.

3.2 Constraints and criteria for fuzzy partitions

The key success factor of fuzzy logic in modeling is the &bdf expressing knowl-
edgelinguistically. Technically this is realized by linguistic variables, variables
that assume symbolic values called linguistic terms. Thauleity of linguistic
variables with respect to classical symbolic approachéseisnterpretation of lin-
guistic terms as fuzzy sets. The collection of fuzzy setsl aseinterpretation of the
linguistic terms of a linguistic variable forms a fuzzy paon of the universe of
discourse.

To understand the role of a fuzzy partition, we should cagrsitlat it is meant
to define a relation among fuzzy sets. Such a relation musbtietensive with the
one connecting the elementary concepts represented byzhg $ets involved in
the fuzzy partition. That is the reason why the design ofyyrartitions is so crucial
for the overall interpretability of a fuzzy system. The mostical interpretability
constraints for fuzzy partitions are:

Justifiable number of elements. The number of fuzzy sets included in a linguis-
tic variable must be small enough so that they can be easihemibered and
recalled by users. Psychological studies suggest at mostfuzzy sets or even
less [59, 68]. Usually, three to five fuzzy sets are convdribnices to set the
partition cardinality.

Distinguishability.  Since fuzzy sets are denoted by distinct linguistic terimesy t
should refer to well distinguished concepts. Thereforezyusets in a partition
should be well separated, although some overlapping isssiloie because usu-
ally perception-based concepts are not completely disjGieveral alternatives
are available to quantify distinguishability, includingndarity and possibility
[54].

Coverage. Distinguishable fuzzy sets are necessary, but if they aretiach sep-
arated they risk to under-represent some subset of thergaieé discourse. The
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coverage constraint requires that each element of the nseive discourse must
belong to at least one fuzzy set of the partition with a mestiprdegree not
less than a threshold [57]. This requirement involves tla@heelement of the
universe of discourse has some quality that is well reptesan the fuzzy parti-
tion. On the other hand, the lack of coverage is a signal afrmaleteness of the
fuzzy partition that may hamper the overall compreherigibif the system’s
knowledge. Coverage and distinguishability are somewbaflicting require-
ments that are usually balanced by fuzzy partitions thatreefthe intersection
of adjacent fuzzy sets to elements whose maximum membedshige is equal
to a threshold (usually the value of this threshold is set%.0

Relation preservation. The concepts that are represented by the fuzzy sets in
a fuzzy partition are usually cross-related. The most iniatedelation which
can be conceived among concepts is related to the ordey (e@g: preceding
MEDIUM, preceding HGH, and so on). Relations of this type must be preserved
by the corresponding fuzzy sets in the fuzzy partition [18].

Prototypes on special elements. In many problems some elements of the uni-
verse of discourse have some special meaning. A commongHeerneaning of
the bounds of the universe of discourse, which usually sspresome extreme
qualities (e.g., ERY LARGE or VERY SMALL ). Other examples are possible,
which could be aside from the bounds of the universe of disebeing, in-
stead, more problem-specific (e.g., prototypes could beaieed for the icing
point of water, the typical human body temperature, eto.pll these cases, the
prototypes of some fuzzy sets of the partition must coinewit such special
elements.

3.3 Constraints and criteria for fuzzy rules

In most cases a fuzzy system is defined over a multi-dimeakiamverse of dis-
course that can be split into many one-dimensional unigev§éiscourse, each of
them associated to a linguistic variable. A subset of thiegeistic variables is used
to represent the input of a system, while the remaining tabega(usually only one
variable) are used to represent the output. The input/obghavior is expressed in
terms of rules. Each rule prescribes a linguistic outputealhen the input matches
the rule condition (also called rule premise), usually esped as a logical combi-
nation of soft constraints. A soft constraint is a linguigiroposition (specification)
that ties a linguistic variable to a linguistic term (e.gEMPERATURE ISHIGH).
Furthermore the soft constraints combined in a rule coodithay involve different
linguistic variables (e.g., AIMPERATURE ISHIGH AND PRESSURE ISLOW).

A fuzzy rule is a unit of knowledge that has the twofold roledetermining the
system behavior and communicating this behavior in a listiuform. The latter
feature urges to adopt a number of interpretability constisavhich are to be added
up to the constraints required for fuzzy sets and fuzzy fi@ms. Some of the most
general interpretability constraints and criteria forAyzules are the following:
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Description length.  The description length of a fuzzy rule is the sum of the num-
ber of soft constraints occurring in the condition and in toasequent of the
rule (it is usually known asotal rule length. In most cases, only one linguistic
variable is represented in a rule consequent, thereforéabeription length of a
fuzzy rule is directly related to the complexity of the caiat. A small number
of soft constraints in a rule implies both high readabilitglemantic generality,
hence short rules should be preferred in fuzzy systems.

Granular outputs.  The main strength of fuzzy systems is their ability to repre-
sent and process imprecision in both data and knowledgeekigion is part
of fuzzy inference, therefore the inferred output of a fugggtem should carry
information about the imprecision of its knowledge. This ¢g accomplished
by using fuzzy sets as outputs. Defuzzification collapsegyfisets into single
scalars; it should be therefore used only when strictly s&sey and in those
situations where outputs are not the object of user inteapoa.

3.4 Constraints and criteria for fuzzy rule bases

As previously stated, the interpretability of a rule badeetaas a whole has two
facets: (1) a structural facee@dability), which is mainly related to the easiness of
reading the rules; and (2) a semantic faceiniprehensibility, which is related to
the information conveyed to the users who are willing to ustdad the system be-
havior. The following interpretability constraints andteria are commonly defined
to ensure the structural and semantic interpretabilityazy rule bases:

Compactness. A compact rule base is defined by a small number of rules. Shis i
a typical structural constraint that advocates for simpfgesentation of knowl-
edge in order to allow easy reading and understanding. Neless, a small
number of rules usually involves low accuracy; it is therefgery common to
balance compactness and accuracy in a trade-off that mdéggnds on user
needs.

Average firing rules. When an input is applied to a fuzzy system, the rules whose
conditions are verified to a degree greater than zero aradfiri.e. they con-
tribute to the inference of the output. On the average, tmebau of firing rules
should be as small as possible, so that users are able tostamttthe contribu-
tions of the rules in determining the output.

Logical view. Fuzzy rules resemble logical propositions when their ligtjtide-
scription is considered. Since linguistic descriptiorhis tnain mean for commu-
nicating knowledge, it is necessary that logical laws amieable to fuzzy rules;
otherwise, the system behavior may result counter-intuiff herefore the valid-
ity of some basic laws of the propositional logic (likéodus Ponensand the
truth-preserving operations (e.g., application of dusttivity, De Morgan laws,
etc.) should be verified also for fuzzy rules.

Completeness. The behavior of a fuzzy system is well defined for all inputthie
universe of discourse; however when the maximum firing gtitedetermined by
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an input is too small, it is not easy to justify the behaviothe system in terms
of the activated rules. It is therefore required that formepassible input at least
one rule is activated with a firing strength greater than esthold value (usually
setto 0.5) [57].

Locality. Each rule should define a local model, i.e. a fuzzy regionénuhiverse
of discourse where the behavior of the system is mainly dtlegtoule and only
marginally by other rules that are simultaneously acti§é]. This requirement
is necessary to avoid that the final output of the system isngemuence of an
interpolative behavior of different rules that are simo#ausly activated with
high firing strengths. On the other hand, a moderate ovargmd local models
is admissible in order to enable a smooth transition frontallmodel to another
when the input values gradually shift from one fuzzy regimanother.

On summary, a number of interpretable constraints andrieris@ply to all lev-
els of a fuzzy system. This Section highlighted only the t@msts that are gen-
eral enough to be applied independently on the modeling@nugthowever, several
problem-specific constraints are also reported in liteeate.g., attribute correla-
tion). Sometimes interpretability constraints are cotifig (as exemplified by the
dichotomy distinguishability vs. coverage) and, in mangesa they conflict with
the overall accuracy of the system. A balance is therefapeired, asking in its turn
for a way to assess interpretability in a qualitative bub @aantitative way. This is
the main subject of the next Section.

4 Interpretability assessment

The interpretability constraints and criteria presentegiievious section belong
to two main classes: (1) structural constraints and catexferring to the static de-
scription of a fuzzy model in terms of the elements that cosept and (2) semantic
constraints and criteria quantifying interpretabilitylopking at the behavior of the
fuzzy system. Whilst structural constraints addressebdabilityof a fuzzy model,
semantic constraints focus on @smprehensibility

Of course, interpretability assessment must regard botbed)(description read-
ability) and local (inference comprehensibility) poinfs/@w. It must also take into
account both structural and semantic issues when consgpticomponents (fuzzy
sets, fuzzy partitions, linguistic partitions, linguisgiropositions, fuzzy rules, fuzzy
operators, etc.) of the fuzzy system under study.

Thus, assessing interpretability represents a challgrtgsk mainly because the
analysis of interpretability is extremely subjective. &f, it clearly depends on the
feeling and background (knowledge, experience, etc.)epdrson who is in charge
of making the evaluation. Even though having subjectivexed would be really ap-
preciated for personalization purposes, looking for aensial metric widely admit-
ted makes mandatory also the definition of objective indedesce, it is necessary
to consider both objective and subjective indexes. On tleehand, objective in-
dexes are aimed at making feasible fair comparisons amdiegedit fuzzy models
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designed for solving the same problem. On the other handectiue indexes are
thought for guiding the design of customized fuzzy modéiastmaking easier to
take into account users’ preferences and expectationsgltite design process.

The rest of this section gives an overview on the most poputarpretability in-
dexes which turn out from the specialized literature. Rirgthou and Gan [81] es-
tablished a two-level taxonomy regarding interpretapisues. They distinguished
between low-level (also called fuzzy set level) and higreldor fuzzy rule level).
This taxonomy was extended by Alonso et al. [7] who introdueeconceptual
framework for characterizing interpretability. They clesed both fuzzy partitions
and fuzzy rules at several abstraction levels. Moreovdgg5hthe authors remarked
the need to distinguish between readability (related tactfiral issues) and com-
prehensibility (related to semantic issues). Later, Gat#d. [36] proposed a double
axis taxonomy regarding semantic and structural propeofifuzzy systems, at both
partition and rule base levels. Accordingly, they pointetfour groups of indexes.
Below, we briefly introduce the two most sounded indexesimsiach group (they
are summarized in Fig. 3).

Fuzzy Partition Level Fuzzy Rule Base Level
S I-based et ez
tructural-base
Interpretability Number of features Number of rules
Number of membership functions Number of conditions

) G3 G4
Semantic-based |  context-adaptation based index Semantic-cointension based index
Interpretability GM3M index Co-firing based comprehensibility index

Fig. 3 Interpretability indexes considered in this work.

G1. Structural-based interpretability at fuzzy partition lev el:

Number of features
Number of membership functions

G2. Structural-based interpretability at fuzzy rule base level:

Number of rulesThis index is the most widely used [7].
Number of conditionsThis index corresponds to the previously mentioned
total rule lengthwhich was coined by Ishibuchi et al. [47].

G3. Semantic-based interpretability at fuzzy partition level:

e Context-adaptation based indg¥9]. This index was introduced by Botta et
al. with the aim of guiding the so-called context adaptatipproach for multi-
objective evolutionary design of fuzzy rule-based systelins actually an
interpretability index based on fuzzy ordering relations.

e GM3M index [35]. Gacto et al. proposed an index defined as the geiome
mean of three single metrics. The first metric computes thplatement of
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the tuned membership functions with respect to the initredso The second
metric evaluates the changes in the shapes of memberslufdius in terms
of lateral amplitude rate. The third metric measures tha amilarity. This
index was used to preserve the semantic interpretabilifuzfy partitions
along multi-objective evolutionary rule selection anditunprocesses aimed
at designing fuzzy models with a good interpretability+arecy trade-off.

G4. Semantic-based interpretability at fuzzy rule base lesl:

e Semantic-cointension based ind®®6]. This index exploits the cointension
concept coined by Zadeh [80]. In short, two different consapferring al-
most to the same entities are taken as cointensive. Thugzg 8ystem is
deemed as comprehensible only when the explicit semandtséd by fuzzy
sets attached to linguistic terms as well as fuzzy operatorbedded in the
fuzzy model is cointensive with the implicit semantics imésl by the user
while reading the linguistic representation of the rulestHe case of clas-
sification problems, semantic cointension can be evaluaredigh a logical
view approach, which evaluates the degree of fulfillment néber of log-
ical laws exhibited by a given fuzzy rule base [55]. The idesnty relies on
the assumption that linguistic propositions resembleclalgbropositions, for
which a number of basic logical laws are expected to hold.

e Co-firing based comprehensibility indg0]. It measures the complexity of
understanding the fuzzy inference process in terms of imdétion related to
co-firing rules, i.e. rules firing simultaneously with a gi@put vector. This
index emerges in relation with a novel approach for fuzzytesyscompre-
hensibility analysis, based on visual representationfefftizzy rule-based
inference process. Such representations are called fofergnce-grams (fin-
grams) [61, 62]. Given a fuzzy rule base, a fingram plots ipgieally as a
social network made of nodes representing fuzzy rules agdssdonnecting
nodes in terms of rule interaction at inference level. Edgé&gtts are com-
puted by paying attention to the number of co-firing rulesu§;looking care-
fully at all the information provided by a fingram it becomesg and intuitive
understanding the structure and behavior of the fuzzy ragelit represents.

Notice that, most published interpretability indexes omdal with structural is-
sues, so they correspond to groups G1 and G2. Indexes befptioghese groups are
mainly quantitative. They essentially analyze the stmattoomplexity of a fuzzy
model by counting the number of elements (membership fonstirules, etc.) it
contains. As a result, these indexes can be deemed as objecis. Although
these indexes are usually quite simple (that is the reasgnwehhave just listed
them above), they are by far the most popular ones. On theargnonly a few
interpretability indexes are able to assess the comprddikysof a fuzzy model
dealing with semantic issues (they belong to groups G3 andT®is is mainly due
to the fact that these indexes must take into account not quéwtitative but also
qualitative aspects of the modeled fuzzy system. They &erémtly subjective and
therefore not easy to formalize (that is the reason why we Ipagvided more de-
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tails above). Anyway, the interested reader is referreti¢cctted papers for further
information. Moreover, a much more exhaustive list of inekegan be found in [36].
Even though there has been a great effort in the last year®pmpe new inter-
pretability indexes, a universal index is still missing.rde, defining such an index
remains a challenging task. Anyway, we would like to hightighe need to ad-
dress another encouraging challenge that is the carefigirdesinterpretable fuzzy
systems guided by one or more of the already existing ingéapility indexes.

5 Designing interpretable fuzzy systems

Linguistic (Mamdani-type) fuzzy systems are widely knovenaapowerful tool to
develop linguistic models [52]. They are made up of two maimponents:

e theinference enginethat is the component of the fuzzy system in charge of the
fuzzy processing tasks;

¢ theknowledge basé&B), that is the component of the fuzzy system that stores
the knowledge about the problem being solved. It is compoged

— thefuzzy partitionsdescribing the linguistic terms along with the correspond
ing membership functions defining their semantics, and

— thefuzzy rule baseconstituted by a collection of linguistic rules with the
following structure:

IFXiisAjand ... and X, is A, THEN Y1 is B; and ... and Yy, is B

with X; andY; being input and output linguistic variables respectivatydA;
andB;j being linguistic terms defined by the corresponding fuzagitiens.
This structure provides a natural framework to include exkeowledge in
the form of linguistic fuzzy rules. In addition to expert kmedge, induced
knowledge automatically extracted from experimental d@éscribing the re-
lation between system input and output) can also be easitydiized in the
same rule base. Expert and induced knowledge are complameRtrther-
more, they are represented in a highly interpretable stracThe fuzzy rules
are composed of input and output linguistic variables witédte values from
their term sets having a meaning associated to each linglabel. As a re-
sult, each rule is a description of a condition-action steget that offers a
clear interpretation to a human.

The accuracy of a fuzzy system directly depends on two asgbetcomposition
of the KB (fuzzy partitions and fuzzy rules) and the way in ghit implements the
fuzzy inference process. Therefore, the design procesdurzg system includes
two main tasks which are going to be further explained in tiedving subsections,
regarding both interpretability and accuracy:
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e Generation of the KBn order to formulate and describe the knowledge that is
specific to the problem domain.

e Conception of the inference engjrikat is the choice of the different fuzzy oper-
ators that are employed by the inference process.

Mamdani-type fuzzy systems favor interpretability. THere they are usually
considered when looking for interpretable fuzzy systenwmwvéler, it is important
to remark that they are not interpretaipler se Notice that designing interpretable
fuzzy systems is a matter of careful design.

5.1 Design strategies for the generation of a KB regarding the
inter pretability-accuracy trade-off

The two main objectives to be addressed in the FM fieldraegpretabilityandac-
curacy Of course, the ideal aim would be to satisfy both objectiees high degree
but, since they represent conflicting goals, it is generadtypossible. Regardless of
the approach, a common scheme is found in the existingtlitera

e Firstly, the main objective (interpretability or accurgicytackled defining a spe-
cific model structure to be used, thus setting the FM approach

e Then, the modeling components (model structure and/or timgderocess) are
improved by means of different mechanisms to achieve thiesdesatio between
interpretability and accuracy.

This procedure resulted in four different possibilities) LFM with improved
interpretability, (2) LFM with improved accuracy, (3) PFMtlv improved inter-
pretability, and (4) PFM with improved accuracy.

Option (1) gives priority to interpretability. Although aifzy system designed
by LFM uses a model structure with high descriptive powehas some problems
(curse of dimensionality, excessive number of input vaeisibr fuzzy rules, garbled
fuzzy sets, etc.) that make it not as interpretable as dkbdimeconsequence, there is
a need of interpretability improvements to restore the yenldalance.

On the contrary, option (4) considers accuracy as the maicera. However,
obtaining more accuracy in PFM does not pay attention to nkerpretability of
the model. Thus, this approach goes away from the aim of thik lwhapter. It
acts close to black box techniques. So it does not follow tigiral objective of
FM (not taking profit from the advantages that distinguisftom other modeling
techniques).

Finally, the two remaining options, (2) and (3), propose riovyement mecha-
nisms to compensate for the initial imbalance in the questHe best trade-off
between interpretability and accuracy. In summary, thrammpproaches exist de-
pending on how the two objectives are optimized (sequéyntialat once):

e First Interpretability Then Accuracy.FM with improved accuragy
e First Accuracy Then Interpretability?EM with improved interpretability
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e Multi-Objective Design. Both objectives are optimizedla same time.

The rest of this section provides additional details reldi® each of these ap-
proaches.

First Interpretability Then Accuracy. LFM has some inflexibility due to the
use of linguistic variables with global semantics thatlelssaes a general mean-
ing of the used fuzzy sets [16]:

1. Thereis alack of flexibility in the fuzzy system becausthefrigid partition-
ing of the input and output spaces.

2. When the system input variables are dependent, it is vedytbdind out right
fuzzy partitions of the input spaces.

3. The usual homogeneous partitioning of the input and digpaces does not
scale to high-dimensional spaces. It yields to the welvkmourse of dimen-
sionality problem that is characteristic of fuzzy systems.

4. The size of the KB directly depends on the number of vaembhd linguistic
terms in the model. The derivation of an accurate lingufsizay system usu-
ally requires a big number of linguistic terms. Unforturatéhis fact causes
the number of rules to rise significantly, which may causestrstem to lose
the capability of being readable by human beings. Of coums@ost cases it
would be possible to obtain an equivalent fuzzy system witluah smaller
number of rules by renouncing to that kind of rigidly padited input space.

However, it is possible to make some considerations to faeelisadvantages
enumerated above. Basically, two ways of improving the ssmyuin LFM can
be considered by performing the improvement in:

e themodel structureslightly changing the rule structure to make it more flex-
ible, orin

e the modeling processextending the model design to other components be-
yond the rule base, such as the fuzzy partitions, or evenidenirsg more
sophisticated derivations of it.

Notice that, the so-called strong fuzzy partitions are Wwidesed because they
satisfy most of the interpretability constraints introdddn Section 3.2. The de-
sign of fuzzy partitions may be integrated within the whoteidation process of
a fuzzy system with different schemata:

e Preliminary designlt involves extracting fuzzy partitions automatically by
induction (usually performed by non-supervised clustgtachniques) from
the available dataset.

e Embedded desigollowing a meta-learning process, this approach first de-
rives different fuzzy partitions and then samples its efficaunning an em-
bedded basic learning method of the entire KB [28].

e Simultaneous desigriThe process of designing fuzzy partitions is devel-
oped together with the derivation of other components sgdhafuzzy rule
base [43].



Interpretability of Fuzzy Systems: Current Research Trend$Paospects 19

e A posteriori designThis approach involves tuning of the previously defined
fuzzy partitions once the remaining components have betinga. Usually,
the tuning process changes the membership function shatrethe aim of
improving the accuracy of the linguistic model [51]. Nebetess, sometimes
it also takes care of getting better interpretability (engerging membership
functions [31]).

It is also possible to opt for using more sophisticated ralggdearning methods
while the fuzzy partitions and the model structure are kepitered. Usually, all
these improvements have the final goal of enhancingntieepolative reasoning
the fuzzy system develops. For instance, the COR (cooperailes) method
follows the primary objective of inducing a better coopematamong linguistic
rules [21].

As an alternative, other authors advocate the extensioheofisual linguistic
model structure to make it more flexible. As Zadeh highlighite [77], a way
to do so without losing the description ability to a high dsgis to use lin-
guistic hedges (also calldihguistic modifiersn a wider sense). In addition, the
rule structure can be extended through the definition of ieabnsequent rules,
weighted rules, rules with exceptions, hierarchical rasds, etc.

First Accuracy Then Interpretability. ~ The birth of more flexible fuzzy systems
such as TSK or approximate ones (allowing the FM to achiegbdriaccuracy)
entailed the eruption of PFM. Nevertheless, the modelisgsavith these kinds
of fuzzy systems increasingly resembled black box prosesSensequently,
nowadays several researchers share the idea of rescuirsgittieal intent of
FM, i.e. to preserve the good interpretability advantagésred by fuzzy sys-
tems. This fact is usually attained by reducing the compjenfithe model [67].
Furthermore, there are approaches aimed at improving ta tescription of
TSK-type fuzzy rules:

1. Merging/removing fuzzy sets in precise fuzzy systéhes interpretability of
TSK-type fuzzy systems may be improved by removing thoseyfsets that,
after an automatic adaptation and/or acquisition, do natrimte signifi-
cantly to the model behavior. Two aspects must be considered
e Redundancyit refers to the coexistence of similar fuzzy sets représgn

compatible concepts. In consequence, models become mangexoand
difficult to understand (the distinguishability constita@mnot satisfied).

e Irrelevancy It arises when fuzzy sets with a constant membership degree
equal to one, or close to it, are used. These kinds of fuzzy detnot
furnish relevant information.

The use of similarity measures between fuzzy sets has bexoged to

automatically detect these undesired fuzzy sets [69]. Ugnofirst merg-

ing/removing fuzzy sets and then merging fuzzy rules, tleeige fuzzy model
goes through an interpretability improvement processttiadtes it less com-
plex (more compact) and more easily interpretable (moresprarent).

2. Ordering/selecting TSK-type fuzzy rulds efficient way to improve the in-
terpretability in FM is to select a subset of significant fumzles that represent
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in a more compact way the system to be modeled. Moreover, ide &fect

this selection of important rules reduces the possiblerrddncy existing in

the fuzzy rule base, thus improving the generalization lodipaof the system,

i.e., its accuracy. For instance, resorting to orthogamaidformations [53] is

one of the most successful approaches in this sense.

3. Exploiting the local description of TSK-type fuzzy ruleSK-type fuzzy sys-
tems are usually considered as the combination of simplestadthe rules)
that describe local behaviors of the system to be modeledcéjensofar as
each fuzzy rule is either forced to have a smoother conséquuynomial
function or to develop an isolated action, the interprditghwill be improved:
e Smoothing the consequent polynomial functid4]. Through imposing

several constraints to the weights involved in the polyradriunction of
each rule consequent then a convex combination of the irgmidhles is
performed. This contributes to a better understandingehtbdel.

e Isolating the fuzzy rule actiori§7]. The description of each fuzzy rule is
improved when the overlapping between adjacent input fisety is re-
duced. Notice that the performance region of a rule is marart} defined
by avoiding that other rules have high firing degree in theesarea.

Multi-objective Design. Since interpretability and accuracy are widely recog-
nized as conflicting goals, the use of multi-objective etiohary (MOE) strate-
gies is becoming more and more popular in the quest for thartespretability-
accuracy trade-off [26, 33]. Ducange and Marcelloni [2®9gwsed the following
taxonomy of multi-objective evolutionary fuzzy systems:

1. MOE Tuning Given an already defined fuzzy system, its main parameters
(typically membership function parameters but also fuzdgrence parame-
ters) are refined through MOE strategies [4, 32].

2. MOE Learning The components of a fuzzy system KB, both fuzzy partitions
forming the data-base (DB) and fuzzy rules forming the hdse (RB), are
automatically generated from experimental data.
¢ MOE DB Learning The most relevant variables are identified and the opti-

mum membership function parameters are defined from scratcsually
wraps an RB heuristic-based learning process [2].

¢ MOE RB SelectianStarting from an initial RB, a set of non-dominated
RBs is generated by selecting subsets of rules exhibitifigrdit trade-
offs between interpretability and accuracy [46]. In someaksd3, 35],
MOE RB selection and MOE tuning are carried out together.

e MOE RB Learning The entire set of fuzzy rules is fully defined from
scratch. In this approach uniformly distributed fuzzy fiems are usually
considered [24].

¢ MOE KB Learning Simultaneous evolutionary learning of all KB com-
ponents (DB and RB). Concurrent learning of fuzzy partgi@md fuzzy
rules proved to be a powerful tool in the quest for a good lzadretween
interpretability and accuracy [12].
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It is worthy to note that for the sake of clarity we have onltedi some of the
most relevant papers in the field of MOE fuzzy systems. Fdahérrdetails, the
interested reader is referred to [29, 33] where a much mdraiestive review of
related works is carried out.

5.2 Design decisions at fuzzy processing level

Although there are studies analyzing the behavior of thetiegj fuzzy operators
for different purposes, unfortunately this question hasbe®n considered yet as a
whole from the interpretability point of view. Keeping in nai the interpretability
requirement, the implementation of the inference enginstmddress the following
careful design choices:

Select the right conjunctive operatorT to be used in the antecedent of the rule
Different operators (belonging to the t-norm family) araitable to make this
choice [41].

Select the operatorl to be used in the fuzzy implication of‘IF-THEN”" rules.
Mamdani proposed to use the minimum operator as the t-norimfalication.
Since then, various other t-norms have been suggested disdtigm opera-
tor [41], for instance the algebraic product. Other impatrtiamily of impli-
cation operators are the fuzzy implication functions [&l]e of the most usual
being the Lukasiewicz’s one. Less common implication ojmesasuch as force-
implications [30], t-conorms and operators not belongiogahy of the most
known implication operator families [49] have been considgoo.

Choose the right inference mechanism Two main strategies are available:

e FATI (First Aggregation Then Inference)ll antecedents of the rules are ag-
gregated to form a multidimensional fuzzy relation. Via tieenposition prin-
ciple the output fuzzy set is derived. This strategy is prefit when dealing
with implicative rules [48].

e FITA (First Inference Then Aggregatianyhe output of each rule is first in-
ferred, and then all individual fuzzy outputs are aggregiaidis is the com-
mon approach when working with the usual conjunctive ruldss strategy
has become by far the most popular, especially in case oftireal appli-
cations. The choice for an output aggregation method (inescases this is
called thealso operator) is closely related to the considered implicatipn
erator since it has to be related to the interpretation ofrties (which is
connected to the kind of implication).

Choose the most suitable defuzzification interface operaitn mode There are
different options being the most widely used the Center adaA(COA), also
called Center of Gravity (COG), and the Mean of Maxima (MOEYyen though
most methods are based on geometrical or statistical netiations, there are
also parametric methods, adaptive methods including huknawledge, and
even evolutionary adaptive methods [27].
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6 Interpretable fuzzy systems in the real world

Interpretable fuzzy systems have an immediate impact dswesdd applications. In
particular, their usefulness is appreciable in all appilicaareas that put humans at
the center of computing. Interpretable fuzzy systems, éh faonjugate knowledge
acquisition capabilities with the ability of communicaiknowledge in a human-
understandable way.

Several application areas can take advantage from the ustendretable fuzzy
systems. In the following, some of them are briefly outlireddng with a few notes
on specific applications and potentialities.

Environment. Environmental issues are often challenging because ofdhe ¢
plex dynamics, the high number of variables and the consgqueertainty char-
acterizing the behavior of subjects under study. Compriatilntelligence tech-
nigues come into play when tolerance for imprecision candpéoéed to design
convenient models that are suitable to understand pheroarehtake decisions.
Interpretable fuzzy systems show a clear advantage ovek-blax systems in
providing knowledge that is capable of explaining comple# aon-linear rela-
tionships by using linguistic models. Real-world envir@mtal applications of
interpretable fuzzy systems include: harmful bioaerostdction [64]; modeling
habitat suitability in river management [74]; modeling fiede loss caused by
meteorological factors in agriculture [40]; and so on.

Finance. Thisis a sector where human-computer cooperation is wginy. tCoop-
eration is carried out in different ways, including the ueamputers to provide
business intelligence for decision support in financialrapens. In many cases
financial decisions are ultimately made by experts, who erefit from auto-
mated analyses of big masses of data flowing daily in marRetshis pursuit,
Computational Intelligence approaches are spreading gth@rtools used by fi-
nancial experts in their decisions, including interprégdbzzy systems for stock
return predictions [50], exchange rate forecasting [26}tfplio risk monitor-
ing [38], etc.

Industry.  Industrial applications could take advantage from intetadole fuzzy
systems when there is the need of explaining the behavioorptex systems
and phenomena, like in fault detection [11]. Also, contralns for systems and
processes can be designed with the aid of fuzzy systemschrcsises, a common
practice is to start with an initial expert knowledge (usedl¢sign rules which
are usually highly interpretable) that is then tuned toéase the accuracy of the
controller. However, any unconstrained tuning could agsthe original inter-
pretability of the knowledge base, whilst, by taking inteagnt interpretability,
the possibility of revising and modifying the controller fbe process manager)
can be enhanced [66].

Medicine and Health-care. As a matter of fact, in almost all medical contexts
intelligent systems can be invaluable decision suppotistdmt people are the
ultimate actors in any decision process. As a consequeaop|eneed to rely on
intelligent systems, whose reliability can be enhancebldfrtoutcomes may be
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explained in terms that are comprehensible by human useesptetable fuzzy
systems could play a key role in this area because of thelplitysof acquir-
ing knowledge from data and communicating it to users. lerditure several
approaches have been proposed to apply interpretable syzgms in different
medical problems, like assisted diagnosis [37], prognpssgliction [5], patient
subgroup discovery [20], etc.

Robotics. The complexity of robot behavior modeling can be tackled toynge-
grated approach where a first modeling stage is carried ocoimpining human
expert and empirical knowledge acquired from experimettals. This inte-
grated approach requires that the final knowledge base iddeid to experts
for further maintenance: this task could be done effegtieelly if the acquired
knowledge is interpretable by the user. Some concrete cgtighs of this ap-
proach can be found in robot localization systems [9] andanatnalysis [8, 60].

Society. The focus of intelligent systems for social issues has eabity increased
in recent years. For reasons that are common to all the prewpplication ar-
eas, interpretable fuzzy systems have been applied in awaidiety of scopes,
including Quality of Service improvement [15], data miningh privacy preser-
vation [72], social network analysis [10], and so on.

7 Future research trends on interpretable fuzzy systems

Research on interpretable fuzzy systems is open in seveeatidns. Future trends
involve both theoretical and methodological aspects d@rpretability. In the fol-
lowing, some trends are outlined amongst the possible bfigssearch develop-
ment [6].

Interpretability definition.  The blurred nature of interpretability requires con-
tinuous investigations on possible definitions that enaldemputable treatment
of this quality in fuzzy systems. This requirement castsrdsearch on inter-
pretable fuzzy systems towards cross-disciplinary ingatibns. For instance,
this research line includes investigations on computaélimidions of some con-
ceptual qualities, likeagueneséwvhich has to be distinguished from imprecision
and fuzziness). Also, the problem of interpretability offy systems can be in-
tended as a particular instance of the more general probfesanemunication
between granular worlds [13], where many aspects of intgapility could be
treated in a more abstract way.

Interpretability assessment. A prominent objective is the adoption of a com-
mon framework for characterizing and assessing interpitétawith the aim of
avoiding misleading notations. Within such a frameworkyaianetrics could be
devised, especially for assessing subjective aspectsarpietability, and inte-
grated with objective interpretability measures to defirerersignificant inter-
pretability indexes.

Design of interpretable fuzzy models. A current research trend in designing in-
terpretable fuzzy models makes use of multi-objective tierégorithms in or-
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der to deal with the conflicting design objectives of accyrad interpretability.
The effectiveness and usefulness of these approachesjallgpinose concern-
ing advanced schemes, has to be verified against a numbetexs, including
indexes that integrate subjective measures. This verditgirocess is particu-
larly required when tackling high-dimensional problenmstHis case the combi-
nation of linguistic and graphical approaches could be angsimg approach for
descriptive and exploratory analysis of interpretablejuzystems.
Representation of fuzzy systems. For very complex problems the use of novel

forms of representation (different from the classical #iidesed) may help in rep-
resenting complex relationship in comprehensible ways ttielding a valid aid
in designing interpretable fuzzy systems. For instanceuki4evel representa-
tion could enhance the interpretability of fuzzy systemspbyviding different
granularity levels for knowledge representation. On the band, the highest
granulation levels give a coarse (yet immediately comprsitde) description of
knowledge, while lower levels provide for more detailed kexge.

As a final remark, it is worth observing that interpretakilg one aspect of the
multi-faceted problem diuman-centeredesign of fuzzy systems [14]. Other facets
include acceptability (e.g., according to ethical rul@ggrestingness of fuzzy rules,
applicability (e.g., with respect to law), etc. Many of thane not yet in the research
mainstream but they clearly represent promising futunedse

8 Conclusions

Interpretability is an indispensable requirement for gewig fuzzy systems, yet it
cannot be assumed to hold by the simple fact of using fuza/feemodeling. In-
terpretability must be encoded in some computational nustimworder to drive the
design of fuzzy systems, as well as to assess the interpitytabexisting models.
The study of interpretability issues started about two desago and led to a num-
ber of theoretical and methodological results of parameahte in fuzzy modeling.
Nevertheless, research is still open both in depth — thraayhways of encoding
and assessing interpretability — and in breadth, by integyanterpretability in the
more general realm of Human Centered Computing.
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