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Abstract Fuzzy systems are universally acknowledged as valuable tools to model
complex phenomena while preserving a readable form of knowledge representation.
The resort to natural language for expressing the terms involved in fuzzy rules, in
fact, is a key-factor to conjugate mathematical formalism and logical inference with
human-centered interpretability. That makes fuzzy systems specifically suitable in
every real-world context where people are in charge of crucial decisions. That is
because the self-explanatory nature of fuzzy rules profitably supports expert assess-
ments. Additionally, as far as interpretability is investigated, it appears that: a) the
simple adoption of fuzzy sets in modeling is not enough to ensure interpretability; b)
fuzzy knowledge representation must confront the problem of preserving the overall
system accuracy, thus yielding a trade-off which is frequently debated. Such issues
have attracted a growing interest in the research communityand became to assume
a central role in the current literature panorama of Computational Intelligence. This
chapter gives an overview of the topics related to fuzzy system interpretability, fac-
ing the ambitious goal of proposing some answers to a number of open challenging
questions: What is interpretability? Why interpretability is worth considering? How
to ensure interpretability, and how to assess (quantify) it? Finally, how to design
interpretable fuzzy models?
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1 Introduction

The key factor for the success of fuzzy logic stands in the ability of modeling and
processingperceptionsinstead of measurements [79]. In most cases, such percep-
tions are expressed in natural language. Thus, fuzzy logic acts as a mathematical un-
derpinning for modeling and processing perceptions described in natural language.

Historically, it has been acknowledged that fuzzy systems are endowed with the
capability to conjugate a complex behavior and a simple description in terms of
linguistic rules. In many cases, the compilation of fuzzy systems has been accom-
plishedmanually; with human knowledge purposely injected in fuzzy rules in order
to model the desired behavior (the rules could be eventuallytuned to improve the
system accuracy). In addition, the great success of fuzzy logic led to the develop-
ment of many algorithms aimed at acquiring knowledge from data (expressing it
in terms of fuzzy rules). This made feasible the automatic design of fuzzy systems
(through data-driven design techniques). Moreover, theoretical studies proved the
universal approximation capabilities of such systems [75].

The adoption of data-driven design techniques is a common practice nowadays.
Nevertheless, while fuzzy sets can be generally used to model perceptions, some
of them do not lead to a straight interpretation in natural language. In consequence,
the adoption of accuracy-driven algorithms for acquiring knowledge from data often
results in unintelligible models. In those cases, the fundamental plus of fuzzy logic
is lost and the derived models are comparable to other measurement-based models
(like neural networks) in terms of knowledge interpretability.

In a nutshell, interpretability is not granted by the adoption of fuzzy logic which
represents a necessary yet not a sufficient requirement for modeling and processing
perceptions. However, interpretability is a quality that is not easy to define and quan-
tify. Several open and challenging questions arise while considering interpretability
in fuzzy modeling:Whatis interpretability?Whyinterpretability is worth consider-
ing? How toensureinterpretability? How toassess(quantify) interpretability? How
to designinterpretable fuzzy models? And so on.

The objective of this chapter is to provide some answers for the questions posed
above. Section 2 deals with the challenging task of setting aproper definition of
interpretability. Section 3 introduces the main constraints and criteria that can be
adopted to ensure interpretability when designing interpretable fuzzy systems. Sec-
tion 4 gives a brief overview of the soundest indexes for assessing interpretability.
Section 5 presents the most popular approaches for designing fuzzy systems en-
dowed with a good interpretability-accuracy trade-off. Section 6 enumerates some
application fields where interpretability is a main concern. Section 7 sketches a num-
ber of challenging tasks which should be addressed in the near future. Finally, some
conclusions are drawn in Section 8.
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2 The quest for interpretability

Answering the question “What is interpretability?” is not straightforward. Defining
interpretability is a challenging task since it deals with the analysis of the relation
occurring between two heterogeneous entities: a model of the system to be designed
(usually formalized through a mathematical definition) anda human user (meant not
as a passive beneficiary of a system’s outcome, but as an active reader and interpreter
of the model’s working engine). In this sense, interpretability is a quality which is
inherent in the model and yet it refers to an act performed by the user who is willing
to grasp and explain the meaning of the model.

To pave the way for the definition of such a relation, a common ground must
be settled. This could be represented by a number of fundamental properties to be
incorporated into a model, so that its formal description becomes compatible with
the user’s knowledge representation. In this way, the humanuser may interface the
mathematical model resting on concepts that appear to be suitable to deal with it.
The quest for interpretability, therefore, calls for the identification of several fea-
tures. Among them, resorting to an appropriate framework for knowledge represen-
tation is a crucial element and the adoption of a fuzzy inference engine based on
fuzzy rules is straightforward to approach the linguistic-based formulation of con-
cepts which is typical of the human abstract thought.

A distinguishing feature of a fuzzy rule-based model is the double level of knowl-
edge representation. The lower level of representation is constituted by the formal
definition of the fuzzy sets in terms of their membership functions, as well as the
aggregation functions used for inference. This level of representation defines these-
manticsof a fuzzy rule-based model as it determines the behavior of the model, i.e.
the input/output mapping for which it is responsible.

On the higher level of representation, knowledge is represented in form of rules.
They define a formal structure where linguistic variables are involved and recipro-
cally connected by some formal operators, such as “AND”, “THEN”, and so on.
Linguistic variables correspond to the inputs and outputs of the model. The (sym-
bolic) values they assume are related to linguistic terms which, in turn, are mapped
to the fuzzy sets defined in the lower level of representation. The formal opera-
tors are likewise mapped to the aggregation functions. Thismapping provides the
interpretative transition that is quite common in the mathematical context: a formal
structure is assigned semantics by mapping symbols (linguistic terms and operators)
to objects (fuzzy sets and aggregation functions).

In principle, the mapping of linguistic terms to fuzzy sets is arbitrary. It just
suffices that identical linguistic terms are mapped to identical fuzzy sets. Of course,
this is not completely true for formal operators (e.g., t-norms, implications, etc.).
The corresponding aggregation functions should satisfy a number of constraints;
however some flexibility is possible. Nevertheless, the mere use of symbols in the
high level of knowledge representation implies the establishment of a number of
semiotic relations that are fundamental for the quest of interpretability of a fuzzy
model. In particular, linguistic terms — as usually picked from natural language —
must be fully meaningful for the expected reader since they denote concepts, i.e.
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mental representations that allow people to draw appropriate inferences about the
entities they encounter.

Concepts and fuzzy sets, therefore, are both denoted by linguistic terms. Addi-
tionally, concepts and fuzzy sets play a similar role: the former (being part of the
human knowledge) contribute to determine the behavior of a person; the latter (be-
ing the basic elements of a fuzzy rule base) contribute to determine the behavior of
a system to be modeled. As a consequence, concepts and fuzzy sets are implicitly
connected by means of the common linguistic terms they are related to, which refer
to object classes in the real world. The key essence of interpretability is therefore
the property ofcointension[80] between fuzzy sets and concepts, consisting in the
possibility of referring to similar classes of objects: such a possibility is assured by
the use of common linguistic terms.

Semantic cointension is a key-issue when dealing with interpretability of fuzzy
systems. It has been introduced and centered on the role of fuzzy sets, but it can
be easily extended to refer to some more complex structures,such as fuzzy rules
or the whole fuzzy models. In this regard, a crisp assertion about the importance of
cointension pronounced at the level of the whole model is given by the Michalski’s
“Comprehensibility Postulate” [58]:

The results of computer induction should be symbolic descriptions of given entities, seman-
tically and structurally similar to those a human expert might produce observing the same
entities. Components of these descriptions should be comprehensible as single “chunks” of
information, directly interpretable in natural language, and should relate quantitative and
qualitative concepts in an integrated fashion.

It should be observed that the above postulate has been formulated in the general
area of Machine Learning. Nevertheless, the assertion madeby Michalski has im-
portant consequences in the specific area of fuzzy modeling (FM) too. According to
the Comprehensibility Postulate, results of computer induction should be described
symbolically. Symbols are necessary to communicate information and knowledge,
hence pure numerical methods, such as neural networks, are not suited for meeting
interpretability unless an interpretability-oriented post-processing of the resulting
knowledge is performed.

The key-point of the Michalski’s postulate is the human centrality of the results
of a computer induction process. The importance of the humancomponent implic-
itly suggests a novel aspect to be taken into account in the quest for interpretabil-
ity. Actually, the semantic cointension is related to one facet of the interpretability
process, which can be referred to ascomprehensibilityof the content and behavior
of a fuzzy model. In other words, cointension concerns the semantic interpretation
performed by a user determined to comprehend such model. On the other hand,
when we turn to consider the cognitive capabilities of humanbrains and their intrin-
sic limitations, then a different facet of the interpretability process can be defined
in terms ofreadability of the bulk of information conveyed by a fuzzy model. In
that case, simplicity is required to perform the interpretation process because of the
limited ability to store information in the human brain’s short term memory [59].
Therefore, structural measures concerning the complexityof a rule base affect the
cognitive efforts of a user determined to read and interpreta fuzzy model.
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Comprehensibility and readability represent two facets ofa common issue and
both of them are to be considered while assessing the interpretability process. In
particular, this distinction should be acknowledged when criteria are specifically
designed to provide a quantitative definition of interpretability.

2.1 Why is interpretability so important?

A great number of inductive modeling techniques are currently available to acquire
knowledge from data. Many of these techniques provide predictive models that are
very accurate and flexible enough to be applied in a wide rangeof applications.
Nevertheless, the resulting models are usually consideredas black-boxes, i.e. mod-
els whose behavior cannot be easily explained in terms of themodel structure. On
the other hand, the use of fuzzy rule-based models is a matterof design choice:
whenever interpretability is a key factor, fuzzy rule-based models should be natu-
rally preferred. It is worth noting that interpretability is a distinguishing feature of
fuzzy rule-based models. Several reasons justify a choice inclined towards inter-
pretability. They include but are not limited to:

Integration. In an interpretable fuzzy rule-based model the acquired knowledge
can be easily verified and related to the domain knowledge of ahuman expert.
In particular, it is easy to verify if the acquired knowledgeexpresses new and
interesting relations about the data; also, the acquired knowledge can be refined
and integrated with expert knowledge.

Interaction. The use of natural language as a mean for knowledge communica-
tion enables the possibility of interaction between the user and the model. Inter-
activity is meant to explore the acquired knowledge. In practice, it can be done
at symbolical level (by adding new rules or modifying existing ones) and/or at
numerical level (by modifying the fuzzy sets denoted by linguistic terms; or by
adding new linguistic terms denoting new fuzzy sets).

Validation. The acquired knowledge can be easily validated against common-
sense knowledge and domain-specific knowledge. This capability enables the
detection of semantic inconsistencies that may have different causes (misleading
data involved in the inductive process, local minimum wherethe inductive pro-
cess may have been trapped, data overfitting, etc.). This kind of anomaly detec-
tion is important to drive the inductive process towards a qualitative improvement
of the acquired knowledge.

Trust. The most important reason to adopt interpretable fuzzy models is their
inherent ability to convince end-users about the reliability of a model (espe-
cially those users not concerned with knowledge acquisition techniques). An
interpretable fuzzy rule-based model is endowed with the capability of explain-
ing its inference process so that users may be confident on howit produces its
outcomes. This is particularly important in such domains asmedical diagnosis,
where a human expert is the ultimate responsible for a decision.
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2.2 A historical review

It has been long time since Zadeh’s seminal work on fuzzy sets[76] and nowadays
there are lots of fruitful research lines related to fuzzy logic [6]. Hence, we can state
that fuzzy sets and systems have become the subjects of a mature research field
counting several works both theoretical and applied in their scope. Fig. 1 shows the
distribution of publications per year regarding interpretability issues. Three main
phases can be identified taking into account the historical evolution of FM.
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Fig. 1 Publications per year related to interpretability issues.

From 1965 to 1990. During this initial period interpretability emerged naturally
as the main advantage of fuzzy systems. Researchers concentrated on building
fuzzy models mainly working with expert knowledge and a few simple linguis-
tic variables [78] and linguistic rules usually referred asMamdani rules [52].
As a result, those designed fuzzy models were characterizedby their high inter-
pretability. Moreover, interpretability is assumed as an intrinsic property of fuzzy
systems. Therefore, there are only a few publications regarding interpretability
issues. Notice that, the first proposal of a Fuzzy Rule Based System (FRBS) was
presented by Mamdani who was able to augment Zadeh’s initialformulation al-
lowing the application of fuzzy systems to a control problem. These kinds of
fuzzy systems are also referred to asfuzzy logic controllers, as proposed by the
author in his pioneering paper. In addition, Mamdani-type FRBSs became soon
the main tool to develop linguistic models. Of course, many other rule formats
were arising and gaining importance. In addition to MamdaniFRBSs, probably
the most famous FRBSs are those proposed by Takagi and Sugeno[70], the pop-
ular TSK fuzzy systems, where the conclusion is a function ofthe input values.
Due to their current popularity, in the following we will usethe term “fuzzy sys-
tem” to denote Mamdani-type FRBSs and their subsequent extensions.

From 1990 to 2000. In the second period the focus was set on accuracy. Re-
searchers realized that expert knowledge was not enough to deal with complex
systems. Thus, they explored the use of fuzzy machine learning techniques to au-
tomatically extract knowledge from data [44, 45]. Accordingly, those designed
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fuzzy models became composed of extremely complicated fuzzy rules with high
accuracy but at the cost of disregarding interpretability as a side effect. Obvi-
ously, automatically generated rules were rarely as readable as desired. Along
this period some researchers started claiming that fuzzy models are not inter-
pretableper se. Interpretability is a matter of careful design. Thus, interpretabil-
ity issues must be deeply analyzed and seriously discussed.Although the amount
of publications related to interpretability issues is still small in this period, please
pay attention to the fact that publications begin to grow exponentially at the end
of this second phase.

From 2000 to 2012. After the two previous periods, researchers realized that
both expert-driven (from 1965 to 1990) and data-driven (from 1990 to 2000) de-
sign approaches have their own advantages and drawbacks, but they are somehow
complementary. For instance, expert knowledge is general and easy to interpret
but hard to formalize. On the contrary, knowledge derived from data can be ex-
tracted automatically but it becomes quite specific and its interpretation is usually
hard [39]. Moreover, researchers were aware of the need of taking into account
simultaneously interpretability and accuracy during the design of fuzzy mod-
els. As a result, during this third phase the main challenge was how to combine
expert knowledge and knowledge extracted from data, with the aim of design-
ing compact and robust systems with a good interpretability-accuracy trade-off.
When considering both interpretability and accuracy in FM, two main strate-
gies turn up naturally [1]:Linguistic Fuzzy Modeling(LFM) andPrecise Fuzzy
Modeling(PFM). On the one hand, in LFM system designers first focus on the
interpretability of the model, and then they try to improve its accuracy [22]. On
the other hand, in PFM designers first build a fuzzy model maximizing its ac-
curacy, and then they try to improve its interpretability [23]. As an alternative,
since accuracy and interpretability represent conflictinggoals by nature, multi-
objective fuzzy modeling strategies (considering accuracy and interpretability as
objectives) have become very popular [26, 42].
At the same time, there has been a great effort for formalizing interpretability
issues. As a result, the number of publications has grown a lot. Researchers have
actively looked for the right definition of interpretability. In addition, several in-
terpretability constraints have been identified. Moreover, interpretability assess-
ment has become a hot research topic. In fact, several interpretability indexes
(able to guide the FM design process) have been defined. Nevertheless, a uni-
versal index widely admitted is still missing. Hence, further research on inter-
pretability issues is demanded.
Unfortunately, although the number of publications was growing exponentially
until 2009, later it started decreasing. In 2012 the number of publications dropped
down dramatically reaching the same levels of 2003. We wouldlike to emphasize
the impact of the two pioneer books [22, 23] edited in 2003. They contributed to
make the fuzzy community aware of the need to take into account again inter-
pretability as a main research concern. It is worth noting that the first formal
definition of interpretability (in the fuzzy literature) was included in [23]. It was
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given by Bodenhofer and Bauer [17] who established an axiomatic treatment of
interpretability at the level of linguistic variables.

We encourage the fuzzy community to keep paying attention tointerpretability
issues because there is still a lot of research to be done. Interpretability must be
the central point on system modeling. In fact, some of the hottest and most recent
research topics like Precisiated Natural Language, Computing With Words, and Hu-
man Centric Computing strongly rely on the interpretability of the designed models.
The challenge is to better exploit fuzzy logic techniques for improving the human-
centric character of many intelligent systems. Therefore,interpretability deserves
consideration as a main research concern and the number of publications should
grow again in the next years.

3 Interpretability constraints and criteria

Interpretability is a quality of fuzzy systems that is not immediate to quantify. Nev-
ertheless, a quantitative definition is required both for assessing the interpretability
of a fuzzy system and for designing new fuzzy systems. This requirement is espe-
cially stringent when fuzzy systems are automatically designed from data, through
some knowledge extraction procedure.

A common approach for defining interpretability is based on the adoption of a
number of constraints and criteria that, taken as a whole, provide for a definition of
interpretability. This approach is inherent to the subjective nature of interpretability,
because the validity of some conditions/criteria is not universally acknowledged and
may depend on the application context.

In literature, a large number of interpretability constraints and criteria can be
found. Some of them are widely accepted, while others are controversial. The na-
ture of these constraints and criteria is also diverse. Someare neatly defined as a
mathematical condition, others have a fuzzy character and their satisfaction is a
matter of degree. This Section is addressed to give a brief yet homogeneous outline
of the best known interpretability constraints and criteria. The reader is referred to
the specialized literature for deeper insights on this topic [57, 73].

Several ways are available to categorize interpretabilityconstraints and criteria.
It could be possible to refer to their specific nature (e.g., crisp vs. fuzzy), to the
components of the fuzzy system where they are applied, or to the description level
of the fuzzy system itself. Here, as depicted in Fig. 2, we choose a hierarchical
organization that starts from the most basic components of afuzzy system, namely
the involved fuzzy sets, and goes on toward more complex levels, such as fuzzy
partitions, fuzzy rules, up to considering the model as a whole.
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Fig. 2 Interpretability constraints and criteria in different abstraction levels.

3.1 Constraints and criteria for fuzzy sets

Fuzzy sets are the basic elements of fuzzy systems and their role is to express el-
ementary yet imprecise concepts that can be denoted by linguistic labels. Here we
assume that fuzzy sets are defined on a universe of discourse represented by a closed
interval of the real line (this is the case of most fuzzy systems, especially those ac-
quired from data). Thus, fuzzy sets are the building blocks to translate a numeri-
cal domain in a linguistically quantified domain that can be used to communicate
knowledge.

Generally speaking, single fuzzy sets are employed to express elementary con-
cepts and, through the use of connectives, are combined to represent more complex
concepts. However, not all fuzzy sets can be related to elementary concepts, since
the membership function of a fuzzy set may be very awkward butstill legitimate
from a mathematical viewpoint. Actually, a sub-class of fuzzy sets should be con-
sidered, so that its members can be easily associated to elementary concepts and
tagged by the corresponding linguistic labels. Fuzzy sets of this sub-class must ver-
ify a number of basic interpretability constraints, including:

Normality. At least one element of the universe of discourse is a prototype for the
fuzzy set, i.e. it is characterized by a full membership degree. A normal fuzzy set
represents a concept that fully qualifies at least one element of the universe of
discourse, i.e. the concept has at least one example that fulfills it. On the other
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hand, a sub-normal fuzzy set is usually a consequence of a partial contradiction
(it is easy to show that the degree of inclusion of a sub-normal fuzzy set in the
empty set is non-zero).

Continuity. The membership function is continuous on the universe of discourse.
As a matter of fact, most concepts that can be naturally represented through fuzzy
sets derive from a perceptual act, which comes from externalstimuli that usually
vary in continuity. Therefore, continuous fuzzy sets are better in accordance with
the perceptive nature of the represented concepts.

Convexity. In a convex fuzzy set, given three elements linearly placed on the axis
related to the universe of discourse, the degree of membership of the middle ele-
ment is always greater than or equal to the minimum membership degree of the
side elements [63]. This constraint encodes the rule that ifa property is satisfied
by two elements, then it is also satisfied by an element settled between them.

3.2 Constraints and criteria for fuzzy partitions

The key success factor of fuzzy logic in modeling is the ability of expressing knowl-
edgelinguistically. Technically this is realized by linguistic variables, i.e. variables
that assume symbolic values called linguistic terms. The peculiarity of linguistic
variables with respect to classical symbolic approaches isthe interpretation of lin-
guistic terms as fuzzy sets. The collection of fuzzy sets used as interpretation of the
linguistic terms of a linguistic variable forms a fuzzy partition of the universe of
discourse.

To understand the role of a fuzzy partition, we should consider that it is meant
to define a relation among fuzzy sets. Such a relation must be co-intensive with the
one connecting the elementary concepts represented by the fuzzy sets involved in
the fuzzy partition. That is the reason why the design of fuzzy partitions is so crucial
for the overall interpretability of a fuzzy system. The mostcritical interpretability
constraints for fuzzy partitions are:

Justifiable number of elements. The number of fuzzy sets included in a linguis-
tic variable must be small enough so that they can be easily remembered and
recalled by users. Psychological studies suggest at most nine fuzzy sets or even
less [59, 68]. Usually, three to five fuzzy sets are convenient choices to set the
partition cardinality.

Distinguishability. Since fuzzy sets are denoted by distinct linguistic terms, they
should refer to well distinguished concepts. Therefore, fuzzy sets in a partition
should be well separated, although some overlapping is admissible because usu-
ally perception-based concepts are not completely disjoint. Several alternatives
are available to quantify distinguishability, including similarity and possibility
[54].

Coverage. Distinguishable fuzzy sets are necessary, but if they are too much sep-
arated they risk to under-represent some subset of the universe of discourse. The
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coverage constraint requires that each element of the universe of discourse must
belong to at least one fuzzy set of the partition with a membership degree not
less than a threshold [57]. This requirement involves that each element of the
universe of discourse has some quality that is well represented in the fuzzy parti-
tion. On the other hand, the lack of coverage is a signal of incompleteness of the
fuzzy partition that may hamper the overall comprehensibility of the system’s
knowledge. Coverage and distinguishability are somewhat conflicting require-
ments that are usually balanced by fuzzy partitions that enforce the intersection
of adjacent fuzzy sets to elements whose maximum membershipdegree is equal
to a threshold (usually the value of this threshold is set to 0.5).

Relation preservation. The concepts that are represented by the fuzzy sets in
a fuzzy partition are usually cross-related. The most immediate relation which
can be conceived among concepts is related to the order (e.g., LOW preceding
MEDIUM, preceding HIGH, and so on). Relations of this type must be preserved
by the corresponding fuzzy sets in the fuzzy partition [18].

Prototypes on special elements. In many problems some elements of the uni-
verse of discourse have some special meaning. A common case is the meaning of
the bounds of the universe of discourse, which usually represent some extreme
qualities (e.g., VERY LARGE or VERY SMALL ). Other examples are possible,
which could be aside from the bounds of the universe of discourse being, in-
stead, more problem-specific (e.g., prototypes could be conceived for the icing
point of water, the typical human body temperature, etc.). In all these cases, the
prototypes of some fuzzy sets of the partition must coincidewith such special
elements.

3.3 Constraints and criteria for fuzzy rules

In most cases a fuzzy system is defined over a multi-dimensional universe of dis-
course that can be split into many one-dimensional universes of discourse, each of
them associated to a linguistic variable. A subset of these linguistic variables is used
to represent the input of a system, while the remaining variables (usually only one
variable) are used to represent the output. The input/output behavior is expressed in
terms of rules. Each rule prescribes a linguistic output value when the input matches
the rule condition (also called rule premise), usually expressed as a logical combi-
nation of soft constraints. A soft constraint is a linguistic proposition (specification)
that ties a linguistic variable to a linguistic term (e.g., TEMPERATURE ISHIGH).
Furthermore the soft constraints combined in a rule condition may involve different
linguistic variables (e.g., TEMPERATURE ISHIGH AND PRESSURE ISLOW).

A fuzzy rule is a unit of knowledge that has the twofold role ofdetermining the
system behavior and communicating this behavior in a linguistic form. The latter
feature urges to adopt a number of interpretability constraints which are to be added
up to the constraints required for fuzzy sets and fuzzy partitions. Some of the most
general interpretability constraints and criteria for fuzzy rules are the following:
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Description length. The description length of a fuzzy rule is the sum of the num-
ber of soft constraints occurring in the condition and in theconsequent of the
rule (it is usually known astotal rule length). In most cases, only one linguistic
variable is represented in a rule consequent, therefore thedescription length of a
fuzzy rule is directly related to the complexity of the condition. A small number
of soft constraints in a rule implies both high readability and semantic generality,
hence short rules should be preferred in fuzzy systems.

Granular outputs. The main strength of fuzzy systems is their ability to repre-
sent and process imprecision in both data and knowledge. Imprecision is part
of fuzzy inference, therefore the inferred output of a fuzzysystem should carry
information about the imprecision of its knowledge. This can be accomplished
by using fuzzy sets as outputs. Defuzzification collapses fuzzy sets into single
scalars; it should be therefore used only when strictly necessary and in those
situations where outputs are not the object of user interpretation.

3.4 Constraints and criteria for fuzzy rule bases

As previously stated, the interpretability of a rule base taken as a whole has two
facets: (1) a structural facet (readability), which is mainly related to the easiness of
reading the rules; and (2) a semantic facet (comprehensibility), which is related to
the information conveyed to the users who are willing to understand the system be-
havior. The following interpretability constraints and criteria are commonly defined
to ensure the structural and semantic interpretability of fuzzy rule bases:

Compactness. A compact rule base is defined by a small number of rules. This is
a typical structural constraint that advocates for simple representation of knowl-
edge in order to allow easy reading and understanding. Nevertheless, a small
number of rules usually involves low accuracy; it is therefore very common to
balance compactness and accuracy in a trade-off that mainlydepends on user
needs.

Average firing rules. When an input is applied to a fuzzy system, the rules whose
conditions are verified to a degree greater than zero are “firing”, i.e. they con-
tribute to the inference of the output. On the average, the number of firing rules
should be as small as possible, so that users are able to understand the contribu-
tions of the rules in determining the output.

Logical view. Fuzzy rules resemble logical propositions when their linguistic de-
scription is considered. Since linguistic description is the main mean for commu-
nicating knowledge, it is necessary that logical laws are applicable to fuzzy rules;
otherwise, the system behavior may result counter-intuitive. Therefore the valid-
ity of some basic laws of the propositional logic (likeModus Ponens) and the
truth-preserving operations (e.g., application of distributivity, De Morgan laws,
etc.) should be verified also for fuzzy rules.

Completeness. The behavior of a fuzzy system is well defined for all inputs inthe
universe of discourse; however when the maximum firing strength determined by
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an input is too small, it is not easy to justify the behavior ofthe system in terms
of the activated rules. It is therefore required that for each possible input at least
one rule is activated with a firing strength greater than a threshold value (usually
set to 0.5) [57].

Locality. Each rule should define a local model, i.e. a fuzzy region in the universe
of discourse where the behavior of the system is mainly due tothe rule and only
marginally by other rules that are simultaneously activated [65]. This requirement
is necessary to avoid that the final output of the system is a consequence of an
interpolative behavior of different rules that are simultaneously activated with
high firing strengths. On the other hand, a moderate overlapping of local models
is admissible in order to enable a smooth transition from a local model to another
when the input values gradually shift from one fuzzy region to another.

On summary, a number of interpretable constraints and criteria apply to all lev-
els of a fuzzy system. This Section highlighted only the constraints that are gen-
eral enough to be applied independently on the modeling problem; however, several
problem-specific constraints are also reported in literature (e.g., attribute correla-
tion). Sometimes interpretability constraints are conflicting (as exemplified by the
dichotomy distinguishability vs. coverage) and, in many cases, they conflict with
the overall accuracy of the system. A balance is therefore required, asking in its turn
for a way to assess interpretability in a qualitative but also quantitative way. This is
the main subject of the next Section.

4 Interpretability assessment

The interpretability constraints and criteria presented in previous section belong
to two main classes: (1) structural constraints and criteria referring to the static de-
scription of a fuzzy model in terms of the elements that compose it; and (2) semantic
constraints and criteria quantifying interpretability bylooking at the behavior of the
fuzzy system. Whilst structural constraints address thereadabilityof a fuzzy model,
semantic constraints focus on itscomprehensibility.

Of course, interpretability assessment must regard both global (description read-
ability) and local (inference comprehensibility) points of view. It must also take into
account both structural and semantic issues when considering all components (fuzzy
sets, fuzzy partitions, linguistic partitions, linguistic propositions, fuzzy rules, fuzzy
operators, etc.) of the fuzzy system under study.

Thus, assessing interpretability represents a challenging task mainly because the
analysis of interpretability is extremely subjective. In fact, it clearly depends on the
feeling and background (knowledge, experience, etc.) of the person who is in charge
of making the evaluation. Even though having subjective indexes would be really ap-
preciated for personalization purposes, looking for a universal metric widely admit-
ted makes mandatory also the definition of objective indexes. Hence, it is necessary
to consider both objective and subjective indexes. On the one hand, objective in-
dexes are aimed at making feasible fair comparisons among different fuzzy models
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designed for solving the same problem. On the other hand, subjective indexes are
thought for guiding the design of customized fuzzy models, thus making easier to
take into account users’ preferences and expectations during the design process.

The rest of this section gives an overview on the most popularinterpretability in-
dexes which turn out from the specialized literature. Firstly, Zhou and Gan [81] es-
tablished a two-level taxonomy regarding interpretability issues. They distinguished
between low-level (also called fuzzy set level) and high-level (or fuzzy rule level).
This taxonomy was extended by Alonso et al. [7] who introduced a conceptual
framework for characterizing interpretability. They considered both fuzzy partitions
and fuzzy rules at several abstraction levels. Moreover, in[55] the authors remarked
the need to distinguish between readability (related to structural issues) and com-
prehensibility (related to semantic issues). Later, Gactoet al. [36] proposed a double
axis taxonomy regarding semantic and structural properties of fuzzy systems, at both
partition and rule base levels. Accordingly, they pointed out four groups of indexes.
Below, we briefly introduce the two most sounded indexes inside each group (they
are summarized in Fig. 3).

Structural−based
Interpretability

Interpretability
Semantic−based

Number of features
Number of membership functions

GM3M index
Context−adaptation based index

Number of rules
Number of conditions

Co−firing based comprehensibility index

Fuzzy Partition Level Fuzzy Rule Base Level

G1

G3

G2

G4
Semantic−cointension based index

Fig. 3 Interpretability indexes considered in this work.

G1. Structural-based interpretability at fuzzy partition lev el:

• Number of features.
• Number of membership functions.

G2. Structural-based interpretability at fuzzy rule base level:

• Number of rules. This index is the most widely used [7].
• Number of conditions. This index corresponds to the previously mentioned

total rule lengthwhich was coined by Ishibuchi et al. [47].

G3. Semantic-based interpretability at fuzzy partition level:

• Context-adaptation based index[19]. This index was introduced by Botta et
al. with the aim of guiding the so-called context adaptationapproach for multi-
objective evolutionary design of fuzzy rule-based systems. It is actually an
interpretability index based on fuzzy ordering relations.

• GM3M index [35]. Gacto et al. proposed an index defined as the geometric
mean of three single metrics. The first metric computes the displacement of
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the tuned membership functions with respect to the initial ones. The second
metric evaluates the changes in the shapes of membership functions in terms
of lateral amplitude rate. The third metric measures the area similarity. This
index was used to preserve the semantic interpretability offuzzy partitions
along multi-objective evolutionary rule selection and tuning processes aimed
at designing fuzzy models with a good interpretability-accuracy trade-off.

G4. Semantic-based interpretability at fuzzy rule base level:

• Semantic-cointension based index[56]. This index exploits the cointension
concept coined by Zadeh [80]. In short, two different concepts referring al-
most to the same entities are taken as cointensive. Thus, a fuzzy system is
deemed as comprehensible only when the explicit semantics (defined by fuzzy
sets attached to linguistic terms as well as fuzzy operators) embedded in the
fuzzy model is cointensive with the implicit semantics inferred by the user
while reading the linguistic representation of the rules. In the case of clas-
sification problems, semantic cointension can be evaluatedthrough a logical
view approach, which evaluates the degree of fulfillment of anumber of log-
ical laws exhibited by a given fuzzy rule base [55]. The idea mainly relies on
the assumption that linguistic propositions resemble logical propositions, for
which a number of basic logical laws are expected to hold.

• Co-firing based comprehensibility index[10]. It measures the complexity of
understanding the fuzzy inference process in terms of information related to
co-firing rules, i.e. rules firing simultaneously with a given input vector. This
index emerges in relation with a novel approach for fuzzy system compre-
hensibility analysis, based on visual representations of the fuzzy rule-based
inference process. Such representations are called fuzzy inference-grams (fin-
grams) [61, 62]. Given a fuzzy rule base, a fingram plots it graphically as a
social network made of nodes representing fuzzy rules and edges connecting
nodes in terms of rule interaction at inference level. Edge weights are com-
puted by paying attention to the number of co-firing rules. Thus, looking care-
fully at all the information provided by a fingram it becomes easy and intuitive
understanding the structure and behavior of the fuzzy rule base it represents.

Notice that, most published interpretability indexes onlydeal with structural is-
sues, so they correspond to groups G1 and G2. Indexes belonging to these groups are
mainly quantitative. They essentially analyze the structural complexity of a fuzzy
model by counting the number of elements (membership functions, rules, etc.) it
contains. As a result, these indexes can be deemed as objective ones. Although
these indexes are usually quite simple (that is the reason why we have just listed
them above), they are by far the most popular ones. On the contrary, only a few
interpretability indexes are able to assess the comprehensibility of a fuzzy model
dealing with semantic issues (they belong to groups G3 and G4). This is mainly due
to the fact that these indexes must take into account not onlyquantitative but also
qualitative aspects of the modeled fuzzy system. They are inherently subjective and
therefore not easy to formalize (that is the reason why we have provided more de-
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tails above). Anyway, the interested reader is referred to the cited papers for further
information. Moreover, a much more exhaustive list of indexes can be found in [36].

Even though there has been a great effort in the last years to propose new inter-
pretability indexes, a universal index is still missing. Hence, defining such an index
remains a challenging task. Anyway, we would like to highlight the need to ad-
dress another encouraging challenge that is the careful design of interpretable fuzzy
systems guided by one or more of the already existing interpretability indexes.

5 Designing interpretable fuzzy systems

Linguistic (Mamdani-type) fuzzy systems are widely known as a powerful tool to
develop linguistic models [52]. They are made up of two main components:

• the inference engine, that is the component of the fuzzy system in charge of the
fuzzy processing tasks;

• theknowledge base(KB), that is the component of the fuzzy system that stores
the knowledge about the problem being solved. It is composedof:

– thefuzzy partitions, describing the linguistic terms along with the correspond-
ing membership functions defining their semantics, and

– the fuzzy rule base, constituted by a collection of linguistic rules with the
following structure:

IF X1 is A1 and . . . and Xn is An THEN Y1 is B1 and . . . and Ym is Bm

with Xi andYj being input and output linguistic variables respectively,andAi

andB j being linguistic terms defined by the corresponding fuzzy partitions.
This structure provides a natural framework to include expert knowledge in
the form of linguistic fuzzy rules. In addition to expert knowledge, induced
knowledge automatically extracted from experimental data(describing the re-
lation between system input and output) can also be easily formalized in the
same rule base. Expert and induced knowledge are complementary. Further-
more, they are represented in a highly interpretable structure. The fuzzy rules
are composed of input and output linguistic variables whichtake values from
their term sets having a meaning associated to each linguistic label. As a re-
sult, each rule is a description of a condition-action statement that offers a
clear interpretation to a human.

The accuracy of a fuzzy system directly depends on two aspects, the composition
of the KB (fuzzy partitions and fuzzy rules) and the way in which it implements the
fuzzy inference process. Therefore, the design process of afuzzy system includes
two main tasks which are going to be further explained in the following subsections,
regarding both interpretability and accuracy:
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• Generation of the KBin order to formulate and describe the knowledge that is
specific to the problem domain.

• Conception of the inference engine, that is the choice of the different fuzzy oper-
ators that are employed by the inference process.

Mamdani-type fuzzy systems favor interpretability. Therefore they are usually
considered when looking for interpretable fuzzy systems. However, it is important
to remark that they are not interpretableper se. Notice that designing interpretable
fuzzy systems is a matter of careful design.

5.1 Design strategies for the generation of a KB regarding the
interpretability-accuracy trade-off

The two main objectives to be addressed in the FM field areinterpretabilityandac-
curacy. Of course, the ideal aim would be to satisfy both objectivesto a high degree
but, since they represent conflicting goals, it is generallynot possible. Regardless of
the approach, a common scheme is found in the existing literature:

• Firstly, the main objective (interpretability or accuracy) is tackled defining a spe-
cific model structure to be used, thus setting the FM approach.

• Then, the modeling components (model structure and/or modeling process) are
improved by means of different mechanisms to achieve the desired ratio between
interpretability and accuracy.

This procedure resulted in four different possibilities: (1) LFM with improved
interpretability, (2) LFM with improved accuracy, (3) PFM with improved inter-
pretability, and (4) PFM with improved accuracy.

Option (1) gives priority to interpretability. Although a fuzzy system designed
by LFM uses a model structure with high descriptive power, ithas some problems
(curse of dimensionality, excessive number of input variables or fuzzy rules, garbled
fuzzy sets, etc.) that make it not as interpretable as desired. In consequence, there is
a need of interpretability improvements to restore the pursued balance.

On the contrary, option (4) considers accuracy as the main concern. However,
obtaining more accuracy in PFM does not pay attention to the interpretability of
the model. Thus, this approach goes away from the aim of this book chapter. It
acts close to black box techniques. So it does not follow the original objective of
FM (not taking profit from the advantages that distinguish itfrom other modeling
techniques).

Finally, the two remaining options, (2) and (3), propose improvement mecha-
nisms to compensate for the initial imbalance in the quest for the best trade-off
between interpretability and accuracy. In summary, three main approaches exist de-
pending on how the two objectives are optimized (sequentially or at once):

• First Interpretability Then Accuracy (LFM with improved accuracy).
• First Accuracy Then Interpretability (PFM with improved interpretability).



18 Jose M. Alonso, Ciro Castiello, and Corrado Mencar

• Multi-Objective Design. Both objectives are optimized at the same time.

The rest of this section provides additional details related to each of these ap-
proaches.

First Interpretability Then Accuracy. LFM has some inflexibility due to the
use of linguistic variables with global semantics that establishes a general mean-
ing of the used fuzzy sets [16]:

1. There is a lack of flexibility in the fuzzy system because ofthe rigid partition-
ing of the input and output spaces.

2. When the system input variables are dependent, it is very hard to find out right
fuzzy partitions of the input spaces.

3. The usual homogeneous partitioning of the input and output spaces does not
scale to high-dimensional spaces. It yields to the well-known curse of dimen-
sionality problem that is characteristic of fuzzy systems.

4. The size of the KB directly depends on the number of variables and linguistic
terms in the model. The derivation of an accurate linguisticfuzzy system usu-
ally requires a big number of linguistic terms. Unfortunately, this fact causes
the number of rules to rise significantly, which may cause thesystem to lose
the capability of being readable by human beings. Of course,in most cases it
would be possible to obtain an equivalent fuzzy system with amuch smaller
number of rules by renouncing to that kind of rigidly partitioned input space.

However, it is possible to make some considerations to face the disadvantages
enumerated above. Basically, two ways of improving the accuracy in LFM can
be considered by performing the improvement in:

• themodel structure, slightly changing the rule structure to make it more flex-
ible, or in

• the modeling process, extending the model design to other components be-
yond the rule base, such as the fuzzy partitions, or even considering more
sophisticated derivations of it.

Notice that, the so-called strong fuzzy partitions are widely used because they
satisfy most of the interpretability constraints introduced in Section 3.2. The de-
sign of fuzzy partitions may be integrated within the whole derivation process of
a fuzzy system with different schemata:

• Preliminary design. It involves extracting fuzzy partitions automatically by
induction (usually performed by non-supervised clustering techniques) from
the available dataset.

• Embedded design. Following a meta-learning process, this approach first de-
rives different fuzzy partitions and then samples its efficacy running an em-
bedded basic learning method of the entire KB [28].

• Simultaneous design. The process of designing fuzzy partitions is devel-
oped together with the derivation of other components such as the fuzzy rule
base [43].
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• A posteriori design. This approach involves tuning of the previously defined
fuzzy partitions once the remaining components have been obtained. Usually,
the tuning process changes the membership function shapes with the aim of
improving the accuracy of the linguistic model [51]. Nevertheless, sometimes
it also takes care of getting better interpretability (e.g., merging membership
functions [31]).

It is also possible to opt for using more sophisticated rule base learning methods
while the fuzzy partitions and the model structure are kept unaltered. Usually, all
these improvements have the final goal of enhancing theinterpolative reasoning
the fuzzy system develops. For instance, the COR (cooperative rules) method
follows the primary objective of inducing a better cooperation among linguistic
rules [21].
As an alternative, other authors advocate the extension of the usual linguistic
model structure to make it more flexible. As Zadeh highlighted in [77], a way
to do so without losing the description ability to a high degree is to use lin-
guistic hedges (also calledlinguistic modifiersin a wider sense). In addition, the
rule structure can be extended through the definition of double-consequent rules,
weighted rules, rules with exceptions, hierarchical rule bases, etc.

First Accuracy Then Interpretability. The birth of more flexible fuzzy systems
such as TSK or approximate ones (allowing the FM to achieve higher accuracy)
entailed the eruption of PFM. Nevertheless, the modeling tasks with these kinds
of fuzzy systems increasingly resembled black box processes. Consequently,
nowadays several researchers share the idea of rescuing theseminal intent of
FM, i.e. to preserve the good interpretability advantages offered by fuzzy sys-
tems. This fact is usually attained by reducing the complexity of the model [67].
Furthermore, there are approaches aimed at improving the local description of
TSK-type fuzzy rules:

1. Merging/removing fuzzy sets in precise fuzzy systems. The interpretability of
TSK-type fuzzy systems may be improved by removing those fuzzy sets that,
after an automatic adaptation and/or acquisition, do not contribute signifi-
cantly to the model behavior. Two aspects must be considered:
• Redundancy. It refers to the coexistence of similar fuzzy sets representing

compatible concepts. In consequence, models become more complex and
difficult to understand (the distinguishability constraint is not satisfied).

• Irrelevancy. It arises when fuzzy sets with a constant membership degree
equal to one, or close to it, are used. These kinds of fuzzy sets do not
furnish relevant information.

The use of similarity measures between fuzzy sets has been proposed to
automatically detect these undesired fuzzy sets [69]. Through first merg-
ing/removing fuzzy sets and then merging fuzzy rules, the precise fuzzy model
goes through an interpretability improvement process thatmakes it less com-
plex (more compact) and more easily interpretable (more transparent).

2. Ordering/selecting TSK-type fuzzy rules. An efficient way to improve the in-
terpretability in FM is to select a subset of significant fuzzy rules that represent
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in a more compact way the system to be modeled. Moreover, as a side effect
this selection of important rules reduces the possible redundancy existing in
the fuzzy rule base, thus improving the generalization capability of the system,
i.e., its accuracy. For instance, resorting to orthogonal transformations [53] is
one of the most successful approaches in this sense.

3. Exploiting the local description of TSK-type fuzzy rules. TSK-type fuzzy sys-
tems are usually considered as the combination of simple models (the rules)
that describe local behaviors of the system to be modeled. Hence, insofar as
each fuzzy rule is either forced to have a smoother consequent polynomial
function or to develop an isolated action, the interpretability will be improved:
• Smoothing the consequent polynomial function[34]. Through imposing

several constraints to the weights involved in the polynomial function of
each rule consequent then a convex combination of the input variables is
performed. This contributes to a better understanding of the model.

• Isolating the fuzzy rule actions[67]. The description of each fuzzy rule is
improved when the overlapping between adjacent input fuzzysets is re-
duced. Notice that the performance region of a rule is more clearly defined
by avoiding that other rules have high firing degree in the same area.

Multi-objective Design. Since interpretability and accuracy are widely recog-
nized as conflicting goals, the use of multi-objective evolutionary (MOE) strate-
gies is becoming more and more popular in the quest for the best interpretability-
accuracy trade-off [26, 33]. Ducange and Marcelloni [29] proposed the following
taxonomy of multi-objective evolutionary fuzzy systems:

1. MOE Tuning. Given an already defined fuzzy system, its main parameters
(typically membership function parameters but also fuzzy inference parame-
ters) are refined through MOE strategies [4, 32].

2. MOE Learning. The components of a fuzzy system KB, both fuzzy partitions
forming the data-base (DB) and fuzzy rules forming the rule-base (RB), are
automatically generated from experimental data.
• MOE DB Learning. The most relevant variables are identified and the opti-

mum membership function parameters are defined from scratch. It usually
wraps an RB heuristic-based learning process [2].

• MOE RB Selection. Starting from an initial RB, a set of non-dominated
RBs is generated by selecting subsets of rules exhibiting different trade-
offs between interpretability and accuracy [46]. In some works [3, 35],
MOE RB selection and MOE tuning are carried out together.

• MOE RB Learning. The entire set of fuzzy rules is fully defined from
scratch. In this approach uniformly distributed fuzzy partitions are usually
considered [24].

• MOE KB Learning. Simultaneous evolutionary learning of all KB com-
ponents (DB and RB). Concurrent learning of fuzzy partitions and fuzzy
rules proved to be a powerful tool in the quest for a good balance between
interpretability and accuracy [12].
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It is worthy to note that for the sake of clarity we have only cited some of the
most relevant papers in the field of MOE fuzzy systems. For further details, the
interested reader is referred to [29, 33] where a much more exhaustive review of
related works is carried out.

5.2 Design decisions at fuzzy processing level

Although there are studies analyzing the behavior of the existing fuzzy operators
for different purposes, unfortunately this question has not been considered yet as a
whole from the interpretability point of view. Keeping in mind the interpretability
requirement, the implementation of the inference engine must address the following
careful design choices:

Select the right conjunctive operatorT to be used in the antecedent of the rule.
Different operators (belonging to the t-norm family) are available to make this
choice [41].

Select the operatorI to be used in the fuzzy implication of“IF-THEN” rules.
Mamdani proposed to use the minimum operator as the t-norm for implication.
Since then, various other t-norms have been suggested as implication opera-
tor [41], for instance the algebraic product. Other important family of impli-
cation operators are the fuzzy implication functions [71],one of the most usual
being the Lukasiewicz’s one. Less common implication operators such as force-
implications [30], t-conorms and operators not belonging to any of the most
known implication operator families [49] have been considered too.

Choose the right inference mechanism. Two main strategies are available:

• FATI (First Aggregation Then Inference). All antecedents of the rules are ag-
gregated to form a multidimensional fuzzy relation. Via thecomposition prin-
ciple the output fuzzy set is derived. This strategy is preferred when dealing
with implicative rules [48].

• FITA (First Inference Then Aggregation). The output of each rule is first in-
ferred, and then all individual fuzzy outputs are aggregated. This is the com-
mon approach when working with the usual conjunctive rules.This strategy
has become by far the most popular, especially in case of real-time appli-
cations. The choice for an output aggregation method (in some cases this is
called thealso operator) is closely related to the considered implicationop-
erator since it has to be related to the interpretation of therules (which is
connected to the kind of implication).

Choose the most suitable defuzzification interface operation mode. There are
different options being the most widely used the Center of Area (COA), also
called Center of Gravity (COG), and the Mean of Maxima (MOM).Even though
most methods are based on geometrical or statistical interpretations, there are
also parametric methods, adaptive methods including humanknowledge, and
even evolutionary adaptive methods [27].
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6 Interpretable fuzzy systems in the real world

Interpretable fuzzy systems have an immediate impact on real-world applications. In
particular, their usefulness is appreciable in all application areas that put humans at
the center of computing. Interpretable fuzzy systems, in fact, conjugate knowledge
acquisition capabilities with the ability of communicating knowledge in a human-
understandable way.

Several application areas can take advantage from the use ofinterpretable fuzzy
systems. In the following, some of them are briefly outlined,along with a few notes
on specific applications and potentialities.

Environment. Environmental issues are often challenging because of the com-
plex dynamics, the high number of variables and the consequent uncertainty char-
acterizing the behavior of subjects under study. Computational Intelligence tech-
niques come into play when tolerance for imprecision can be exploited to design
convenient models that are suitable to understand phenomena and take decisions.
Interpretable fuzzy systems show a clear advantage over black-box systems in
providing knowledge that is capable of explaining complex and non-linear rela-
tionships by using linguistic models. Real-world environmental applications of
interpretable fuzzy systems include: harmful bioaerosol detection [64]; modeling
habitat suitability in river management [74]; modeling pesticide loss caused by
meteorological factors in agriculture [40]; and so on.

Finance. This is a sector where human-computer cooperation is very tight. Coop-
eration is carried out in different ways, including the use of computers to provide
business intelligence for decision support in financial operations. In many cases
financial decisions are ultimately made by experts, who can benefit from auto-
mated analyses of big masses of data flowing daily in markets.To this pursuit,
Computational Intelligence approaches are spreading among the tools used by fi-
nancial experts in their decisions, including interpretable fuzzy systems for stock
return predictions [50], exchange rate forecasting [25], portfolio risk monitor-
ing [38], etc.

Industry. Industrial applications could take advantage from interpretable fuzzy
systems when there is the need of explaining the behavior of complex systems
and phenomena, like in fault detection [11]. Also, control plans for systems and
processes can be designed with the aid of fuzzy systems. In such cases, a common
practice is to start with an initial expert knowledge (used to design rules which
are usually highly interpretable) that is then tuned to increase the accuracy of the
controller. However, any unconstrained tuning could destroy the original inter-
pretability of the knowledge base, whilst, by taking into account interpretability,
the possibility of revising and modifying the controller (or the process manager)
can be enhanced [66].

Medicine and Health-care. As a matter of fact, in almost all medical contexts
intelligent systems can be invaluable decision support tools, but people are the
ultimate actors in any decision process. As a consequence, people need to rely on
intelligent systems, whose reliability can be enhanced if their outcomes may be
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explained in terms that are comprehensible by human users. Interpretable fuzzy
systems could play a key role in this area because of the possibility of acquir-
ing knowledge from data and communicating it to users. In literature several
approaches have been proposed to apply interpretable fuzzysystems in different
medical problems, like assisted diagnosis [37], prognosisprediction [5], patient
subgroup discovery [20], etc.

Robotics. The complexity of robot behavior modeling can be tackled by an inte-
grated approach where a first modeling stage is carried out bycombining human
expert and empirical knowledge acquired from experimentaltrials. This inte-
grated approach requires that the final knowledge base is provided to experts
for further maintenance: this task could be done effectively only if the acquired
knowledge is interpretable by the user. Some concrete applications of this ap-
proach can be found in robot localization systems [9] and motion analysis [8, 60].

Society. The focus of intelligent systems for social issues has noticeably increased
in recent years. For reasons that are common to all the previous application ar-
eas, interpretable fuzzy systems have been applied in a widevariety of scopes,
including Quality of Service improvement [15], data miningwith privacy preser-
vation [72], social network analysis [10], and so on.

7 Future research trends on interpretable fuzzy systems

Research on interpretable fuzzy systems is open in several directions. Future trends
involve both theoretical and methodological aspects of interpretability. In the fol-
lowing, some trends are outlined amongst the possible linesof research develop-
ment [6].

Interpretability definition. The blurred nature of interpretability requires con-
tinuous investigations on possible definitions that enablea computable treatment
of this quality in fuzzy systems. This requirement casts theresearch on inter-
pretable fuzzy systems towards cross-disciplinary investigations. For instance,
this research line includes investigations on computable definitions of some con-
ceptual qualities, likevagueness(which has to be distinguished from imprecision
and fuzziness). Also, the problem of interpretability of fuzzy systems can be in-
tended as a particular instance of the more general problem of communication
between granular worlds [13], where many aspects of interpretability could be
treated in a more abstract way.

Interpretability assessment. A prominent objective is the adoption of a com-
mon framework for characterizing and assessing interpretability with the aim of
avoiding misleading notations. Within such a framework, novel metrics could be
devised, especially for assessing subjective aspects of interpretability, and inte-
grated with objective interpretability measures to define more significant inter-
pretability indexes.

Design of interpretable fuzzy models. A current research trend in designing in-
terpretable fuzzy models makes use of multi-objective genetic algorithms in or-
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der to deal with the conflicting design objectives of accuracy and interpretability.
The effectiveness and usefulness of these approaches, especially those concern-
ing advanced schemes, has to be verified against a number of indexes, including
indexes that integrate subjective measures. This verification process is particu-
larly required when tackling high-dimensional problems. In this case the combi-
nation of linguistic and graphical approaches could be a promising approach for
descriptive and exploratory analysis of interpretable fuzzy systems.

Representation of fuzzy systems. For very complex problems the use of novel
forms of representation (different from the classical rule-based) may help in rep-
resenting complex relationship in comprehensible ways thus yielding a valid aid
in designing interpretable fuzzy systems. For instance, a multi-level representa-
tion could enhance the interpretability of fuzzy systems byproviding different
granularity levels for knowledge representation. On the one hand, the highest
granulation levels give a coarse (yet immediately comprehensible) description of
knowledge, while lower levels provide for more detailed knowledge.

As a final remark, it is worth observing that interpretability is one aspect of the
multi-faceted problem ofhuman-centereddesign of fuzzy systems [14]. Other facets
include acceptability (e.g., according to ethical rules),interestingness of fuzzy rules,
applicability (e.g., with respect to law), etc. Many of themare not yet in the research
mainstream but they clearly represent promising future trends.

8 Conclusions

Interpretability is an indispensable requirement for designing fuzzy systems, yet it
cannot be assumed to hold by the simple fact of using fuzzy sets for modeling. In-
terpretability must be encoded in some computational methods in order to drive the
design of fuzzy systems, as well as to assess the interpretability of existing models.
The study of interpretability issues started about two decades ago and led to a num-
ber of theoretical and methodological results of paramountvalue in fuzzy modeling.
Nevertheless, research is still open both in depth — throughnew ways of encoding
and assessing interpretability — and in breadth, by integrating interpretability in the
more general realm of Human Centered Computing.
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36. M. J. Gacto, R. Alcalá, and F. Herrera. Interpretability of linguistic fuzzy rule-based systems:
An overview of interpretability measures.Information Sciences, 181(20):4340–4360, 2011.

37. I. Gadaras and L. Mikhailov. An interpretable fuzzy rule-based classification methodology for
medical diagnosis.Artificial Intelligence in Medicine, 47(1):25–41, 2009.

38. A. Ghandar, Z. Michalewicz, and R. Zurbruegg. Enhancingprofitability through interpretabil-
ity in algorithmic trading with a multiobjective evolutionary fuzzy system. In C. A. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, editors, Parallel Problem Solving
from Nature, volume LNCS7492, pages 42–51. Springer Berlin Heidelberg,2012.

39. S. Guillaume. Designing fuzzy inference systems from data: Aninterpretability-oriented re-
view. IEEE Transactions on Fuzzy Systems, 9(3):426–443, 2001.

40. S. Guillaume and B. Charnomordic. Interpretable fuzzy inference systems for cooperation of
expert knowledge and data in agricultural applications using FisPro. InIEEE International
Conference on Fuzzy Systems, pages 2019–2026, 2010.

41. M. M. Gupta and J. Qi. Design of fuzzy logic controllers basedon generalized T-operators.
Fuzzy Sets and Systems, 40(3):473–489, 1991.

42. F. Herrera. Genetic fuzzy systems: Taxonomy, current researchtrends and prospects.Evolu-
tionary Intelligence, 1:27–46, 2008.



Interpretability of Fuzzy Systems: Current Research Trends andProspects 27

43. A. Homaifar and E. McCormick. Simultaneous design of membershipfunctions and rule sets
for fuzzy controllers using genetic algoritms.IEEE Transactions on Fuzzy Systems, 3(2):129–
139, 1995.
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