Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Neuromorphic engineering is a relatively young field that attempts to build physical realizations of biologically realistic models of neural systems using electronic circuits implemented in very large scale integration technology. While originally focusing on models of the sensory periphery implemented using mainly analog circuits, the field has grown and expanded to include the modeling of neural processing systems that incorporate the computational role of the body, that model learning and cognitive processes, and that implement large distributed spiking neural networks using a variety of design techniques and technologies. This emerging field is characterized by its multidisciplinary nature and its focus on the physics of computation, driving innovations in theoretical neuroscience, device physics, electrical engineering, and computer science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AER:

address event representation

STDP:

spike-timing dependent plasticity

VLSI:

very large scale integration

References

  1. W.S. McCulloch, W. Pitts: A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. von Neumann: The Computer and the Brain (Yale Univ. Press, New Haven 1958)

    MATH  Google Scholar 

  3. F. Rosenblatt: The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev. 65(6), 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  4. M.L. Minsky: Computation: Finite and Infinite Machines (Prentice-Hall, Upper Saddle River 1967)

    MATH  Google Scholar 

  5. J.J. Hopfield: Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  6. D.E. Rumelhart, J.L. McClelland: Foundations, parallel distributed processing. In: Explorations in the Microstructure of Cognition, ed. by D.E. Rumelhart, J.L. McClelland (MIT, Cambridge 1986)

    Google Scholar 

  7. T. Kohonen: Self-Organization and Associative Memory, Springer Series in Information Sciences, 2nd edn. (Springer, Berlin Heidelberg 1988)

    Book  MATH  Google Scholar 

  8. J. Hertz, A. Krogh, R.G. Palmer: Introduction to the Theory of Neural Computation (Addison-Wesley, Reading 1991)

    Google Scholar 

  9. K. Fukushima, Y. Yamaguchi, M. Yasuda, S. Nagata: An electronic model of the retina, Proc. IEEE 58(12), 1950–1951 (1970)

    Article  Google Scholar 

  10. T. Hey: Richard Feynman and computation, Contemp. Phys. 40(4), 257–265 (1999)

    Article  Google Scholar 

  11. C.A. Mead: Analog VLSI and Neural Systems (Addison-Wesley, Reading 1989)

    Book  MATH  Google Scholar 

  12. C. Mead: Neuromorphic electronic systems, Proc. IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  13. M. Mahowald, R.J. Douglas: A silicon neuron, Nature 354, 515–518 (1991)

    Article  Google Scholar 

  14. M. Mahowald: The silicon retina, Sci. Am. 264, 76–82 (1991)

    Article  Google Scholar 

  15. R. Sarpeshkar: Brain power – borrowing from biology makes for low power computing – bionic ear, IEEE Spectrum 43(5), 24–29 (2006)

    Article  Google Scholar 

  16. R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez, A. Linares-Barranco, G. Jiménez-Moreno, A. Civit-Balcells, B. Linares-Barranco: Spike events processing for vision systems, Int. Symp. Circuits Syst. (ISCAS, Piscataway) (2007)

    Google Scholar 

  17. G. Indiveri, T.K. Horiuchi: Frontiers in neuromorphic engineering, Front. Neurosci. 5(118), 1–2 (2011)

    Google Scholar 

  18. Telluride neuromorphic cognition engineering workshop, http://ine-web.org/workshops/workshops-overview

  19. The Capo Caccia Workshops toward Cognitive Neuromorphic Engineering. http://capocaccia.ethz.ch.

  20. K.A. Boahen: Neuromorphic microchips, Sci. Am. 292(5), 56–63 (2005)

    Article  Google Scholar 

  21. R.J. Douglas, M.A. Mahowald, C. Mead: Neuromorphic analogue VLSI, Annu. Rev. Neurosci. 18, 255–281 (1995)

    Article  Google Scholar 

  22. W. Maass, E.D. Sontag: Neural systems as nonlinear filters, Neural Comput. 12(8), 1743–1772 (2000)

    Article  Google Scholar 

  23. A. Belatreche, L.P. Maguire, M. McGinnity: Advances in design and application of spiking neural networks, Soft Comput. 11(3), 239–248 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Harris Jr., F.C. Goodman, M. Zirpe, T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, A. Destexhe: Simulation of networks of spiking neurons: A review of tools and strategies, J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  25. J. Brader, W. Senn, S. Fusi: Learning real world stimuli in a neural network with spike-driven synaptic dynamics, Neural Comput. 19, 2881–2912 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Rowcliffe, J. Feng: Training spiking neuronal networks with applications in engineering tasks, IEEE Trans. Neural Netw. 19(9), 1626–1640 (2008)

    Article  Google Scholar 

  27. The Blue Brain Project. EPFL website. (2005) http://bluebrain.epfl.ch/

  28. E. Izhikevich, G. Edelman: Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci. USA 105, 3593–3598 (2008)

    Article  Google Scholar 

  29. Brain-Inspired Multiscale Computation in Neuromorphic Hybrid Systems (BrainScaleS). FP7 269921 EU Grant 2011–2015

    Google Scholar 

  30. Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). US Darpa Initiative (http://www.darpa.mil/dso/solicitations/baa08-28.html) (2009)

  31. R. Freidman: Reverse engineering the brain, Biomed. Comput. Rev. 5(2), 10–17 (2009)

    Google Scholar 

  32. B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.M. Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, K. Boahen: Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations, Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  33. R.J. Douglas, K. Martin: Recurrent neuronal circuits in the neocortex, Curr. Biol. 17(13), R496–R500 (2007)

    Article  Google Scholar 

  34. R.J. Douglas, K.A.C. Martin: Neural circuits of the neocortex, Annu. Rev. Neurosci. 27, 419–451 (2004)

    Article  Google Scholar 

  35. C.D. Gilbert, T.N. Wiesel: Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3, 1116–1133 (1983)

    Google Scholar 

  36. G.F. Cooper: The computational complexity of probabilistic inference using bayesian belief networks, Artif. Intell. 42(2/3), 393–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. D.J.C. MacKay: Information Theory, Inference and Learning Algorithms (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  38. A. Steimer, W. Maass, R. Douglas: Belief propagation in networks of spiking neurons, Neural Comput. 21, 2502–2523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. W. Maass: On the computational power of winner-take-all, Neural Comput. 12(11), 2519–2535 (2000)

    Article  MathSciNet  Google Scholar 

  40. W. Maass, P. Joshi, E.D. Sontag: Computational aspects of feedback in neural circuits, PLOS Comput. Biol. 3(1), 1–20 (2007)

    Article  MathSciNet  Google Scholar 

  41. L.F. Abbott, W.G. Regehr: Synaptic computation, Nature 431, 796–803 (2004)

    Article  Google Scholar 

  42. R. Gütig, H. Sompolinsky: The tempotron: A neuron that learns spike timing–based decisions, Nat. Neurosci. 9, 420–428 (2006)

    Article  Google Scholar 

  43. T. Wennekers, N. Ay: Finite state automata resulting from temporal information maximization and a temporal learning rule, Neural Comput. 10(17), 2258–2290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. U. Rutishauser, R. Douglas: State-dependent computation using coupled recurrent networks, Neural Comput. 21, 478–509 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Dayan, L.F. Abbott: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT, Cambridge 2001)

    MATH  Google Scholar 

  46. M. Arbib (Ed.): The Handbook of Brain Theory and Neural Networks, 2nd edn. (MIT, Cambridge 2002)

    Google Scholar 

  47. G. Rachmuth, H.Z. Shouval, M.F. Bear, C.-S. Poon: A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity, Proc. Natl. Acad. Sci. USA 108(49), E1266–E1274 (2011)

    Article  Google Scholar 

  48. J. Schemmel, D. Brüderle, K. Meier, B. Ostendorf: Modeling synaptic plasticity within networks of highly accelerated I & F neurons, Int. Symp. Circuits Syst. (ISCAS, Piscataway) (2007) pp. 3367–3370

    Google Scholar 

  49. J.H.B. Wijekoon, P. Dudek: Compact silicon neuron circuit with spiking and bursting behaviour, Neural Netw. 21(2/3), 524–534 (2008)

    Article  Google Scholar 

  50. D. Brüderle, M.A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A. Grübl, K. Wendt, E. Müller, M.-O. Schwartz, D.H. de Oliveira, S. Jeltsch, J. Fieres, M. Schilling, P. Müller, O. Breitwieser, V. Petkov, L. Muller, A.P. Davison, P. Krishnamurthy, J. Kremkow, M. Lundqvist, E. Muller, J. Partzsch, S. Scholze, L. Zühl, C. Mayr, A. Destexhe, M. Diesmann, T.C. Potjans, A. Lansner, R. Schüffny, J. Schemmel, K. Meier: A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems, Biol. Cybern. 104(4), 263–296 (2011)

    Article  Google Scholar 

  51. C. Tomazou, F.J. Lidgey, D.G. Haigh (Eds.): Analogue IC Design: The Current-Mode Approach (Peregrinus, Stevenage, Herts., UK 1990)

    Google Scholar 

  52. S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, R.J. Douglas: Analog VLSI: Circuits and Principles (MIT Press, Cambridge 2002)

    Google Scholar 

  53. C. Bartolozzi, G. Indiveri: Synaptic dynamics in analog VLSI, Neural Comput. 19(10), 2581–2603 (2007)

    Article  MATH  Google Scholar 

  54. E.M. Drakakis, A.J. Payne, C. Toumazou: Log-domain state-space: A systematic transistor-level approach for log-domain filtering, IEEE Trans. Circuits Syst. II 46(3), 290–305 (1999)

    Article  Google Scholar 

  55. D.R. Frey: Log-domain filtering: An approach to current-mode filtering, IEE Proc G 140(6), 406–416 (1993)

    Google Scholar 

  56. S.-C. Liu, T. Delbruck: Neuromorphic sensory systems, Curr. Opin. Neurobiol. 20(3), 288–295 (2010)

    Article  Google Scholar 

  57. A. Destexhe, Z.F. Mainen, T.J. Sejnowski: Kinetic models of synaptic transmission. In: Methods in Neuronal Modelling, from Ions to Networks, ed. by C. Koch, I. Segev (MIT Press, Cambridge 1998) pp. 1–25

    Google Scholar 

  58. G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen: Neuromorphic silicon neuron circuits, Front. Neurosci. 5, 1–23 (2011)

    Google Scholar 

  59. P. Livi, G. Indiveri: A current-mode conductance-based silicon neuron for address-event neuromorphic systems, Int. Symp. Circuits Syst. (ISCAS) (2009) pp. 2898–2901

    Google Scholar 

  60. L.F. Abbott, S.B. Nelson: Synaptic plasticity: Taming the beast, Nat. Neurosci. 3, 1178–1183 (2000)

    Article  Google Scholar 

  61. R.A. Legenstein, C. Näger, W. Maass: What can a neuron learn with spike-timing-dependent plasticity?, Neural Comput. 17(11), 2337–2382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. S.A. Bamford, A.F. Murray, D.J. Willshaw: Spike-timing-dependent plasticity with weight dependence evoked from physical constraints, IEEE Trans, Biomed. Circuits Syst. 6(4), 385–398 (2012)

    Article  Google Scholar 

  63. S. Mitra, S. Fusi, G. Indiveri: Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI, IEEE Trans. Biomed. Circuits Syst. 3(1), 32–42 (2009)

    Article  Google Scholar 

  64. G. Indiveri, E. Chicca, R.J. Douglas: A VLSI array of low-power spiking neurons and bistable synapses with spike–timing dependent plasticity, IEEE Trans. Neural Netw. 17(1), 211–221 (2006)

    Article  Google Scholar 

  65. A. Bofill, I. Petit, A.F. Murray: Synchrony detection and amplification by silicon neurons with STDP synapses, IEEE Trans. Neural Netw. 15(5), 1296–1304 (2004)

    Article  Google Scholar 

  66. S. Fusi, M. Annunziato, D. Badoni, A. Salamon, D.J. Amit: Spike–driven synaptic plasticity: Theory, simulation, VLSI implementation, Neural Comput. 12, 2227–2258 (2000)

    Article  Google Scholar 

  67. P. Häfliger, M. Mahowald: Weight vector normalization in an analog VLSI artificial neuron using a backpropagating action potential. In: Neuromorphic Systems: Engineering Silicon from Neurobiology, ed. by L.S. Smith, A. Hamilton (World Scientific, London 1998) pp. 191–196

    Chapter  Google Scholar 

  68. P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, A. Chandra, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.K. Esser, R. Appuswamy, B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, D.S. Modha: A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  69. R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez, T. Delbruck, S.-C. Liu, R. Douglas, P. Häfliger, G. Jimenez-Moreno, A. Civit-Ballcels, T. Serrano-Gotarredona, A.J. Acosta-Jiménez, B. Linares-Barranco: CAVIAR: A 45k neuron, 5M synapse, 12G connects/s aer hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking, IEEE Trans. Neural Netw. 20(9), 1417–1438 (2009)

    Article  Google Scholar 

  70. E. Chicca, A.M. Whatley, P. Lichtsteiner, V. Dante, T. Delbruck, P. Del Giudice, R.J. Douglas, G. Indiveri: A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity, IEEE Trans. Circuits Syst. I 5(54), 981–993 (2007)

    Article  Google Scholar 

  71. T.Y.W. Choi, P.A. Merolla, J.V. Arthur, K.A. Boahen, B.E. Shi: Neuromorphic implementation of orientation hypercolumns, IEEE Trans. Circuits Syst. I 52(6), 1049–1060 (2005)

    Article  MathSciNet  Google Scholar 

  72. M. Mahowald: An Analog VLSI System for Stereoscopic Vision (Kluwer, Boston 1994)

    Book  Google Scholar 

  73. K.A. Boahen: Point-to-point connectivity between neuromorphic chips using address-events, IEEE Trans. Circuits Syst. II 47(5), 416–434 (2000)

    Article  MATH  Google Scholar 

  74. A.J. Martin, M. Nystrom: Asynchronous techniques for system-on-chip design, Proc. IEEE 94, 1089–1120 (2006)

    Article  Google Scholar 

  75. G. Schoner: Dynamical systems approaches to cognition. In: Cambridge Handbook of Computational Cognitive Modeling, ed. by R. Sun (Cambridge Univ. Press, Cambridge 2008) pp. 101–126

    Google Scholar 

  76. G. Indiveri, E. Chicca, R.J. Douglas: Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition, Cogn. Comput. 1, 119–127 (2009)

    Article  Google Scholar 

  77. M. Giulioni, P. Camilleri, M. Mattia, V. Dante, J. Braun, P. Del Giudice: Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI, Front. Neurosci. 5, 1–16 (2011)

    Google Scholar 

  78. E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, R. Douglas: Synthesizing Cognition in neuromorphic electronic Systems, Proc. Natl. Acad. Sci. USA 110(37), E3468–E3476 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Indiveri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Indiveri, G. (2015). Neuromorphic Engineering. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics