Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter a novel online self-evolving cloud-based controller, called Robust Evolving Cloud-based Controller (GlossaryTerm

RECCo

) is introduced. This type of controller has a parameter-free antecedent (IF) part, a locally valid GlossaryTerm

PID

consequent part, and a center-of-gravity based defuzzification. A first-order learning method is applied to consequent parameters and reference model adaptive control is used locally in the GlossaryTerm

ANYA

type fuzzy rule-based system. An illustrative example is provided mainly for a proof of concept. The proposed controller can start with no pre-defined fuzzy rules and does not need to pre-define the range of the output, number of rules, membership functions, or connectives such as AND, OR. This GlossaryTerm

RECCo

controller learns autonomously from its own actions while controlling the plant. It does not use any off-line pre-training or explicit models (e. g. in the form of differential equations) of the plant. It has been demonstrated that it is possible to fully autonomously and in an unsupervised manner (based only on the data density and selecting representative prototypes/focal points from the control hypersurface acting as a data space) generate and self-tune/learn a non-linear controller structure and evolve it in online mode. Moreover, the results demonstrate that this autonomous controller has no parameters in the antecedent part and surpasses both traditional GlossaryTerm

PID

controllers being a non-linear, fuzzy combination of locally valid GlossaryTerm

PID

controllers, as well as traditional fuzzy (Mamdani and Takagi–Sugeno) type controllers by their lean structure and higher performance, lack of membership functions, antecedent parameters, and because they do not need off-line tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANYA:

Angelov–Yager

COG:

center of gravity

DC:

direct current

FRB:

fuzzy rule-based

PID:

proportional-integral-derivative

RECCo:

robust evolving cloud-based controller

TSK:

Takagi–Sugeno–Kang

WTA:

winner-take-all

References

  1. E.H. Mamdani, S. Assilian: An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  2. S. Sugawara, T. Suzuki: Applications of fuzzy control to air conditioning environment, J. Therm. Biol. 18(5), 456–472 (1993)

    Google Scholar 

  3. Y. Liu, Y. Zheng: Adaptive robust fuzzy control for a class of uncertain chaotic systems, Nonlinear Dyn. 57(3), 431–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Mucientes, J. Casillas: Quick design of fuzzy controllers with good interpretability in mobile robotics, IEEE Trans. Fuzzy Syst. 15(4), 636–651 (2007)

    Article  Google Scholar 

  5. K. Shimojima, T. Fukuda, Y. Hashegawa: Self-tuning modelling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm, J. Fuzzy Sets Syst. 71(3), 295–309 (1995)

    Article  Google Scholar 

  6. P. Angelov, R. Guthke: A genetic-algorithm-based approach to optimization of bioprocesses described by fuzzy rules, Bioprocess Eng. 16, 299–303 (1996)

    Article  Google Scholar 

  7. M. Huang, J. Wan, Y. Ma, Y. Wang, W. Li, X. Sun: Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks, Expert Syst. Appl. 36(7), 10428–10437 (2009)

    Article  Google Scholar 

  8. C. Li, C. Lee: Self-organizing neuro-fuzzy system for control of unknown plants, IEEE Trans. Fuzzy Syst. 11(1), 135–150 (2003)

    Article  Google Scholar 

  9. H. Pomares, I. Rojas, J. González, F. Rojas, M. Damas, F.J. Fernández: A two-stage approach to self-learning direct fuzzy controllers, Int. J. Approx. Reason. 29(3), 267–289 (2002)

    Article  MATH  Google Scholar 

  10. I. Rojas, H. Pomares, J. Gonzalez, L. Herrera, A. Guillen, F. Rojas, O. Valenzuela: Adaptive fuzzy controller: Application to the control of the temperature of a dynamic room in real time, Fuzzy Sets Syst. 157(16), 2241–2258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Wang, Y. Chien, I. Li: An on-line robust and adaptive T-S fuzzy-neural controller for more general unknown systems, Int. J. Fuzzy Syst. 10(1), 33–43 (2008)

    MathSciNet  Google Scholar 

  12. I. Škrjanc, K. Kaváek-Biasizzo, D. Matko: Real-time fuzzy adaptive control, Eng. Appl. Artif. Intell. 10(1), 53–61 (1997)

    Article  Google Scholar 

  13. I. Škrjanc, S. Blažič, D. Matko: Direct fuzzy model-reference adaptive control, Int. J. Intell. Syst. 17(10), 943–963 (2002)

    Article  MATH  Google Scholar 

  14. I. Škrjanc, S. Blažič, D. Matko: Model-reference fuzzy adaptive control as a framework for nonlinear system control, J. Intell. Robot. Syst. 36(3), 331–347 (2003)

    Article  MATH  Google Scholar 

  15. S. Blažič, I. Škrjanc, D. Matko: Globally stable model reference adaptive control based on fuzzy description of the plant, Int. J. Syst. Sci. 33(12), 995–1012 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Angelov, R. Buswell, J.A. Wright, D. Loveday: Evolving rule-based control, Proc. EUNITE Symp. (2001) pp. 36–41

    Google Scholar 

  17. D. Pasaltis, A. Sideris, A. Yamamura: A multilayer neural network controller, IEEE Trans. Control Syst. Manag. 8(2), 17–21 (1988)

    Article  Google Scholar 

  18. P. Angelov, D.P. Filev: An approach to online identification of Takagi–Sugeno fuzzy models, IEEE Trans. Syst. Man Cybern. 34(1), 484–498 (2004)

    Article  Google Scholar 

  19. A.B. Cara, Z. Lendek, R. Babuska, H. Pomares, I. Rojas: Online self-organizing adaptive fuzzy controller: Application to a nonlinear servo system, IEEE Int. Conf. Fuzzy Syst. (2010) pp. 1–8

    Chapter  Google Scholar 

  20. P. Angelov, P. Sadeghi-Tehran, R. Ramezani: An approach to automatic real-time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi–Sugeno fuzzy systems, Int. J. Intell. Syst. 26(3), 189–205 (2011)

    Article  MATH  Google Scholar 

  21. P. Sadeghi-Tehran, A.B. Cara, P. Angelov, H. Pomares, I. Rojas, A. Prieto: Self-evolving parameter-free rule-based controller, IEEE Proc. World Congr. Comput. Intell. (2012) pp. 754–761

    Google Scholar 

  22. P. Angelov, R. Yager: Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density, IEEE Workshop Evol. Adapt. Intell. Syst. (2011) pp. 62–69

    Google Scholar 

  23. P. Angelov: Anomalous system state identification, Patent GB1208542.9 (2012)

    Google Scholar 

  24. P. Angelov: A fuzzy controller with evolving structure, Inf. Sci. 161(1/2), 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.B. Cara, H. Pomares, I. Rojas: A new methodology for the online adaptation of fuzzy self-structuring controllers, IEEE Trans. Fuzzy Syst. 19(3), 449–464 (2011)

    Article  Google Scholar 

  26. H. Pomares, I. Rojas, J. Gonzalez, M. Damas, B. Pino, A. Prieto: Online global learning in direct fuzzy controllers, IEEE Trans. Fuzzy Syst. 12(2), 218–229 (2004)

    Article  Google Scholar 

  27. G. Kreisselmeier, K.S. Narendra: Stable model reference adaptive control in the presence of bounded disturbances, IEEE Trans. Autom. Control 27(6), 1169–1175 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. C.E. Rohrs, L. Valavani, M. Athans, G. Stein: Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics, IEEE Trans. Autom. Control 30(9), 881–889 (1985)

    Article  MATH  Google Scholar 

  29. P.A. Ioannou, J. Sun: Robust Adaptive Control (Prentice Hall, Upper Saddle River 1996)

    MATH  Google Scholar 

  30. S. Blažič, I. Škrjanc, D. Matko: Globally stable direct fuzzy model reference adaptive control, Fuzzy Sets Syst. 139(1), 3–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Blažič, I. Škrjanc, D. Matko: A new fuzzy adaptive law with leakage, IEEE Conf. Evol. Adapt. Intell. Syst. (2012) pp. 47–50

    Google Scholar 

  32. B.B. Peterson, K.S. Narendra: Bounded error adaptive control, IEEE Trans. Autom. Control 27(6), 1161–1168 (1982)

    Article  MATH  Google Scholar 

  33. P.A. Ioannou, P.V. Kokotovic: Instability analysis and improvement of robustness of adaptive control, Automatica 20(5), 583–594 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Åström, B. Wittenmark: Adaptive Control (Addison Wesley, Reading 1989)

    Google Scholar 

  35. P. Angelov, X. Zhou: Evolving fuzzy systems from data streams in real-time, IEEE Int. Symp. Evol. Fuzzy Syst. (2006) pp. 29–35

    Google Scholar 

  36. P. Angelov: On line learning fuzzy rule-based system structure from data streams, IEEE Int. Conf. Fuzzy Syst. (2008) pp. 915–922

    Google Scholar 

  37. P. Angelov, D.P. Filev, N.K. Kasabov: Evolving Intelligent Systems: Methodology and Applications (Wiley, Hoboken 2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen P. Angelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angelov, P.P., Škrjanc, I., Blažič, S. (2015). A Robust Evolving Cloud-Based Controller. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics