Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter explains evolutionary multiobjective design of fuzzy rule-based systems in comparison with single-objective design. Evolutionary algorithms have been used in many studies on fuzzy system design for rule generation, rule selection, input selection, fuzzy partition, and membership function tuning. Those studies are referred to as genetic fuzzy systems because genetic algorithms have been mainly used as evolutionary algorithms. In many studies on genetic fuzzy systems, the accuracy of fuzzy rule-based systems is maximized. However, accuracy maximization often leads to the deterioration in the interpretability of fuzzy rule-based systems due to the increase in their complexity. Thus, multiobjective genetic algorithms were used in some studies to maximize not only the accuracy of fuzzy rule-based systems but also their interpretability. Those studies, which can be viewed as a subset of genetic fuzzy system studies, are referred to as multiobjective genetic fuzzy systems (GlossaryTerm

MoGFS

). A number of fuzzy rule-based systems with different complexities are obtained along the interpretability–accuracy tradeoff curve. One extreme of the tradeoff curve is a simple highly interpretable fuzzy rule-based system with low accuracy while the other extreme is a complicated highly accurate one with low interpretability. In GlossaryTerm

MoGFS

, multiple accuracy measures such as a true positive rate and a true negative rate can be simultaneously used as separate objectives. Multiple interpretability measures can also be simultaneously used in GlossaryTerm

MoGFS

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACO:

ant colony optimization

EMO:

evolutionary multiobjective optimization

MOEA/D:

multiobjective evolutionary algorithm based on decomposition

MoGFS:

multiobjective genetic fuzzy system

NSGA:

nondominated sorting genetic algorithm

PSO:

particle swarm optimization

SMS-EMOA:

S-metric selection evolutionary multiobjective algorithm

SPEA:

strength Pareto evolutionary algorithm

References

  1. C.C. Lee: Fuzzy logic in control systems: Fuzzy logic controller – Part I, IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MATH  Google Scholar 

  2. C.C. Lee: Fuzzy logic in control systems: Fuzzy logic controller – Part II, IEEE Trans. Syst. Man Cybern. 20(2), 419–435 (1990)

    Article  MATH  Google Scholar 

  3. J.M. Mendel: Fuzzy logic systems for engineering: A tutorial, Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  4. L.A. Zadeh: The concept of a linguistic variable and its application to approximate reasoning – I, Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. L.A. Zadeh: The concept of a linguistic variable and its application to approximate reasoning – II, Inf. Sci. 8(4), 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.A. Zadeh: The concept of a linguistic variable and its application to approximate reasoning – III, Inf. Sci. 9(1), 43–80 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Kosko: Fuzzy systems as universal approximators, Proc. 1992 IEEE Int. Conf. Fuzzy Syst. (IEEE, San Diego 1992) pp. 1153–1162

    Google Scholar 

  8. L.X. Wang: Fuzzy systems are universal approximators, Proc. 1992 IEEE Int. Conf. Fuzzy Syst. (IEEE, San Diego 1992) pp. 1163–1170

    Google Scholar 

  9. L.X. Wang, J.M. Mendel: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  10. K. Funahashi: On the approximate realization of continuous mappings by neural networks, Neural Netw. 2(3), 183–192 (1989)

    Article  Google Scholar 

  11. K. Hornik, M. Stinchcombe, H. White: Multilayer feedforward networks are universal approximators, Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  12. J. Park, I.W. Sandberg: Universal approximation using radial-basis-function networks, Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  13. H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka: Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms, Fuzzy Sets Syst. 65(2/3), 237–253 (1994)

    Article  MathSciNet  Google Scholar 

  14. H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka: Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Trans. Fuzzy Syst. 3(3), 260–270 (1995)

    Article  Google Scholar 

  15. H. Ishibuchi, T. Murata, I.B. Türkşen: Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems, Fuzzy Sets Syst. 89(2), 135–150 (1997)

    Article  Google Scholar 

  16. H. Ishibuchi: Multiobjective genetic fuzzy systems: Review and future research directions, Proc. 2007 IEEE Int. Conf. Fuzzy Syst. (IEEE, London 2007) pp. 913–918

    Google Scholar 

  17. H. Ishibuchi, Y. Nojima, I. Kuwajima: Evolutionary multiobjective design of fuzzy rule-based classifiers. In: Computational Intelligence: A Compendium, ed. by J. Fulcher, L.C. Jain (Springer, Berlin 2008) pp. 641–685

    Chapter  Google Scholar 

  18. H. Ishibuchi, Y. Nojima: Multiobjective genetic Fuzzy Systems. In: Computational Intelligence: Collaboration, Fusion and Emergence, ed. by C.L. Mumford, L.C. Jain (Springer, Berlin 2009) pp. 131–173

    Chapter  Google Scholar 

  19. M. Fazzolari, R. Alcalá, Y. Nojima, H. Ishibuchi, F. Herrera: A review of the application of multiobjective evolutionary fuzzy systems: Current status and further directions, IEEE Trans. Fuzzy Syst. 21(1), 45–65 (2013)

    Article  Google Scholar 

  20. K. Deb: Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester 2001)

    MATH  Google Scholar 

  21. K.C. Tan, E.F. Khor, T.H. Lee: Multiobjective Evolutionary Algorithms and Applications (Springer, Berlin 2005)

    MATH  Google Scholar 

  22. C.A.C. Coello, G.B. Lamont: Applications of Multi-Objective Evolutionary Algorithms (World Scientific, Singapore 2004)

    Book  MATH  Google Scholar 

  23. E.H. Mamdani, S. Assilian: An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  24. E.H. Mamdani: Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. Comput. C-26(12), 1182–1191 (1977)

    Article  MATH  Google Scholar 

  25. L.X. Wang, J.M. Mendel: Generating fuzzy rules by learning from examples, IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  26. T. Takagi, M. Sugeno: Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  27. C.T. Lin, C.S.G. Lee: Neural-network-based fuzzy logic control and decision system, IEEE Trans. Comput. 40(12), 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  28. S. Horikawa, T. Furuhashi, Y. Uchikawa: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm, IEEE Trans. Neural Netw. 3(5), 801–806 (1992)

    Article  Google Scholar 

  29. J.S.R. Jang: ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  30. O. Cordón, M.J. del Jesus, F. Herrera: A proposal on reasoning methods in fuzzy rule-based classification systems, Int. J. Approx. Reason. 20(1), 21–45 (1999)

    Article  Google Scholar 

  31. L.I. Kuncheva: How good are fuzzy If-then classifiers?, IEEE Trans. Syst. Man Cybern. B 30(4), 501–509 (2000)

    Article  Google Scholar 

  32. L.I. Kuncheva: Fuzzy Classifier Design (Physica, Heidelberg 2000)

    Book  MATH  Google Scholar 

  33. H. Ishibuchi, K. Nozaki, H. Tanaka: Distributed representation of fuzzy rules and its application to pattern classification, Fuzzy Sets Syst. 52(1), 21–32 (1992)

    Article  Google Scholar 

  34. H. Ishibuchi, T. Nakashima, M. Nii: Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining (Springer, Berlin 2004)

    MATH  Google Scholar 

  35. D. Nauck, R. Kruse: How the learning of rule weights affects the interpretability of fuzzy systems, Proc. IEEE Int. Conf. Fuzzy Syst. (IEEE, Anchorage 1998) pp. 1235–1240

    Google Scholar 

  36. H. Ishibuchi, T. Nakashima: Effect of rule weights in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  37. H. Ishibuchi, T. Nakashima, T. Morisawa: Voting in fuzzy rule-based systems for pattern classification problems, Fuzzy Sets Syst. 103(2), 223–238 (1999)

    Article  Google Scholar 

  38. O. Cordón, F. Herrera: A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples, Int. J. Approx. Reason. 17(4), 369–407 (1997)

    Article  MATH  Google Scholar 

  39. J.G. Marin-Blázquez, Q. Shen: From approximative to descriptive fuzzy classifiers, IEEE Trans. Fuzzy Syst. 10(4), 484–497 (2002)

    Article  Google Scholar 

  40. P.K. Simpson: Fuzzy min-max neural networks – Part 1: Classification, IEEE Trans. Neural Netw. 3(5), 776–786 (1992)

    Article  Google Scholar 

  41. S. Abe, M.S. Lan: A method for fuzzy rules extraction directly from numerical data and its application to pattern classification, IEEE Trans. Fuzzy Syst. 3(1), 18–28 (1995)

    Article  MathSciNet  Google Scholar 

  42. S. Abe, R. Thawonmas: A fuzzy classifier with ellipsoidal regions, IEEE Trans. Fuzzy Syst. 5(3), 358–368 (1997)

    Article  Google Scholar 

  43. D. Nauck, F. Klawonn, R. Kruse: Foundations of Neuro-Fuzzy Systems (Wiley, New York 1997)

    MATH  Google Scholar 

  44. S. Abe: Pattern Classification: Neuro-Fuzzy Methods and Their Comparison (Springer, Berlin 2001)

    Book  MATH  Google Scholar 

  45. O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena: Genetic Fuzzy Systems (World Scientific, Singapore 2001)

    Book  MATH  Google Scholar 

  46. O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena: Ten years of genetic fuzzy systems: Current framework and new trends, Fuzzy Sets Syst. 141(1), 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Herrera: Genetic fuzzy systems: Status, critical considerations and future directions, Int. J. Comput. Intell. Res. 1(1), 59–67 (2005)

    Google Scholar 

  48. F. Herrera: Genetic fuzzy systems: Taxonomy, current research trends and prospects, Evol. Intell. 1(1), 27–46 (2008)

    Article  MathSciNet  Google Scholar 

  49. K. Shimojima, T. Fukuda, Y. Hasegawa: Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm, Fuzzy Sets Syst. 71(3), 295–309 (1995)

    Article  Google Scholar 

  50. H. Ishibuchi, T. Nakashima, T. Murata: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems, IEEE Trans. Syst. Man Cybern. B 29(5), 601–618 (1999)

    Article  Google Scholar 

  51. H. Ishibuchi, T. Yamamoto, T. Nakashima: Hybridization of fuzzy GBML approaches for pattern classification problems, IEEE Trans. Syst. Man Cybern. B 35(2), 359–365 (2005)

    Article  Google Scholar 

  52. H. Ishibuchi, T. Nakashima, T. Murata: Three-objective genetics-based machine learning for linguistic rule extraction, Inf. Sci. 136(1–4), 109–133 (2001)

    Article  MATH  Google Scholar 

  53. H. Ishibuchi, Y. Nojima: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning, Int. J. Approx. Reason. 44(1), 4–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. J.C. Dunn: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  55. J.C. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, New York 1981)

    Book  MATH  Google Scholar 

  56. J.C. Bezdek, R. Ehrlich, W. Full: FCM: The fuzzy c-means clustering algorithm, Comput. Geosci. 10(2/3), 191–203 (1984)

    Article  Google Scholar 

  57. S.L. Chiu: Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst. 2(3), 267–278 (1994)

    Google Scholar 

  58. J.A. Dickerson, B. Kosko: Fuzzy function approximation with ellipsoidal rules, IEEE Trans. Syst. Man Cybern. 26(4), 542–560 (1996)

    Article  Google Scholar 

  59. C.J. Lin, C.T. Lin: An ART-based fuzzy adaptive learning control network, IEEE Trans. Fuzzy Syst. 5(4), 477–496 (1997)

    Article  Google Scholar 

  60. M. Delgado, A.F. Gomez-Skarmeta, F. Martin: A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling, IEEE Trans. Fuzzy Syst. 5(2), 223–233 (1997)

    Article  Google Scholar 

  61. M. Setnes: Supervised fuzzy clustering for rule extraction, IEEE Trans. Fuzzy Syst. 8(4), 416–424 (2000)

    Article  Google Scholar 

  62. M. Setnes, R. Babuska, H.B. Verbruggen: Rule-based modeling: Precision and transparency, IEEE Trans. Syst. Man Cybern. C 28(1), 165–169 (1998)

    Article  Google Scholar 

  63. M. Setnes, R. Babuska, U. Kaymak, H.R. van Nauta Lemke: Similarity measures in fuzzy rule base simplification, IEEE Trans. Syst. Man Cybern. B 28(3), 376–386 (1998)

    Article  Google Scholar 

  64. Y. Jin, W. von Seelen, B. Sendhoff: On generating FC3 fuzzy rule systems from data using evolution strategies, IEEE Trans. Syst. Man Cybern. B 29(6), 829–845 (1999)

    Article  Google Scholar 

  65. M. Setnes, H. Roubos: GA-fuzzy modeling and classification: Complexity and performance, IEEE Trans. Fuzzy Syst. 8(5), 509–522 (2000)

    Article  Google Scholar 

  66. H. Roubos, M. Setnes: Compact and transparent fuzzy models and classifiers through iterative complexity reduction, IEEE Trans. Fuzzy Syst. 9(4), 516–524 (2001)

    Article  Google Scholar 

  67. J. Abonyi, J.A. Roubos, F. Szeifert: Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization, Int. J. Approx. Reason. 32(1), 1–21 (2003)

    Article  MATH  Google Scholar 

  68. R. Alcalá, J. Alcalá-Fdez, F. Herrera, J. Otero: Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation, Int. J. Approx. Reason. 44(1), 45–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. K. Miettinen: Nonlinear Multiobjective Optimization (Kluwer, Boston 1999)

    MATH  Google Scholar 

  70. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  71. E. Zitzler, L. Thiele: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  72. Q. Zhang, H. Li: MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  73. N. Beume, B. Naujoks, M. Emmerich: SMS-EMOA: Multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  74. P. Stewart, D.A. Stone, P.J. Fleming: Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop, Eng. Appl. Artif. Intell. 17(3), 275–284 (2004)

    Article  Google Scholar 

  75. L.H. Chen, C.H. Chiang: An intelligent control system with a multi-objective self-exploration process, Fuzzy Sets Syst. 143(2), 275–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  76. P. Ducange, B. Lazzerini, F. Marcelloni: Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets, Soft Comput. 14(7), 713–728 (2010)

    Article  Google Scholar 

  77. C. Setzkorn, R.C. Paton: On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems, BioSystems 81(2), 101–112 (2005)

    Article  Google Scholar 

  78. H. Wang, S. Kwong, Y. Jin, W. Wei, K.F. Man: Agent-based evolutionary approach for interpretable rule-based knowledge extraction, IEEE Trans. Syst. Man Cybern. C 35(2), 143–155 (2005)

    Article  Google Scholar 

  79. C.H. Tsang, S. Kwong, H.L. Wang: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection, Pattern Recognit. 40(9), 2373–2391 (2007)

    Article  MATH  Google Scholar 

  80. H. Wang, S. Kwong, Y. Jin, W. Wei, K.F. Man: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets Syst. 149(1), 149–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  81. Z.Y. Xing, Y. Zhang, Y.L. Hou, L.M. Jia: On generating fuzzy systems based on Pareto multi-objective cooperative coevolutionary algorithm, Int. J. Control Autom. Syst. 5(4), 444–455 (2007)

    Google Scholar 

  82. J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.): Interpretability Issues in Fuzzy Modeling (Springer, Berlin 2003)

    MATH  Google Scholar 

  83. J.M. Alonso, L. Magdalena, G. González-Rodríguez: Looking for a good fuzzy system interpretability index: An experimental approach, Int. J. Approx. Reason. 51(1), 115–134 (2009)

    Article  MathSciNet  Google Scholar 

  84. H. Ishibuchi, Y. Kaisho, Y. Nojima: Design of linguistically interpretable fuzzy rule-based classifiers: A short review and open questions, J. Mult.-Valued Log. Soft Comput. 17(2/3), 101–134 (2011)

    MathSciNet  MATH  Google Scholar 

  85. J.M. Alonso, L. Magdalena: Editorial: Special issue on interpretable fuzzy systems, Inf. Sci. 181(20), 4331–4339 (2011)

    Article  MathSciNet  Google Scholar 

  86. M.J. Gacto, R. Alcalá, F. Herrera: Interpretability of linguistic fuzzyrule-based systems: An overview of interpretability measures, Inf. Sci. 181(20), 4340–4360 (2011)

    Article  MATH  Google Scholar 

  87. C. Mencar, C. Castiello, R. Cannone, A.M. Fanelli: Interpretability assessment of fuzzy knowledge bases: A cointension based approach, Int. J. Approx. Reason. 52(4), 501–518 (2011)

    Article  MathSciNet  Google Scholar 

  88. O. Cordón: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems, Int. J. Approx. Reason. 52(6), 894–913 (2011)

    Article  Google Scholar 

  89. H. Ishibuchi, Y. Nojima: Toward quantitative definition of explanation ability of fuzzy rule-based classifiers, Proc. 2011 IEEE Int. Conf. Fuzzy Syst. (IEEE, Taipei 2011) pp. 549–556

    Chapter  Google Scholar 

  90. M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni: Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework, Int. J. Approx. Reason. 50(7), 1066–1080 (2009)

    Article  Google Scholar 

  91. A. Botta, B. Lazzerini, F. Marcelloni, D.C. Stefanescu: Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index, Soft Comput. 13(5), 437–449 (2009)

    Article  Google Scholar 

  92. M.J. Gacto, R. Alcalá, F. Herrera: Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems, IEEE Trans. Fuzzy Syst. 18(3), 515–531 (2010)

    Article  Google Scholar 

  93. Y. Zhang, X.B. Wu, Z.Y. Xing, W.L. Hu: On generating interpretable and precise fuzzy systems based on Pareto multi-objective cooperative co-evolutionary algorithm, Appl. Soft Comput. 11(1), 1284–1294 (2011)

    Article  Google Scholar 

  94. R. Alcalá, Y. Nojima, F. Herrera, H. Ishibuchi: Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions, Soft Comput. 15(12), 2303–2318 (2011)

    Article  Google Scholar 

  95. C.A.C. Coello, G.T. Pulido, M.S. Lechuga: Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  96. D. Liu, K.C. Tan, C.K. Goh, W.K. Ho: A multiobjective memetic algorithm based on particle swarm optimization, IEEE Trans. Syst. Man Cybern. B 37(1), 42–50 (2007)

    Article  Google Scholar 

  97. Y. Wang, Y. Yang: Particle swarm optimization with preference order ranking for multi-objective optimization, Inf. Sci. 179(12), 1944–1959 (2009)

    Article  MathSciNet  Google Scholar 

  98. A. Elhossini, S. Areibi, R. Dony: Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization, Evol. Comput. 18(1), 127–156 (2010)

    Article  Google Scholar 

  99. C.K. Goh, K.C. Tan, D.S. Liu, S.C. Chiam: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design, Eur. J. Oper. Res. 202(1), 42–54 (2010)

    Article  MATH  Google Scholar 

  100. A.R.M. Rao, K. Sivasubramanian: Multi-objective optimal design of fuzzy logic controller using a self configurable swarm intelligence algorithm, Comput. Struct. 86(23/24), 2141–2154 (2008)

    Google Scholar 

  101. M. Marinaki, Y. Marinakis, G.E. Stavroulakis: Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures, Struct. Multidiscip. Optim. 43(1), 29–42 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  102. C.N. Nyirenda, D.S. Dawoud, F. Dong, M. Negnevitsky, K. Hirota: A fuzzy multiobjective particle swarm optimized TS fuzzy logic congestion controller for wireless local area networks, J. Adv. Comput. Intell. Intell. Inf. 15(1), 41–54 (2011)

    Google Scholar 

  103. Q. Zhang, M. Mahfouf: A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels, Appl. Soft Comput. 11(2), 2419–2443 (2011)

    Article  Google Scholar 

  104. B.J. Park, J.N. Choi, W.D. Kim, S.K. Oh: Analytic design of information granulation-based fuzzy radial basis function neural networks with the aid of multiobjective particle swarm optimization, Int. J. Intell. Comput. Cybern. 5(1), 4–35 (2012)

    Article  MathSciNet  Google Scholar 

  105. H. Ishibuchi, N. Tsukamoto, Y. Nojima: Evolutionary many-objective optimization: A short review, Proc. 2008 IEEE Congr. Evol. Comput. (IEEE, Hong Kong 2008) pp. 2424–2431

    Google Scholar 

  106. H. Ishibuchi, N. Akedo, H. Ohyanagi, Y. Nojima: Behavior of EMO algorithms on many-objective optimization problems with correlated objectives, Proc. 2011 IEEE Congr. Evol. Comput. (IEEE, New Orleans 2011), pp. 1465–1472

    Google Scholar 

  107. O. Schutze, A. Lara, C.A.C. Coello: On the influence of the number of objectives on the hardness of a multiobjective optimization problem, IEEE Trans. Evol. Comput. 15(4), 444–455 (2011)

    Article  Google Scholar 

  108. C.F. Juang, C.M. Lu, C. Lo, C.Y. Wang: Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation, IEEE Trans. Ind. Electron. 55(3), 1453–1462 (2008)

    Article  Google Scholar 

  109. C.F. Juang, C.Y. Wang: A self-generating fuzzy system with ant and particle swarm cooperative optimization, Expert Syst. Appl. 36(3), 5362–5370 (2009)

    Article  Google Scholar 

  110. C.F. Juang, P.H. Chang: Designing fuzzy-rule-based systems using continuous ant-colony optimization, IEEE Trans. Fuzzy Syst. 18(1), 138–149 (2010)

    Article  Google Scholar 

  111. C.F. Juang, P.H. Chang: Recurrent fuzzy system design using elite-guided continuous ant colony optimization, Appl. Soft Comput. 11(2), 2687–2697 (2011)

    Article  Google Scholar 

  112. G.M. Fathi, A.M. Saniee: A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis, Expert Syst. Appl. 38(12), 14650–14659 (2011)

    Article  Google Scholar 

  113. S. Wang, M. Mahfouf: Multi-objective optimisation for fuzzy modelling using interval type-2 fuzzy sets, Proc. 2012 IEEE Int. Conf. Fuzzy Syst. (IEEE, Brisbane 2012) pp. 722–729

    Google Scholar 

  114. O. Castillo, P. Melin, A.A. Garza, O. Montiel, R. Sepúlveda: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms, Soft Comput. 15(6), 1145–1160 (2011)

    Article  Google Scholar 

  115. O. Castillo, P. Melin: A review on the design and optimization of interval type-2 fuzzy controllers, Appl. Soft Comput. 12(4), 1267–1278 (2012)

    Article  Google Scholar 

  116. O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, J. Soria: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Inf. Sci. 192(1), 19–38 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishibuchi, H., Nojima, Y. (2015). Multiobjective Genetic Fuzzy Systems. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics