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Abstract. This paper presents sensor data fusion using Unscented Kalman Fil-

ter (UKF) to implement high performance vestibulo-ocular reflex (VOR) based 

vision tracking system for mobile robots. Information from various sensors is 

required to be integrated using an efficient sensor fusion algorithm to achieve a 

continuous and robust vision tracking system. We use data from low cost accel-

erometer, gyroscope, and encoders to calculate robot motion information. The 

Unscented Kalman Filter is used as an efficient sensor fusion algorithm. The 

UKF is an advanced filtering technique which outperforms widely used Ex-

tended Kalman Filter (EKF) in many applications. The system is able to com-

pensate for the slip errors by switching between two different UKF models built 

for slip and no-slip cases. Since the accelerometer error accumulates with time 

because of the double integration, the system uses accelerometer data only for 

the slip case UKF model. Using sensor fusion by UKF, the position and orienta-

tion of the robot is estimated and is used to rotate the camera mounted on top of 

the robot towards a fixed target. This concept is derived from the vestibulo-

ocular reflex (VOR) of the human eye. The experimental results show that the 

system is able to track the fixed target in various robot motion scenarios includ-

ing the scenario when an intentional slip is generated during robot navigation. 

Keywords: Sensor Fusion, Unscented Kalman Filter, VOR, Vision Tracking 

Systems 

1 Introduction 

Applications of robotics in various fields of science and engineering are increasing. 

Robots need a set of accurate and reliable sensors and control techniques to perform 

various tasks assigned to them. Accurate vision systems are especially crucial for 

robots involved in target tracking, visualization and vision based decision making. 

Accurate localization of mobile robots is an essential requirement for mobile robots 

navigation and target tracking. Various sensors have been utilized to achieve an accu-

mailto:basilio.bona%7d@polito.it
mailto:3dicho@snu.ac.kr
Basilio
Casella di testo
PRE-PRINT VERSION

Basilio
Casella di testo

Basilio
Casella di testo

Basilio
Casella di testo

Basilio
Casella di testo



rate positioning system for mobile robots. The system proposed in this paper esti-

mates the robot motion information and further uses this information to implement 

vision tracking system by rotating the camera mounted on the mobile robot towards 

the target. This concept is based on the Vestibulo-Ocular Reflex (VOR) of the human 

eye. The system can be divided into two blocks. Block 1 estimates robot motion in-

formation using sensor data fusion and block 2 uses this information to rotate the 

camera mounted on the robot to track the fixed target.  

Shim, E.S. et al presented a stable vision system for mobile robots using encoder 

data [2]. It detects a target within a few meters and maintains it fixed in the center of 

the image frame during locomotion. The proposed system uses encoder data to calcu-

late robot motion and periodically uses vision sensor signals to compensate for the 

errors. Their system is highly dependent on vision sensor information in the slip case 

and therefore performance deteriorates. 

Jaehong Park et al developed a high performance vision tracking system for mobile 

robots using sensor data fusion via Kalman filter [1]. The robot motion information is 

computed by low cost accelerometer data, gyroscope data, and encoder data. The 

vision information is obtained by camera images of the object on locomotion during 

vision tracking. Researchers have also used fuzzy controller [10] and double Kalman 

filters [11] to obtain vision tracking systems for mobile robots. 

We are using UKF which is an advanced filtering technique as compared with 

EKF. Furthermore, we are no longer using vision sensor (camera) image information 

which makes the system computationally heavy causing problems for tracking the 

target in continuous real time environment. UKF is much more efficient to deal with 

systems with severe nonlinearities because it is not dependent on first order lineariza-

tion. The concept of unscented Kalman filter, also known as Sigma Point Kalman 

Filter (SPKF), has been studied by many researchers. Julier and Uhlmann compared 

the performance of this new filter (UKF) with the previously used EKF [6]. They 

argued that because EKF is based on the first order linearization of the nonlinear sys-

tems, its performance deteriorates especially when the systems are highly nonlinear. 

They introduced this new filter which is based on selecting a deterministic set of 

points, called the sigma points. These sigma points capture the true mean and covari-

ance of the system when propagated through the nonlinear systems. 

2 The Vision Tracking System 

The vision tracking system implemented in this paper is inspired by Vestibulo-

Ocular Reflex (VOR) of the human eye. The vestibulo-ocular reflex is the eye reflex 

movement that stabilizes images on the retina during head movement, by producing 

an eye movement in the direction opposite to head movement, thus preserving the 

image on the center of the visual field. For example, when the head moves to the 

right, the eyes move to the left, and vice versa. Since slight head movement is present 

all the time, the VOR is very important for stabilizing vision. Patients whose VOR is 

impaired find it difficult to read, because they cannot stabilize the eyes during small 



head tremors. The VOR does not depend on visual input and works even in total 

darkness or when the eyes are completely closed [4]. 

The VOR has both rotational and translational aspects. When the head rotates 

about any axis (horizontal, vertical, or torsional), distant visual images are stabilized 

by rotating the eyes about the same axis, but in the opposite direction. When the head 

translates, for example during walking, the visual fixation point is maintained by ro-

tating the gaze in the opposite direction, based on the translational distance covered 

by the head. 

The vestibulo-ocular reflex needs to be fast. For clear vision, head movement must 

be compensated almost immediately; otherwise, vision corresponds to a photograph 

taken with a shaky hand. To achieve clear vision, signals from the semicircular canals 

are sent as directly as possible to the eye muscles. The connection involves only three 

neurons, and is correspondingly called the three neuron arc [4]. Using these direct 

connections, eye movement lags the head movement by less than 10 ms, and thus the 

vestibulo-ocular reflex is one of the fastest reflexes in the human body. 

The system proposed in this paper uses data from various sensors onboard the ro-

bot to detect the robot motion, and then rotates the camera based on the robot motion 

information. The whole concept can be partitioned into two blocks: 

 Robot motion information using sensor fusion by UKF 

 Camera rotation in opposite direction of the robot motion (VOR based concept) 

Low cost inertial sensors (MEMS based gyroscope and accelerometer) are used along 

with robot wheel encoders to implement the robot motion information algorithm. The 

motion information obtained from the motion information block is used to rotate the 

camera towards the target based on the VOR concept of the human eye. 

3 The Mathematical Modeling 

The robot position and orientation can be estimated based on the encoder meas-

urements using the following state model. The linear and angular velocities ,v w  can 

be obtained from differential drive kinematics.  
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Odometry is based on the assumption that wheel revolutions can be translated into 

linear displacement relative to the floor. This assumption is only of limited validity. 

One extreme example is wheel slippage: if one wheel was to slip on, say, an oil spill, 

then the associated encoder would register wheel revolutions even though these revo-

lutions would not correspond to a linear displacement of the wheel. To avoid this 

error, our proposed system does not use encoder data in the case of slippage. 



Gyroscopes measure the angular velocities which can be integrated to give the ori-

entation. Gyroscopes have bias and drift errors which should be properly tackled to 

avoid the unbounded accumulation of errors in position and orientation [3]. The data 

from gyroscope can be used to calculate robot orientation as follows. 

 1k k kw t      (2) 

The accelerometer measures the linear acceleration of the robot which can be inte-

grated to give velocity and position for mobile robots. Accelerometer data is very 

noisy because it naturally incorporates the gravity vector. Linear position estimation 

with information from accelerometers is more susceptible to errors due to the double 

integration process. The following equations are used to obtain linear position from 

accelerometer data. 
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We have used a two-wheeled robot with 3 degrees of freedom containing motion in 

x/y axis and rotation in the z-axis. Two coordinate frames are used to model the robot 

navigation; the earth coordinate frame (X,Y,Z), and the robot coordinate frame (x,y,z) 

as shown in fig. 1.  

 

Fig. 1. The coordinate system used for robot navigation 

4 The Unscented Kalman Filter 

The unscented Kalman filter (UKF) is a recursive minimum mean square estimator 

(MMSE) based on the optimal Gaussian approximate Kalman filter framework that 

addresses some of the approximation issues of the EKF. Unlike the EKF, the UKF 

does not explicitly approximate the nonlinear process and observation models; the 

state distribution is still represented by a Gaussian random variable (GRV), but it is 



specified using a minimal set of deterministically chosen sample points called the 

sigma points. These sample points completely capture the true mean and covariance 

of the GRV, and when propagated through the true nonlinear system, captures the 

posterior mean and covariance accurately to the 2nd order for any nonlinearity, with 

errors only introduced in the 3rd and higher orders [6]. 

 

An unscented transformation is based on two fundamental principles. First, it is 

easy to perform a nonlinear transformation on a single point (rather than an entire 

pdf). Second, it is not too hard to find a set of individual points (sigma points) in state 

space whose sample pdf approximates the true pdf of a state vector. These sigma 

points 
( )ix  can be calculated from the mean x and a deviation from the mean 

( )i  

obtained from the square root decomposition of covariance matrix P . For an n-

element state vector x , the sigma points can be calculated as follows: 
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where nP  is the matrix square root of nP such that ( ) ( )TnP nP nP , ( )
i

nP  is the 

ith row of nP , x  is mean and P is the error covariance of the state vector x . These 

sigma points when propagated through the nonlinear equation capture the true mean 

and covariance of the random variable. The mathematical details of UKF algorithm 

have been intentionally skipped and readers are referred to [5-8] for more details. 

4.1 The UKF State Model 

The state model for the UKF is formulated based on the error states, i.e., the differ-

ence between the encoder and gyroscope measurement is used as state variable for the 

UKF. The 3-element state vector consists of position error states xe  , ye  , e  . This 

can be obtained by calculating the position of the robot based on gyroscope and en-

coders separately and then taking the difference of the two values. The results ob-

tained from the UKF (error states) are then added to the encoder based position values 

to exactly find the position of the robot. The state vector kx  therefore serves as an 

error compensator for encoder data. The state model of UKF can be mathematically 

put as: 
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The subscript „g‟ and „e‟ refer to the data from gyro and encoder, and w  is the zero 

mean process noise with covariance kQ . The error state „ / /x ye  ‟ is defined as the 

difference in gyro and encoder measurement. This can be mathematically put as: 
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In the case of slip detection, the encoder data is no more reliable, so a different 

formulation of the above state vector is used. When slip is detected, we replace the 

encoder data with the accelerometer data in the above equation. 

4.2 The UKF Measurement Model 

The measurement model is based on the difference of the orientation of the robot 

measured by the gyroscope and encoders. This model can be mathematically written 

as follows: 
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where kv is the zero mean measurement noise with covariance kR . As in the case of 

state model, the measurement model is also changed when slip occurs. Here again, the 

encoder data is replaced with the accelerometer data in case of slip.  

Finding the UKF noise parameters (Q, R) is a tedious job and requires repeated ex-

periments with the model and sensors. The diagonal elements of the measurement 

noise covariance matrix represent the square of the standard deviation of the error in 

corresponding parameters. So the measurement noise covariance matrix can be found 

by experimenting several times with the robot encoders, gyroscope, and accelerome-

ter to calculate the square of the standard deviation of the error. Finding the process 

noise covariance is more subtle. Often times the best method of estimating Q is by 

tuning of filter i.e. adjusting the value of Q to obtain the optimal state [12]. 

5 The VOR Modeling 

After the execution of the first block, i.e. the robot motion information block, we 

now have the robot position information with respect to the previous position. The 

figure 2 shows the coordinate system used to calculate the camera rotation angle. 



 

Fig. 2. Coordinate frame for calculating camera rotation angle 

The camera rotation angle can be calculated from the following equation 
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The DC motor is used to rotate the camera towards the target based on the voltage 

generated corresponding to the rotate  . 

6 The Slip Detector 

Our system has two different models for slip and no-slip cases. The slip therefore 

must be detected beforehand. The data from accelerometer and encoders is first com-

pared to ascertain the occurrence of slip. The occurrence of slip is confirmed if the 

difference of encoder and accelerometer position is greater than a threshold value k . 

The threshold value can be adjusted as desired and should also accommodate the ac-

celerometer errors. Based on the output of this slip detector, either of the two UKF 

models is used. 

 

Fig. 3. The slip detector 



7 The Complete System 

The complete system consists of two UKF models incorporating data from three 

sensors i.e. gyroscope, accelerometer and encoders. The two UKF models are labeled 

as the slip UKF model and no-slip UKF model. Based on the output of this slip detec-

tor, either of the two UKF models is used. The slip-UKF model integrates data from 

inertial sensors only while the no-slip UKF model integrates data from encoders and 

gyroscope. The transition between the UKF models will be automatic based on 

whether slip occurs or not. The overall system is shown in the block diagram below. 

 

Fig. 4. The complete system including the slip detector. The constant value, k, is chosen to 

accommodate the error in accelerometer data. 

8 The Experimental Setup and Results Analysis 

A mobile robot (Mobile Robot, Customer & Robot Co., Ltd) with build-in wheel 

encoders was used for experiments. MEMS based IMU unit containing an accelerom-

eter (KXPS5-3157, Kionix Inc.), and a gyroscope (ADIS1 6255, Analog Devices 

Inc.), a rotating camera (SPC 520NC, Philips) with inputs from DC motor (Series 

2619, MicroMo Electronics Inc.) and a robot control PC were onboard the robot plat-

form. The signals from the inertial sensors are sent to the host control PC via RS232 

communication. The Bluetooth is used as a communication source between the robot 

control and the host PC. Signals are sent to the camera control motor using RS485 

communication protocol. The program to get the sensor data from encoders and iner-

tial sensors is written in Microsoft Visual C++ 6.0. 



 

Fig. 5. System Configuration 

8.1 The Localization Experiments 

Experiments are first conducted to test the robot motion information block 

(block1). The results have been tested by comparing position output with an accurate 

distance laser sensor (DLS-BH 30, Dimitix). Intentional slip is generated by rolling a 

paper sheet under the robot wheels. It would be interesting to compare block1 results 

in slip case. During the slip experiment, using only encoder data gives 238mm posi-

tion error (for a 1m linear motion) while our UKF system gives only 96mm error. The 

comparison of our system block1 performance with encoders and laser sensor is given 

in figure 6. 

 

Fig. 6. Distance from the origin as measured by our algorithm, Encoders and accurate Laser 

Sensor during simple translational motion (slip case). 

8.2 The Tracking System Experiments 

Experiments were also conducted to test the accuracy of the vision tracking sys-

tem. The robot camera is initially fixed at the target. The robot is then moved in vari-

ous trajectories to test the efficiency of vision tracking system. The SURF (Speeded 



Up Robust Features) algorithm is used to detect the target inside the camera image. 

The following three types of experiments were conducted: 

1. Simple Translational Motion: Robot moved 1m forward, and then moved 1m 

backward. The initial distance between the robot camera and the target was kept at 

1.5 m and the velocity of the robot is 0.2 m/s. 

2. Translational Rotational Combined Motion: Robot moved 1m forward, rotated 90° 

counterclockwise and then moved 1m forward. The initial distance between the ro-

bot camera and the target is once again kept at 1.5m and the translational and rota-

tional velocities of robot are 0.2 m/s and 30 °/s respectively. 

3. The Square Motion: The robot followed the square path described in figure 6. The 

initial distance, translational and rotational velocities of robot remain same. 

 

Fig. 7. Experiment 3: Square Motion 

The results obtained are summarized in the table below. 

 

Experiment 
Tracking 

Success Rate 

Pixel Error 

(RMS) 

Angle Error 

(RMS) 

Recognition 

Success Rate 

Experiment 1 

 Linear Motion 
100 % 21.62 pixel 1.96° 100 % 

Experiment 2  

Rotation + Translation 
99 %  32 pixel 2.83° 92 % 

Experiment 3  

Square Motion 
96 % 33 pixel 2.59° 92 % 

Table 1. Summary of the experimental results 

Successful tracking is established when the target lies within the camera image. 

Successful recognition is established when target is recognized by SURF, forming a 

red boundary around the target as shown in figure 7. Tracking success rate is 

calculated by dividing the number of successful tracking by number of total image 

frame. Similary the recognition success rate is calculated by the number of successful 

recognition divided by the number of total image frames. Angle error gives the degree 



by which target image is displaced from the centre of camera image. SURF is used for 

all those calculations. 

9 Conclusion 

We have presented the implementation of a vestibulo-ocular-reflex (VOR) based 

vision tracking system for mobile robots. Since the cost of inertial sensors is very low 

and most of the mobile robots have built-in wheel encoders, this system can be 

implemented with a very low cost. The system used an advanced filtering technique 

called the unscented Kalman filter (UKF) for sensor data fusion.  

The system is also designed to work in the case of slip in the robot wheels. The 

system detects the slip by comparing data from encoders and accelerometer and 

accordingly switches to one of the sensor fusion model built for slip and no-slip cases. 

The no-slip sensor fusion model integrates data from encoders and gyroscope while 

the slip case sensor fusion model integrates data from gyroscope and accelerometer. 

The system implemented in this work has been experimentally tested for accuracy and 

gives satisfactory results both in slip and no-slip cases. However, the performance of 

the system is not up to the expected level in the case of robot wheel slip. This is due 

to the fact that the slip sensor fusion model uses data from accelerometer, which is 

very noisy. A more careful and robust modeling of the accelerometer noises is 

required to achieve better performance in the case of slip. 
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