Skip to main content

ARE: Augmented Reality Environment for Mobile Robots

  • Conference paper
  • First Online:
Book cover Towards Autonomous Robotic Systems (TAROS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8069))

Included in the following conference series:

Abstract

In this paper we present ARE, an Augmented Reality Environment, with the main purpose of providing cognitive robotics modelers with a development tool for constructing, at real-time, complex planning scenarios for robots, eliminating the need to model the dynamics of both the robot and the real environment as it would be required by whole simulation environments. The framework also builds a world model representation that serves as ground truth for training and validating algorithms for vision, motion planning and control. We demonstrate the application of the AR-based framework for evaluating the capability of the robot to plan safe paths to goal locations in real outdoor scenarios, while the planning scene dynamically changes, being augmented by virtual objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function \(f(t)\) is an infinitesimal of a higher order than \(t\), namely \(o(t)\), if \(\underset{t\rightarrow 0}{\mathrm{lim }}\frac{f(t)}{t}=0\).

References

  1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  2. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  3. Neumann, U., Majoros, A.: Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In: Proceedings of IEEE Virtual Reality Annual International Symposium, pp. 4–11 (1998)

    Google Scholar 

  4. Molineros, J., Sharma, R.: Computer vision for guiding manual assembly. In: IEEE International Symposium on Assembly and Task Planning (2001)

    Google Scholar 

  5. Shekhar, R., Dandekar, O., Bhat, V., Philip, M., Lei, P., Godinez, C., Sutton, E., George, I., Kavic, S., Mezrich, R., Park, A.: Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg. Endosc. 24, 1976–1985 (2010)

    Article  Google Scholar 

  6. Milgram, P., Zhai, S., Drascic, D., Grodski, J.: Applications of augmented reality for human-robot communication. In: Proceedings of IROS, vol. 3, pp. 1467–1472 (1993)

    Google Scholar 

  7. Rastogi, A., Milgram, P.: Augmented telerobotic control: a visual interface for unstructured environments. In: Proceedings of the KBS/Robotics Conference (1995)

    Google Scholar 

  8. Amstutz, P., Fagg, A.: Real time visualization of robot state with mobile virtual reality. In: Proceedings of ICRA, vol. 1, pp. 241–247 (2002)

    Google Scholar 

  9. Brujic-Okretic, V., Guillemaut, J.Y., Hitchin, L., Michielen, M., Parker, G.: Remote vehicle manoeuvring using augmented reality. In: Proceedings of VIE, pp. 186–189 (2003)

    Google Scholar 

  10. Zaeh, M., Vogl, W.: Interactive laser-projection for programming industrial robots. In: Proceedings of ISMAR, pp. 125–128 (2006)

    Google Scholar 

  11. Bischoff, R., Kazi, A.: Perspectives on augmented reality based human-robot interaction with industrial robots. In: Proceedings of IROS, vol. 4, pp. 3226–3231 (2004)

    Google Scholar 

  12. Pettersen, T., Pretlove, J., Skourup, C., Engedal, T., Lkstad, T.: Augmented reality for programming industrial robots. In: Proceeding of IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 319–320 (2003)

    Google Scholar 

  13. Young, J., Sharlin, E., Boyd, J.: Implementing bubblegrams: the use of haar-like features for human-robot interaction. In: Proceedings of CASE, 298–303 (2006)

    Google Scholar 

  14. Dragone, M., Holz, T., O’Hare, G.: Using mixed reality agents as social interfaces for robots. In: The 16th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1161–1166 (2007)

    Google Scholar 

  15. Giesler, B., Salb, T., Steinhaus, P., Dillmann, R.: Using augmented reality to interact with an autonomous mobile platform. In: Proceedings of ICRA, vol. 1, pp. 1009–1014 (2004)

    Google Scholar 

  16. Stilman, M., Michel, P., Chestnutt, J., Nishiwaki, K., Kagami, S., Kuffner, J.: Augmented reality for robot development and experimentation. Technical report, Robotics Institute (2005)

    Google Scholar 

  17. Collett, T., MacDonald, B.: Augmented reality visualisation for player. In: Proceedings of ICRA, pp. 3954–3959 (2006)

    Google Scholar 

  18. Chong, J.W.S., Ong, S.K., Nee, A.Y.C., Youcef-Youmi, K.: Robot programming using augmented reality: an interactive method for planning collision-free paths. Robot. Comput. Integr. Manufactoring 25(3), 689–701 (2009)

    Article  Google Scholar 

  19. Green, S.A., Billinghurst, M., Chen, X., Chase, G.J.: Human-robot collaboration: a literature review and augmented reality approach in design. Int. J. Adv. Rob. Syst. 5(1), 1–18 (2008)

    Google Scholar 

  20. Billinghurst, M., Kato, H., Poupyrev, I.: The magicbook: a transitional ar interface. Comput. Graph. 25(5), 745–753 (2001)

    Article  Google Scholar 

  21. Billinghurst, M., Belcher, D., Gupta, A., Kiyokawa, K.: Communication behaviors in co-located collaborative AR interfaces. J. HCI 16(3), 395–423 (2003)

    Google Scholar 

  22. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of ICRA, vol. 2, pp. 116–121 (1985)

    Google Scholar 

  23. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  24. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: a probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proceedings of ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation (2010)

    Google Scholar 

  25. Kamat, V.R., Dong, S.: Resolving incorrect visual occlusion in outdoor augmented reality using TOF camera and OpenGL frame buffer. In: Proceedings of NSF CMMI, pp. 1–8 (2011)

    Google Scholar 

  26. Finkenstadt, B., Held, L.: Statistical Methods for Spatio-Temporal Systems. Chapman & Hall/CRC, Boca Raton (2006)

    Book  Google Scholar 

  27. Rathbun, S.L.: Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes. J. Stat. Plann. Infer. 51(1), 55–74 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vere-Jones, D.: Some models and procedures for space-time point processes. Environ. Ecol. Stat. 16, 173–195 (2009)

    Article  MathSciNet  Google Scholar 

  29. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  30. Grimmett, G., Grimmett, G.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  31. Müller, J., Stachniss, C., Arras, K.O., Burgard, W.: Socially inspired motion planning for mobile robots in populated environments. In: Cognitive Systems. Springer, Heidelberg (2010)

    Google Scholar 

  32. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Robot. 34(3), 133–148 (2013)

    Article  Google Scholar 

  34. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: robust navigation in an indoor office environment. In: Proceedings of ICRA, vol. 2010, pp. 300–307 (2010)

    Google Scholar 

  35. Carbone, A., Finzi, A., Orlandini, A., Pirri, F.: Model-based control architecture for attentive robots in rescue scenarios. Auton. Robot. 24(1), 87–120 (2008)

    Article  Google Scholar 

  36. Finzi, A., Pirri, F.: Representing flexible temporal behaviours in the situation calculus. In: Proceedings of the International Joint Conference of Artificial Intelligence IJCAI, pp. 436–441 (2005)

    Google Scholar 

  37. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proceedings of ACM International Workshop on Augmented Reality (1999)

    Google Scholar 

  38. Uchiyama, S., Takemoto, K., Satoh, K., Yamamoto, H., Tamura, H.: Mr platform: a basic body on which mixed reality applications are built. In: Proceedings of International Symposium on Mixed and Augmented Reality (2002)

    Google Scholar 

  39. Dias, J., Monteiro, L., Santos, P., Silvestre, R., Bastos, R.: Developing and authoring mixed reality with MX toolkit. In: IEEE International Augmented Reality Toolkit Workshop, 2003 (October 2003), pp. 18–26 (2003)

    Google Scholar 

Download references

Acknowledgments

The research has been funded by EU-FP7 NIFTI Project, Contract No. 247870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Gianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gianni, M., Ferri, F., Pirri, F. (2014). ARE: Augmented Reality Environment for Mobile Robots. In: Natraj, A., Cameron, S., Melhuish, C., Witkowski, M. (eds) Towards Autonomous Robotic Systems. TAROS 2013. Lecture Notes in Computer Science(), vol 8069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43645-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43645-5_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43644-8

  • Online ISBN: 978-3-662-43645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics