Skip to main content

Developing the Cerebellar Chip as a General Control Module for Autonomous Systems

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8069))

Included in the following conference series:

  • 3137 Accesses

Abstract

Biological systems have evolved robust, adaptive control strategies to deal with a wide range of control tasks in time varying systems and environments. The cerebellum is the brain structure particularly associated with the control of skilled movements, the advantageous properties of the cerebellum can be exploited for robotic control applications. In this contribution we present a bioinspired cerebellar control algorithm. We extend the existing cerebellar inspired adaptive filter control algorithm, previously applied to plants of specific order, to the control of general \(n^\mathrm{th }\) order plants. This is done by augmenting the existing cerebellar algorithm with a reference model, a technique used in model reference adaptive control. This augmented cerebellar controller is applied successfully to the simulated control of a general plant, and to the real time control of a dielectric electroactive polymer actuator. This augmented biomimetic control strategy has promise for the control of human-centred robots operating in unstructured environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeifer, R., Lungarella, M., Iida, F.: Self organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)

    Article  Google Scholar 

  2. Javaherian, J., Huang, T., Liu, D.: A biologically inspired adaptive nonlinear control strategy for applications to powertrain control. In: 2009 IEEE International Conference on Systems, Man and Cybernetics (2009)

    Google Scholar 

  3. Lenz, A., Anderson, S.R., Pipe, A.G., Melhuish, C., Dean, P., Porrill, J.: Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE Trans. Syst. Man. Cybern. B 39(6), 1420–1422 (2009)

    Article  Google Scholar 

  4. De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human-robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)

    Article  MATH  Google Scholar 

  5. Ito, M.: The Cerebellum and Neural Control. Raven, New York (1984)

    Google Scholar 

  6. Dean, P., Porrill, J., Ekerot, C.F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)

    Article  Google Scholar 

  7. Eccles, J.C., Ito, M., Szentgothai, J.: The Cerebellum as a Neuronal Machine. Springer, Berlin (1967)

    Book  Google Scholar 

  8. Marr, D.: A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)

    Google Scholar 

  9. Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  10. Ito, M.: Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9(4), 304–313 (2008)

    Article  Google Scholar 

  11. Porrill, J., Dean, P., Anderson, S.R.: Adaptive filters and internal models: Multilevel description of cerebellar function. Neural networks. http://dx.doi.org/10.1016/j.neunet.2012.12.005. 28 Dec 2012

  12. Fujita, M.: Adaptive filter model of the cerebellum. Biol. Cybern. 206, 195–206 (1982)

    Article  Google Scholar 

  13. Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput. 19(1), 170–193 (2007)

    Article  MATH  Google Scholar 

  14. Landau, Y.D.: Adaptive Control: The Model Reference Approach (Control and System Theory). Marcel Dekker, New York (1979)

    MATH  Google Scholar 

  15. Schweighofer, N., Doya, K., Lay, F.: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103(1), 35–50 (2001)

    Article  Google Scholar 

  16. Coenen, O.J.D., Arnold, M.P., Sejnowski, T.J.: Parallel fiber coding in the cerebellum for life-long learning. Auton. Robot. 11, 291–297 (2001)

    Article  MATH  Google Scholar 

  17. Widrow, B., Stearns, S.D.: Adaptive Signal Processing. Prentice Hall, Upper Saddle River (1985)

    MATH  Google Scholar 

  18. Dean, P., Porrill, J., Stone, J.V.: Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc. R. Soc. B 269(1503), 1895–1904 (2002)

    Article  Google Scholar 

  19. Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  20. Kaufman, H., Itzhak, B., Sobel, K.: Direct Adaptive Control Algorithms: Theory and Applications, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  21. Bar-Cohen, Y.: Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press, Bellingham (2001)

    Google Scholar 

  22. Pelrine, R., Kornbluh, R.D., Pei, Q., Stanford, S., Oh, S., Eckerle, J., Full, R.J., Rosenthal, M.A., Meijer, K.: Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Proc. SPIE 4695, 126–137 (2002)

    Article  Google Scholar 

  23. OHalloran, A., OMalley, F., McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7) 071101 (2008)

    Google Scholar 

Download references

Acknowledgements

This was supported by an EPSRC grant no. EP/IO32533/1, Bioinspired Control of Electro-Active Polymers for Next Generation Soft Robots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma D. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilson, E.D., Anderson, S.R., Assaf, T., Rossiter, J.M., Pearson, M.J., Porrill, J. (2014). Developing the Cerebellar Chip as a General Control Module for Autonomous Systems. In: Natraj, A., Cameron, S., Melhuish, C., Witkowski, M. (eds) Towards Autonomous Robotic Systems. TAROS 2013. Lecture Notes in Computer Science(), vol 8069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43645-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43645-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43644-8

  • Online ISBN: 978-3-662-43645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics