
Invariant Guided System Decomposition

Richard Banach

School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK

banach@cs.man.ac.uk

Abstract. We re-examine the problem of decomposing systems in Event-B. We
develop a pattern for cross-cutting events and invariants that enables the core
dependencies in multi-machine systems to be tracked. We give the essential veri-
fication conditions.

Keywords: System Decomposition, Cross-Cutting Invariants, Event-B

1 Introduction

In top down model based development methodologies, especially the B-Method, the
issue of composition and decomposition of (sub)systems has received a lot of interest.
See e.g. [1, 3, 2, 5]. For us, the main issue may be illustrated in a simple example.

Suppose there is a machine M with variables x, y. Suppose M needs to be partitioned
into two machines, M1 and M2. Suppose that x needs to go into M1 and y needs to go
into M2. Suppose that there is an invariant of M involving both variables, InvM(x, y). If
the partitioning is to go ahead, what are we to do about InvM(x, y)?

Sometimes it is suggested that an invariant like InvM(x, y) might be replaced by
InvM1(x) ≡ (∃ y • InvM(x, y)) in M1, say. However although InvM(x, y)⇒ InvM1(x),
the converse does not hold. Therefore, recognising that InvM and InvM1 are inequiva-
lent, if InvM(x, y) is a critical safety invariant, then the suggested partitioning strategy
would render the system incapable of discharging its most important duty. The usual
approach if InvM is important enough, is simply to not partition. However, such an
approach does not scale.

The remainder of the paper is as follows. Section 2 introduces our approach to
decomposition in generic terms. Section 3 covers verification issues, while Section 4
covers machine decomposition. Section 5 looks at refinement. Section 6 concludes.

2 Variable Sharing via INTERFACEs

We note that in typical embedded systems, connections are invariably unidirectional,
often mirroring physical connections such as wires. We exploit this unidirectionality to
design a methodology for handling a useful class of invariants that cut across subsys-
tem boundaries. We first introduce a concept of INTERFACE, rooted in the work of
Hallerstade and Hoang [4], which we extend, just enough to achieve what we desire.



2 R. Banach

An interface is a syntactic construct that declares some variables, and (going be-
yond [4]), some invariants that interrelate them, and their initialisations. Any machine
that needs to access any of these variables must refer to the interface. The interface
mechanism is the only permitted way for more than one machine to have access to the
same set of variables. Our use of interfaces is based on the following principles.

Consider a set of variables V , a set of invariants I that mention some of those
variables (and no others), and a set of events E that read and update some of those
variables (and no others). Suppose the set of variables can be partitioned into subsets
A, B, C . . . , such that for every invariant Inv ∈ I:
[•1] either all variables mentioned in Inv belong to some subset, eg. A;
[•2] or the invariant Inv is of the form U(u) ⇒ V(v), where there are distinct subsets
of the partition A and B say, such that u and v refer to variables in A and B respectively.

We call these type [1] and type [2] invariants respectively (t1i and t2i). For a t2i,
the A and B subsets are the local and remote subsets (containing the local variables u
and remote variables v). We observe that unless a system already consists simply of two
unconnected, completely independent subsystems, in which all properties split into a
conjunctionof properties of the two subsystems, there will be, in general, an infinity of
properties that couple the two subsystems nontrivially. Referring to the discussion of the
Introduction, the problem of what to do about cross-cutting invariants is unavoidable.
Our thesis is that, in the kind of embedded systems we spoke of, the unidirectional-
ity of the connections between subsystems implies that t2is are adequate to capture a
sufficiently rich class of inter-subsystem properties for practical use.

Henceforth we restrict to collections of variables/invariants/events conforming to
these restrictions, calling them pre-systems. Note that any collection of variables and
invariants is as a pre-system with a sufficiently coarse variable partition, e.g. a singleton
partition. We can organise a pre-system into machines and interfaces as follows.

Every subset of variables of the partition can consist of variables that, exclusively:
[•3] either are declared as the variables of a single machine;
[•4] or are declared as the variables of a single interface.

Each interface:
[•5] must contain all the type [1] invariants that mention any of its variables;
[•6] may contain type [2] invariants for which the interface’s variables are in the local
subset; in each such case the interface must contain a READS ReadItf declaration for
the interface ReadItf that contains the remote variables.
[•7] may contain REFERS RefItf declarations, whenever any of its variables are the
remote variables of a type [2] invariant declared in an interface RefItf .

Each machine:
[•8] may declare the variables belonging to a subset of the partition as local (i.e. un-
shared) variables;
[•9] may contain one or more CONNECTS Itf declarations giving access to the vari-
ables of the interface;
[•10] may contain one or more READS Itf declarations giving read-only access to the
variables of the interface;
[•11] must contain all the type [1] invariants that mention any of its local variables;



Invariant Guided System Decomposition 3

• • •

•••

•

•••

• •

• ••

•
•

•

• •

•

• • •

• • •

MA MB

Itf1 Itf2

MA

MM

MM1 MM2 MM3

ItfM1 ItfM2

Fig. 1. An illustration of the constraints [•1]–[•15].

Each event:

[•12] may read and update variables that are declared locally in the machine contain-
ing the event, or that are introduced via CONNECTS Itf declarations in the machine
containing the event;
[•13] may read (in its guards or in the expressions that define update values) variables
that are introduced: either via READS ReadItf declarations in the machine contain-
ing the event, or via READS ReadItf or REFERS RefItf declarations contained in an
interface Itf that the machine containing the event CONNECTS (to).
[•14] must preserve all invariants that are declared in the machine that contains it, or that
are declared in any CONNECTS Itf declarations of the machine, or that are contained
in any READS ReadItf or REFERS RefItf declarations contained in an interface Itf that
the machine containing the event CONNECTS (to).

Each invariant:

[•15] must be contained in the interface or machine which declares all its variables (if
it is a type [1] invariant), or must be contained in the interface which declares its local
variables (if it is a type [2] invariant).

By a system, we mean a collection of machines satisfying [•1]–[•15] above. We
note that the keywords we introduced, CONNECTS, READS, REFERS, have no se-
mantic connotations other than the ones we mentioned. We can see fairly readily that in
a system, verifying that all the invariants are preserved by all event executions (provided
the initial state satisfies them all), can be readily accomplished using verification condi-
tions that depend on information that is easily located from the syntactic context of the
event, namely, from the interfaces explicitly mentioned in the machine that defines the
event. We examine verification conditions in more detail in the next section.

In Fig. 1 we show an illustration of the constraints [•1]–[•15]. Dots represent vari-
ables, while small squares represent type [1] invariants. Small rectangles represent
events. Events and invariants are connected to the variables they involve by thin lines.
Interfaces are large rectangles containing the variables and invariants they encapsu-
late — there are two in Fig. 1, Itf 1 and Itf 2. Machines are large rounded rectangles,
containing their events and local variables — again there are two, MA and MB. The
CONNECTS relationship is depicted by thick dashed lines. Finally, type [2] invariants
are represented by arrows from the local to the remote interface.



4 R. Banach

3 Verification of Type [2] Invariants

In this section we focus on the verification of nontrivial t2i invariants, assuming that
t1i invariants can be handled unproblematically by reference to the relevant interfaces
during verification. (The same applies to an event that must maintain a t2i if it can
access and update variables in both relevant interfaces (simultaneously).)

Consider a t2i (∗) ≡ U(u)⇒ V(v), where u and v belong to different interfaces. We
prime after-state expressions generically, thus: (∗′) ≡ U′(u′) ⇒ V ′(v′). We write the
events of interest as EvXYZ where X, Y, Z ∈ {U, V}. This means that the guard gUVV

of EvUVV mentions the variables u, v and the before-after relation BAUVV of EvUVV
updates variable v. The shorter notation EvUV means that the guard mentions only u
and the update is to variable v alone.

We assume that for events EvUU and EvVV , verification would be restricted to
variables u and v of invariant (∗) respectively, while for EvUVU and EvUVV , both
parts of (∗) could participate in verification, since both sets of variables are read via the
relevant interfaces. Read access to additional variables is obviously harmless and is not
considered further.

Theorem 1. Assuming that initial states are invariant, and that all events preserve all
type [1] invariants declared locally and in CONNECTS Itf declarations on reachable
states, the following proof obligations (POs) are sufficient to preserve reachable invari-
ance for type [2] invariants.

EvUVU : gUVU(u, v) ∧ ¬V(v)⇒ gUVU(u, v) ∧ ¬U(u)⇒ BAUVU(u, u′)⇒ ¬U(u′)
(obvious analogue for EvVU) (1)

EvUU : gUU(u) ∧ ¬U(u)⇒ BAUVU(u, u′)⇒ ¬U(u′) (2)
EvUVV : gUVV(u, v) ∧ U(u)⇒ gUVV(u, v) ∧ V(v)⇒ BAUVV(v, v′)⇒ V(v′)

(obvious analogue for EvUV) (3)
EvVV : gVV(v) ∧ V(v)⇒ BAVV(v, v′)⇒ V(v′) (4)

The above gives a selection of POs which can be used for verifying the preservation
of cross-cutting invariants of the t2i kind that we have considered, based on the occur-
rences of the relevant variables in the events that access those variables.

4 Machine Decomposition

The account so far permits us to assemble a large system by composing a number of ma-
chines together via a collection of interfaces that obey [•1]–[•15]. Equally interesting
though for the B-Method in general, is the problem of the decomposition of a machine
into a collection of smaller (sub)machines M1 . . . Mk, the development of which can
subsequently be pursued (at least relatively) independently. We examine this issue now.

We approach the decomposition problem by positing that decomposition should be
a syntactic manipulation whose correctness ought to be demonstrable generically. In
this light, the principle constraining decompositions of a machine can be described as
follows:



Invariant Guided System Decomposition 5

• • •

•••

•

•••

• •

• ••

•
•

•

• •

•

• • •

• • •

MA MB

Itf1 Itf2

MA

MM

MM1 MM2 MM3

ItfM1 ItfM2

Fig. 2. An illustration of the decomposition mechanism. MA, refined to a larger machine MM, is
decomposed into smaller machines and interlinking interfaces.

[•16] Regarding the variables and invariants (and events) declared in a machine M as
a pre-system (but not including the variables or invariants of any interface accessed
by M), any decomposition of M into submachines and interfaces is considered valid
provided: firstly, it conforms to restrictions [•1]–[•15]; secondly, any submachine Mj

that includes an event of M that uses a variable accessed (directly or indirectly) via an
interface of M, must access the same interface appropriately.

It is clear that adhering to [•16] refines the partition of variables when M is part of
a larger system already adhering to [•1]–[•15], without spoiling [•1]–[•15] overall.

Fig. 2 shows the decomposition mechanism at work. Machine MA from Fig. 1 is
first refined to a larger machine MM, containing more local variables and invariants, as
well as some new events shown using broken small rectangles. One new invariant is
connected to its variables using slightly thicker lines. Machine MM is now decomposed
into a collection of smaller machines and interfaces, MM1, MM2, MM3, and ItfM1,
ItfM2. The connections from MA events to previously existing interfaces are retained,
while the decomposition of the new ingredients conforms to constraints [•1]–[•15]. The
invariant connected using slightly thicker lines becomes a type [2] invariant with ItfM1
and ItfM2 as its local and remote interfaces respectively (on the presumption that it was
of the correct syntactic shape at the outset).

5 Refinement

We turn to the crucial issue of refinement. As for decomposition, there is a key guiding
principle behind the way that refinement is handled in our scheme.
[•17] The variables of an interface Itf must be refined to the variables of its refining
interface ItfR via a retrieve relation that mentions only the variables of Itf and ItfR.



6 R. Banach

[•18] The variables of a machine M must be refined to the variables of its refining
machine MR via a retrieve relation that mentions only the variables of M and MR.

The independence of refinement of machines and interfaces prevents the inadvertent
falsifying of refinement relations in situations such as the following.

Suppose each of M1 and M2 CONNECTS Itf ; these constructs being refined to M1R,
M2R and ItfR respectively. Suppose the joint invariant of the M2 to M2R refinement
involves the variables of Itf and ItfR too. Then when concrete machine M1R executes
an event, faithful to some abstract event of M1, there is no guarantee that the new state
in M1 and M1R and Itf and ItfR still satisfies the joint invariants of M2 and M2R via the
coupled joint invariants linking the state in M2 and M2R to the state in Itf and ItfR.

Adhering to [•17]–[•18] though, it is easy to see that the problem described cannot
arise. The decoupling of variables of M2 and M2R on the one hand, from those of Itf
and ItfR on the other, means that when the variables of Itf and ItfR change at the behest
of M1 and M1R, the invariants linking the M2 and M2R variables remain true.

6 Conclusions

In this paper we have proposed, rather tersely, an Event-B decomposition scheme in-
spired by the INTERFACE idea of [4]. This was broadly in the shared variables tradi-
tion, but was driven primarily by the structure of a system’s invariants. Although os-
tensibly a shared variable approach, there are strong influences from the shared events
approach too, since a key feature of both ours and the shared events approach is the
desire to communicate values between machines. In this brief treatment, we just gave a
minimal description of the technical details of our approach, of which a kind of pattern
for cross-cutting events and invariants was the key element, and we outlined the requi-
site verification machinery. In a more extended treatment, we will be able to describe the
mechanisms more fully, we will be able to formulate the statements as theorems, and,
crucially, we will be able to illustrate the technique using examples and case studies.

References

1. Abrial, J.R.: Event-B: Structure and Laws. In: Rodin Project Deliverable D7: Event-B Lan-
guage. http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

2. Butler, M.: Decomposition Strategies for Event-B. In: Leuschel, Wehrheim (ed.) Proc. IFM-
09. vol. 5423, pp. 20–38. Springer, LNCS (2009)

3. Hallerstede, S., Abrial, J.R.: Event-B Decomposition for Parallel Programs. In: Frappier and
Gl asser and Khurshid and Laleau and Reeves (ed.) Proc. ABZ-10. vol. 5977, pp. 319–333.
Springer, LNCS (2010)

4. Hallerstede, S., Hoang, T.: Refinement by Interface Instantiation. In: Derrick, Fitzgerald,
Gnesi, Khurshid, Leuschel, Reeves, Riccobene (ed.) Proc. ABZ-12. vol. 7316, pp. 223–237.
Springer, LNCS (2012)

5. Silva, R., Pascal, C., Hoang, T., Butler, M.: Decomposition Tool for Event-B. Software Prac-
tice and Experience 41, 199–208 (2011)


