Templates for Event-B Code Generation

A. Edmunds

University of Southampton, UK

Abstract. The Event-B method, and its tools, provide a way to for-
mally model systems; Tasking Event-B is an extension facilitating code
generation. We have recently begun to explore how we can configure
the code generator, for deployment on different target systems. In this
paper, we describe how templates can be used to avoid hard-coding ‘boil-
erplate’ code, and how to merge this with code generated from the formal
model. We have developed a lightweight approach, where tags (i.e. tagged
mark-up) can be placed in source templates. The template-processors we
introduce may be of use to other plug-in developers wishing to merge a
‘source’ text file with some generated output.

1 Introduction

Rodin [2] is a platform for the rigorous specification of critical systems with
Event-B [I]. Tasking Event-B [3l4J56] is an extension to Event-B that facilitates
generation of source code. We can generate Java, Ada, C for OpenMP [9], and
C for the Functional Mock-up Interface (FMI) standard [8]. The work reported
in this paper has been undertaken during the ADVANCE project [7], which is
primarily concerned with co-simulation of Cyber-Physical Systems. This paper
introduces an approach that uses templates, with code injection, to facilitate the
re-use of boilerplate code.

Often, when a software system is being implemented, much of the code is
related to a particular target implementation; and is independent of the state,
and behaviour, of the part of the system being formally modelled. Example
include the code for system life-cycle management, system health monitoring,
or task scheduling. We introduce a simple Eclipse extension, to facilitate the
use of templates, with tagged mark-up. We can then merge the code, generated
from the formal model, and the templates. This facilitates re-use of existing
code, and most importantly, avoids the need to hard-code such details in the
translator. The template creator can add tags to the boiler-plate code. These
define locations where other templates are expanded; or define code injection
points, and meta-data generators. The tags are associated with pre-defined code
fragment-generators. The approach is suitable for use with any text-based source
and target. To validate the approach, it was used in a C code generator, which
was used to generate C code for our work with FMI in Advance. We provide a
brief overview of FMI, and code generation with Tasking Event-B, in Sect. [2| We
introduce templates, and show an example of their use, in Sect. [3] and conclude
in Sect. [

2 Background

We illustrate the approach, using the example of our Event-B-to-FMI transla-
tor. So we provide some background on the Functional Mock-Up Interface (FMI)
standard [8]. It is a tool-independent standard, developed to facilitate the ex-
change, and re-use, of modelling components in the automotive industry. It is
a C-based standard, defining an interface for re-usable components, known as
Functional Mock-up Units (FMUs). FMUs play the role of slave simulators in
simulations that are coordinated by a simulation master. The master simulator
is not defined in the FMI standard, but its job is to coordinate the simulation
e.g. by stopping and starting slaves. It also manages the communication; where
all the slaves’ input and output values are communicated via the master, never
directly between slaves. To target the FMI co-simulation framework, we gener-
ate code for an FMU from the Event-B model. An FMU is a compressed file
containing an XML description of the model being simulated, and the shared
libraries required to run the simulation. In our work the shared libraries, and
model description, are generated from the Event-B model. To conform to the
FMI standard, FMU implementers must provide API functions for simulation
life-cycle management, such as instantiating a slave, initialising a slave’s vari-
ables, and terminating the slave. Many of these functions are not dependent on
the particular model being simulated; the code is the same for all models. We
wish to avoid hard-coding the translation where possible; so, templates provide
a place to define the boilerplate code, and code injection can be used for the
model specific parts.

Tasking Event-B [5] is an extension to the Event-B language; an implementation-
level, specification language. When annotations are added to a machine, it pro-
vides additional information to assist with code generation. When generating
code, it is usually necessary to work with a subset of implementable Event-B
constructs. Machines can be implemented as task/thread-like constructs; shared,
monitor-like constructs; or provide simulations of the environment. The machine
Types are Autotask, Shared and Environ respectively. In embedded systems, au-
totask Machines typically model controller tasks (of the implementation). An
autotask machine has a task body which contains flow control (algorithmic)
constructs. The syntax of the Task body follows,

Task Body ::= TaskBody ; TaskBody
| IF Event [ELSEIF Event |* ELSE Event END
| DO Event END | Event || EventSynch || output

These elements have program-related Event-B semantics. The Sequence (;) con-
struct is used for imposing an order on events, and maps to a sequence operator
in programming languages. IF provides a choice, with optional sub-branches, be-
tween a number of events (it can only be used with events with disjoint guards,
and where completeness must be shown). It maps to branching program state-
ments, where guards are mapped to conditions and actions map to assignments.
DO specifies event repetition while its guard remains true. It maps to a looping

statement, with the loop condition derived from the event guard. Event is a sin-
gle event, where just its action is mapped to a program statement (assignment),
and guards are not permitted. FventSynch describes synchronization between an
event in an autotask machine and an event in a shared machine. Synchronization
must be implemented as an atomic subroutine call. The EventSync construct fa-
cilitates subroutine parameter declarations, and substitution in calls, by pairing
ordered Event-B parameter declarations.

Fig. |1| shows how an abstract model may be refined, decomposed, and then
refined again to the implementation-level (i.e. above the horizontal line anno-
tated with Fvent-B). The code generation phase (below this line) is a two-step

Machine
mo
1 refines
Machine
ml
o ________ldecomposes and refines ____ N
lcomposed i
 machine Master Controller Environment :
Leemt e == Y=
refines refines refines
Master Controller Environment
Autotask Autotask Autotask
EVENT-B T ¥ T
generated | generated [generated [
Common ™™ 'Master fem [controller| ™ {Envirenment |
Language | Task | Protected . Protected :
Model Object . Object |
CODE generated [
from [piscrete ge’;gfnmd
Controller Templates
FMU

Fig. 1. The Code Generation Process

process; although only a single step is visible to the user. The first step is to
translate the Event-B machine to a language-neutral model, the Common Lan-
guage Model (CLM). During the second step, when the source code is being
generated, the templates contribute to the generated code.

3 Using Templates

An architectural overview of our template-driven approach can be seen in the
diagram of Fig. 2] We see the artefacts involved in template processing; namely
text-based templates, code-fragment generators, text output, meta-data output
and a template-processor that does the work. The templates may contain plain-
text (which is copied verbatim to the target during processing) and tags. The tags
may refer to other templates, or code-fragment generators. The code-fragment
generators are hard-coded generators that relate to certain aspects of the final

expands

produces
Template I—- Output

Text processes Text
Template

refersTo

Processor
‘r’nvokes \—'l Meta-data I
{Fragment) produces

Generator

Fig. 2. The Template Processor and Artefacts

output; for instance, a fragment generator inserts the variable initialisations as
specified in a template. We can see an example of this in Fig. |3} The template

//## <addToHeader>
fmiStatus fmilnitializeSlave(fmiComponent c,
fmiReal relativeTolerance, fmiReal tStart,
fmiBoolean stopTimeDefined, fmiReal tStop){
fmi_Component* mc = c;
//## <initialisationsList>
//## <stateMachineProgramCounterIni>
return fmiOK;

}
Fig. 3. An Example Template

shows part of an implementation of the FMI API’s fmilnitializeSlave function;
the code in the template is common to all of the FMUs that we will generate
for a particular target configuration. The tags accommodate variability between
models; e.g. FMUs keep track of state-variables, which may be different for each
model. These state-variables correspond exactly to the variables of the system
that have been modelled in Event-B. In the function shown, the first parameter is
the fmiComponent, the ‘instance’ of the FMU that is to be initialised. The other
parameters relate to the simulation life-cycle. In the template, we insert a place-
holder (which we call a tag), where we want variable initialisation to occur. The
tags in our example begin with the character string, //##. The line continues
with an identifier, <identifier>. A tag is usually (but not always) used as an
insertion point; its identifier can relate to another template (to be expanded and
processed in-line); or the name of a fragment-generator. The fragment-generator
is a Java class that can be used to generate code; or meta-data that is stored
for later use, in the code generation process (see Fig. . In the example we
have three tags. The first tag addToHeader identifies a generator that creates
meta-data, which are used at a later stage, for generation of a header file.

It is possible to categorize the users of Rodin into several types of users. One
such type are the ‘ordinary’ modellers, using Event-B in smaller organisations.
But for large scale use, one may have meta-modellers (to develop product lines
for instance), and another level of user may instantiate models (of the product

Eemplate| | fmuTemplate.c
<fmuOthers.c>
<variableDeclarations>
_— <fmuinstantiate.c>
<fmilnitializeSlave>
<subroutineList>

| | [FmuOthersc [empiste |

"Main BoilerPlate”
30 functions

fmulnstantiate.c
—— <AddToHeader>
fmiComponent fmilnstantisteSlavel..){..}] ==

Generators
AddFunctionToHeader java fmulnitializeslave.c
| <AddToHeader>

fmistatusinitializeSlave(..){ ... =
| <initialisationList>

1 <stateMachineProgramCounterini>

InitialisationsListGeneratorjava

StateMachinePCGenerator.java

- SubroutineListGeneratorjava

——+t= VariableDeclarationsGenerator.java

Fig. 4. The Templates and Generators in the FMI Code Generator

line). There may also be platform developers, that provide platform tools for
use by meta-modellers, modellers and product-line implementers. The extension
points allow the platform developer to provide template utilities for the other
users. They can define new tags and fragment-generators. An overview of the
templates and generators used in the FMI translation, can be seen in Fig. [
(much of the detail is omitted for brevity). The root template is fmuTemplate.c,
from this we can navigate to all of the other templates, and generators. The root
template generates variable declarations and the subroutines, and expands the
main boilerplate functions in fmuOthers.c. The fmulnstantiate and fmulnitialise
templates generate the corresponding FMI API function implementations. From
the diagram we can see that these rely on generators to do some of the transla-
tion. The template-processor scans each line, and copies the output; or inserts
new text, or meta-data as required, until we reach a generator tag. The class’s
generate method is invoked, to begin the process of text insertion. A fragment
of the InitialisationListGenerator class can be seen in Fig. [5l The main steps
are highlighted using numbered comments in the code. In step 1, the data is
un-packed; in step 2, the declarations are obtained from the Protected object;
in step 3, the initialisation are translated, and add to an array of initialisation
statements; in step 4, the initialisations are returned to the template-processor.

4 Conclusions

Using the approach that we have described in this paper, we are able to perform
target configuration prior to code-generation; and re-use boilerplate code, with-
out having to hard-code it. The template-processor reads each line of a template
and copies the contents, verbatim, to a target file unless a template tag is en-
countered. A tag can refer to another template, which is processed by expanding
it in-line, or a custom fragment generator. As part of an extensible approach, a
platform developer can enrich the template language, by adding new template
tags and associate them with custom fragment-generators. In this way complex
code generation activities can be performed, to generate text output, or to gen-
erate meta-data in other formats. The meta-data is useful for downstream code

public class InitialisationsListGenerator implements IGenerator {
public List<String> generate(IGeneratorData data){
List<String> outCode = new ArrayList<String>();
Protected prot = null;
IL1TranslationManager tm = null;
//(1) Un-pack the GeneratorData
List<Object> datalist = data.getDataList();
for (Object obj : dataList) {
if (obj instanceof Protected) {prot = (Protected) obj; }
else if(obj instanceof IL1TranslationManager){
tm = (IL1TranslationManager) obj;}}

//(2) Get the Declarations

EList<Declaration> declList = prot.getDecls();
//(8) Process each Variable Declaration/Initialisation
for (Declaration decl : declList) {

String initialisation = FMUTranslator.updateFieldVariableName(. ..);
outCode.add (initialisation);

}
// (4) return the new fragment
return outCode;

Fig.5. An Example Fragment-Generator

generation. We used the template-driven approach to implement part of a new
code generator, translating Event-B models to FMI-C code.

References

1.

2.

J. R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

J.R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. Software Tools for
Technology Transfer, 12(6):447-466, November 2010.

A. Edmunds. Providing Concurrent Implementations for Event-B Developments.
PhD thesis, University of Southampton, March 2010.

A. Edmunds and M. Butler. Linking Event-B and Concurrent Object-Oriented
Programs. In Refine 2008 - International Refinement Workshop, May 2008.

A. Edmunds and M. Butler. Tasking Event-B: An Extension to Event-B for Gen-
erating Concurrent Code. In PLACES 2011, February 2011.

A. Edmunds, J. Colley, and M. Butler. Building on the DEPLOY Legacy: Code
Generation and Simulation. In DS-Fvent-B-2012: Workshop on the experience of
and advances in developing dependable systems in Event-B, 2012.

The Advance Project Team. Advanced Design and Verification Environment for
Cyber-physical System Engineering. Available at http://www.advance-ict.eu.

The Modelica Association Project. The Functional Mock-up Interface. Available at
https://www.fmi-standard.org/.

The OpenMP Architecture Review Board. The OpenMP API specification for par-
allel programming. Available at http://openmp.org/wp/.

http://www.advance-ict.eu
https://www.fmi-standard.org/
http://openmp.org/wp/

	Templates for Event-B Code Generation
	A. Edmunds

