Skip to main content

Security Issues in QCA Circuit Design - Power Analysis Attacks

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8280))

Abstract

Quantum-dot cellular automata (QCA) technology has advantages of fast computation performance, high density and low power consumption. Thus, it is believed that QCA is attractive for designing future digital systems. Side channel attacks including power analysis attacks have become a significant threat to the security of cryptographic circuits using CMOS technology. A power analysis attack can reveal the secret key of a cryptographic cipher by measuring the power consumption of the cipher’s hardware platform while it is encrypting or decrypting data. As the power consumption of QCA circuits is extremely low when compared to their CMOS counterparts, it may be possible to build cryptographic circuits that are immune to power analysis attacks by using QCA technology. Therefore, in this chapter an investigation into both the best and worst case scenarios for attackers is carried out to ascertain if QCA circuits have such an advantage. A more efficient QCA design of a sub-module of the Serpent cipher is proposed and compared to a previous design. By using an upper bound power model, the first power analysis attack of a QCA cryptographic circuit (Serpent sub-module) is presented. The results show that in the best case scenario for attackers, QCA cryptographic circuits would be vulnerable to power analysis attack. However, the security of practical QCA circuits can be greatly improved by applying a smoother clock. Moreover, in the worst case scenario, reversible QCA circuits with Bennett clocking could be used as a natural countermeasure to power analysis attack. Therefore, it is believed that QCA could be a niche technology in the future for the implementation of security architectures resistant to power analysis attack.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ITRS: International Technology Roadmap for Semiconductors (ITRS), website (2011). http://www.itrs.net/Links/2011ITRS/Home2011.htm

  2. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Article  Google Scholar 

  3. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  4. Walus, K., Jullien, G.A.: Design tools for an emerging soc technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)

    Article  Google Scholar 

  5. Smith, C., Gardelis, S., Rushforth, A., Crook, R., Cooper, J., Ritchie, D., Linfield, E., Jin, Y., Pepper, M.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34(3), 195–203 (2003)

    Article  Google Scholar 

  6. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930 (1997)

    Article  Google Scholar 

  7. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284(5412), 289–291 (1999)

    Article  Google Scholar 

  8. Arima, V., Iurlo, M., Zoli, L., Kumar, S., Piacenza, M., Matino, F., Maruccio, G., Rinaldi, R., Paolucci, F., et al.: Toward quantum-dot cellular automata units: thiolated-carbazole linked bisferrocenes. Nanoscale 4(3), 813–823 (2012)

    Article  Google Scholar 

  9. Frost, S.E., Rodrigues, A.F., Janiszewski, A.W., Rausch, R.T., Kogge, P.M.: Memory in motion: a study of storage structures in QCA. In: Proceedings of the 1st Workshop on Non-Silicon Computing, vol. 2, pp. 30–37 (2002)

    Google Scholar 

  10. Vankamamidi, V., Ottavi, M., Lombardi, F.: A line-based parallel memory for QCA implementation. IEEE Trans. Nanotechnol. 4, 690–698 (2005)

    Article  Google Scholar 

  11. Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proceedings of the 16th IEEE International Conference on Application-Specific Systems, Architecture Processors, pp. 288–293 (2005)

    Google Scholar 

  12. Hanninen, I., Takala, J.: Pipelined array multiplier based on quantum-dot cellular automata. In: Proceedings of the 18th European Conference on Circuit Theory and Design, pp. 938–941 (2007)

    Google Scholar 

  13. Cho, H., Swartzlander Jr, E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58, 721–727 (2009)

    Article  MathSciNet  Google Scholar 

  14. Swartzlander Jr, E.E., Cho, H., Kong, I., Kim, S.W.: Computer arithmetic implemented with QCA: a progress report. In: Conference Record of the 44th Asilomar Conference on Signals, Systems and Computers, pp. 1392–1398 (2010)

    Google Scholar 

  15. Lu, L., Liu, W., O’Neill, M., Swartzlander Jr, E.E.: QCA systolic matrix multiplier. In: Proceedins of the IEEE Annual Symposium on VLSI, pp. 149–154 (2010)

    Google Scholar 

  16. Niemier, M.T., Kogge, P.M.: Problems in designing with QCAs: \({\text{ layout }}={\text{ timing }}\). Int. J. Circuit Theory Appl. 29(1), 49–62 (2001)

    Article  Google Scholar 

  17. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)

    Article  Google Scholar 

  18. Srivastava, S., Bhanja, S.: Hierarchical probabilistic macromodeling for QCA circuits. IEEE Trans. Comput. 56, 174–190 (2007)

    Article  MathSciNet  Google Scholar 

  19. Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N., Choi, M.: Designing layout-timing independent quantum-dot cellular automata (QCA) circuits by global asynchrony. J. Syst. Architect. 53, 551–567 (2007)

    Article  Google Scholar 

  20. Liu, W., Lu, L., O’Neill, M., Swartzlander Jr, E.E., Woods, R.: Design of quantum-dot cellular automata circuits using cut-set retiming. IEEE Trans. Nanotechnol. 10(5), 1150–1160 (2011)

    Article  Google Scholar 

  21. Lu, L., Liu, W., O’Neill, M., Swartzlander Jr, E.E.: QCA systolic array design. IEEE Trans. Comput. 62, 548–560 (2013)

    Article  MathSciNet  Google Scholar 

  22. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–830 (2002)

    Article  Google Scholar 

  23. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  24. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51, 541–552 (2002)

    Article  MathSciNet  Google Scholar 

  27. Standaert, O.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 94, 383–394 (2006)

    Article  Google Scholar 

  28. Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94(2), 1050–1060 (2003)

    Article  Google Scholar 

  29. Bond, L., Macucci, M.: Analysis of power dissipation in clocked quantum cellular automaton circuits. In: Proceeding of the 36th European Solid-State Device Research Conference, pp. 57–60 (2006)

    Google Scholar 

  30. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)

    Article  Google Scholar 

  31. Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17, 4240–4251 (2006)

    Article  Google Scholar 

  32. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, New York (2007)

    Google Scholar 

  33. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro - an error-power estimation tool for QCA circuit design. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2377–2380 (2011)

    Google Scholar 

  34. Blair, E.P., Yost, E., Lent, C.S.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 9(1), 49–55 (2010)

    Article  Google Scholar 

  35. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)

    Article  Google Scholar 

  36. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  37. Morioka, S., Satoh, A.: An optimized S-box circuit architecture for low power AES design. In: Kaliski Jr, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  38. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

    Google Scholar 

  39. Boey, K.H., Hodgers, P., Lu, Y., O’Neill, M., Woods, R.: Security of AES S-box designs to power analysis. In: Proceedings of the 17th IEEE International Conference on Electronics, Circuits, and Systems, pp. 1232–1235 (2010)

    Google Scholar 

  40. Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the advanced encryption standard. NIST AES Proposal (1998)

    Google Scholar 

  41. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., Roback, E.: Report on the development of the advanced encryption standard (AES). J. Res. Nat. Inst. Stand. Technol. 106(3), 511–576 (2001)

    Article  Google Scholar 

  42. Alioto, M., Giancane, L., Scotti, G., Trifiletti, A.: Leakage power analysis attacks: a novel class of attacks to nanometer cryptographic circuits. IEEE Trans. Circuits Syst. I: Reg. Pap. 57, 355–367 (2010)

    Article  MathSciNet  Google Scholar 

  43. Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9, 170–183 (2010)

    Article  Google Scholar 

  44. Amiri, M., Mahdavi, M., Mirzakuchaki, S.: Logic-based QCA realization of a \(4 \times 4\) S-box. In: Proceedings of International Conference on Computer Applications and Industrial Electronics, pp. 415–420 (2010)

    Google Scholar 

  45. Liu, W., Lu, L., O’Neill, M., Swartzlander Jr, E.E.: Design rules for quantum-dot cellular automata. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2361–2364 (2011)

    Google Scholar 

  46. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988)

    Article  Google Scholar 

  47. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  48. Keyes, R.W., Landauer, R.: Minimal energy dissipation in logic. IBM J. Res. Dev. 14(2), 152–157 (1970)

    Article  Google Scholar 

  49. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  50. Ottavi, M., Pontarelli, S., DeBenedictis, E., Salsano, A., Frost-Murphy, S., Kogge, P., Lombardi, F.: Partially reversible pipelined QCA circuits: combining low power with high throughput. IEEE Trans. Nanotechnol. 10, 1383–1393 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, W., Srivastava, S., O’Neill, M., Swartzlander, E.E. (2014). Security Issues in QCA Circuit Design - Power Analysis Attacks. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43722-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43721-6

  • Online ISBN: 978-3-662-43722-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics