Multi Resource Fairness: Problems and
Challenges

Dalibor Klusi¢ek' 2, Hana Rudova!, and Michal Jarog3

! Faculty of Informatics, Masaryk University
Botanicka 68a, Brno, Czech Republic
2 CESNET zs.p.o., Zikova 4, Prague, Czech Republic
3 Institute of Computer Science, Masaryk University
Botanicka 68a, Brno, Czech Republic
{xklusac,hanka}@fi.muni.cz,mjaros@ics.muni.cz

Abstract. Current production resource management and scheduling
systems often use some mechanism to guarantee fair sharing of com-
putational resources among different users of the system. For example,
the user who so far consumed small amount of CPU time gets higher
priority and vice versa. The problem with such a solution is that it does
not reflect other consumed resources like RAM, HDD storage capacity
or GPU cores. Clearly, different users may have highly heterogeneous de-
mands concerning aforementioned resources, yet they are all prioritized
only with respect to consumed CPU time. In this paper we show that
such a single resource-based approach is unfair and is no longer suitable
for nowadays systems. We provide a survey of existing works that some-
how try to deal with this situation and we closely analyze and evaluate
their characteristics. Next, we propose new enhanced approaches that
would allow the development of usable multi resource-aware user priori-
tization mechanisms. We demonstrate that different consumed resources
can be weighted and combined together within a single formula which
can be used to establish users’ priorities. Moreover, we show that when
it comes to multiple resources, it is not always possible to find a suitable
solution that would fulfill all fairness-related requirements.

Keywords: Multi Resource Fairness, Fairshare, Penalty, Scheduling

1 Introduction

This paper is inspired by the lessons learned over the few past years when analyz-
ing the workload of the Czech National Grid Infrastructure MetaCentrum [16].
MetaCentrum is highly heterogeneous national Grid that provides computa-
tional resources to various users and research groups. As in other systems, one
of the main goal is to guarantee that computational resources are shared in a fair
fashion with respect to different users and research groups [14, 11]. These require-
ments are typically solved using the service* of the applied resource manager, in

* This service is commonly called a fairshare algorithm [10,2].

2 Multi Resource Fairness: Problems and Challenges

this case the TORQUE [3]. Current fairshare algorithm measures the amount of
consumed CPU time for each user and then calculates users’ priorities such that
the user with the smallest amount of consumed CPU time gets the highest prior-
ity and vice versa [14]. While jobs typically consume several different resources
(e.g., CPU time, RAM, GPUs and HDD storage) simultaneously, the whole user
prioritization scheme is based only on one parameter — consumed CPU time.
Clearly, it is questionable whether such a solution can guarantee fair sharing of
resources [15]. Therefore, we have performed several analysis of existing work-
load and quickly realized that this single resource-based fairshare algorithm is
(very) unfair.

To demonstrate some of the issues found in the workload we present Fig. 1
that shows the usage of CPUs and RAM on a selected node within the Zewura
cluster in MetaCentrum. This particular node has 80 CPUs and 512 GB of RAM.
The figure shows that for nearly two weeks in July 2012 the jobs used at most 10%
of CPUs while consuming all available RAM memory. Clearly, the remaining 90%
of CPUs are then useless because no new job can be executed there due to the
lack of available RAM. More importantly, using the standard fairshare algorithm
owner(s) of these memory-demanding jobs are only accounted for using 10% of
available CPU time. However, as intuition suggests they should be accounted
as if using 100% of machine’s CPU time because they effectively “disabled” the
whole machine by using all of its RAM.

0,8

0,7
0,6

0,5

Utilization

0,4
0,3
0,2
0,1

1-July-2012
4-July-2012
7-July-2012

ooy
3 4
= o
= 8
ol ol
ey ey
0 0
I
— =t

7-June-2012
10-June-2012
13-June-2012
16-June-2012
19-June-2012
22-June-2012
25-June-2012
28-June-2012
10-July-2012
13-July-2012
16-July-2012
19-July-2012
22-July-2012
25-July-2012
28-July-2012
31-July-2012

Fig. 1. An example of CPU and RAM utilization on one Zewura node.

The solution is to extend the current single resource-based fairshare algo-
rithm and incorporate consumption of other important job-related resources,
e.g., RAM, GPUs or HDD storage. For this purpose we have studied existing
works that deal with similar problems and we present their survey here. We also
propose new solutions that can flexibly combine several different resources with

Multi Resource Fairness: Problems and Challenges 3

different weights (i.e., costs) as existing works have some limitations when using
several (weighted) resources together. We also define several rules that should
be satisfied by considered multi resource-based fairshare formulas in order to
generate fair and acceptable solutions. Based on these requirements, we analyze
the suitability of considered techniques. Especially, we demonstrate weighting of
different consumed resources and their combination within a single formula that
is then used in the fairshare algorithm to establish priorities among users of the
system. Surprisingly, we realize that —in general — it is not always possible to
find a suitable solution that would fulfill all fairness-related requirements.

The structure of this paper is following. In Section 2 we discuss existing re-
lated works on single and multi resource-based fairness techniques. Especially,
we closely describe current single resource-based fairshare algorithm as applied
in MetaCentrum’s TORQUE. In Section 3 we define several rules that should
be satisfied by a prospective multi resource-based fairshare formula. Next, we
present and discuss possible extensions of the fairshare algorithm that incorpo-
rate multiple resources. We also discuss whether these extensions are suitable
when different resources have different weights, i.e., “cost” and/or importance.
Section 4 discusses the findings of our work and suggests suitable solutions that
can be applied within a multi resource-based fairshare algorithm. In Section 5
we conclude the paper and discuss the future work.

2 Related Work

All popular resource management systems and schedulers such as PBS [13],
TORQUE [3], Moab, Maui [1], Quincy [9] or Hadoop’s Fair and Capacity Sched-
ulers [5, 4] support some form of fairshare mechanism. Nice explanation of Maui’s
fairshare mechanism can be found in [10].

The solution currently applied in MetaCentrum’s TORQUE is very similar
to Maui and uses the well known maz-min approach [8], i.e., it gives the high-
est priority to a user with the smallest amount of consumed CPU time and
vice versa. For the purpose of this paper, we assume that a user’s priority is
established using a function that looks like Formula 1 [10, 15].

n

F, = Z(Pj - walltime;) (1)

Jj=1

Here, the F), is the resulting priority of a given user u that so far computed
n jobs. The final value is computed as a sum of products of job penalty (P;) and
the job’s walltime (walltime;). Once the priorities are computed for all users, the
user with the smallest value of F;, then gets the highest priority in a job queue.
Such a formula is a general form of a function that can be used to establish
ordering of users. It represents the simplest version, that does not use a so called
decay algorithm [10]. Decay algorithm is typically applied to determine the value
of F, with respect to aging, i.e., it specifies how the effective fairshare usage

4 Multi Resource Fairness: Problems and Challenges

is decreased over the time®. For example, Maui’s fairshare algorithm utilizes
the concept of fairshare windows each covering a particular period of time. An
administrator may then specify how long each window should last, how fairshare
usage in each window should be weighted, and how many windows should be
evaluated in obtaining the final effective fairshare usage [10]. For example, an
administrator may wish to make fairshare adjustments based on the usage of
resources during the previous 8 days. To do this, he or she may choose to evaluate
8 fairshare windows each consisting of 24 hour periods, with a decay, i.e., aging
factor of 0.75 as seen in Fig. 2. For simplicity, we will not consider the decay
algorithm in the formulas as its inclusion is straightforward.

\ <—— Constant percentage decay (e.g.,, 75%)

Relative \

Contribution AN
to Overall
Fairshare \\ Fairshare Interval

Utilization IS

—_——

T

5 6 7' 8'
Time (days)

Fig. 2. Effective fairshare usage based on the decay algorithm that reflects aging. This
image is adopted from [10].

When computing F3,, a proper computation of the job’s penalty P; is the key
problem. In the rest of the paper we assume that the value of P; is a real num-
ber from the interval [0, 1], and we discuss several variants of P; computation.
Commonly, fairshare algorithms only consider a single resource, typically a CPU
time. In such a case, the penalty function P; for a given job j can be described
by Formula 2, where reqcpy,; is the number of CPUs allocated to a given job j
and availcpy is the total amount of CPUs available in the system.

Te€qoPU,j
P, =) 2
J availch ()
Clearly, the penalty of a given user’s job j is proportional to the number of
CPUs it requires as P; expresses the ratio of consumed to available CPUs, i.e.,

® In Maui’s terminology, fairshare usage represents the metric of utilization measure-
ment [10]. Typically, fairshare usage expresses the amount of consumed CPU time
of a given user.

Multi Resource Fairness: Problems and Challenges 5

the relative CPU usage®. The resulting distribution of such penalties is linear,
and the highest penalty (1.0) is obtained when a user’s job consumes all available
CPUs in the system.

As we already mentioned in Section 1, the analysis of existing MetaCentrum’s
workloads has quickly identified that such an approach is clearly unfair. There
were jobs that required few CPUs and (almost) all RAM memory (see Fig. 1).
Therefore, those remaining CPUs could not be utilized by remaining users since
there was no free RAM left. The classical —single resource-based — fairshare
mechanism computed according to consumed CPU time is then absolutely unac-
ceptable as the users with high RAM requirements are not adequately penalized
in comparison with those users who only need (a lot of) CPUs. Of course, similar
findings can be done concerning other resources such as GPUs or HDD storage.

Although the single resource-based fairshare algorithm is inadequate, many
systems are still using it today [9,5, 12, 8]. Surprisingly, the so called multi re-
source fairness seems to be a rather new area of researchers’ interest as there are
only few works that address this problem specifically [7,12,8,15]. For example,
the recent Dominant Resource Factor (DRF) [8] suggests to perform max-min
fairshare algorithm over so called dominant user’s share. Dominant share is the
maximum share that a user has been allocated of any resource. Such a resource
is then called a dominant resource. Sadly, some parts of the paper are not very
clear. For example, the pseudo-code of DRF algorithm does not correspond with
the algorithm’s textual description. Moreover, the resulting DRF allocation is
formulated using a linear programming notation. However, the paper does not
explain how non-integer results should be handled. As discussed in [12] which
builds upon the results of [8], if a given user is allowed to execute, e.g., 0.76 jobs
we cannot use such a solution unless user’s jobs are continuously divisible [6]. For
common grid and cluster environment, this is rarely the case. Similar situation
applies for [7], which proposes new definition for the simultaneous fair alloca-
tion of multiple continuously divisible resources called bottleneck-based fairness
(BBF). In BBF, an allocation of resources is considered fair if every user either
gets all the resources she wishes for, or else gets at least her entitlement on some
bottleneck resource, and therefore cannot complain about not receiving more.
Beside that, the tradeoffs of using multi resource-based fairness algorithms like
DRF are discussed in [12]. Especially, the overall efficiency is of interest, e.g., the
amount of unused resources is studied. Apart from DRF, the paper proposes the
use of other approaches such as so called Generalized Fairness on Jobs (GF.J).
Unlike DRF, GJF measures fairness only in terms of the number of jobs allo-
cated to each user. Users requiring more resources are thus treated equally [12].
From our point of view, such a notion of fairness is impractical as it allows to
cheat easily by “packing” several small jobs as a one large job. Last but not
least, all approaches proposed in [12] or in [7] make the assumption that all jobs

5 In MetaCentrum, resources allocated (i.e., reserved) to a given job cannot be used
by other jobs even if those resources are not fully used. Therefore, in the whole paper
we measure CPU, RAM, etc., requirements as the amount of a given resource that
has been allocated for a job, even if actual job’s requirements are smaller.

6 Multi Resource Fairness: Problems and Challenges

and resources are continuously divisible which is rather unrealistic for our pur-
poses. In our previous work [15], we have proposed multi resource-based penalty
function that uses a product of relative resources’ requirements. In Section 3.2
we show that this function is less suitable than other approaches. Also, Moab
or Maui schedulers allow the system administrator to combine CPU and, e.g.,
RAM consumptions within the fairshare function [10, 2] using so called processor
equivalent (PE) mechanism [10]. It is based on the application of maz function
that determines a job’s most constraining resource consumption and translates
it into an equivalent processor count [10]. In fact, this solution uses similar idea
as the DRF. Although PE mechanism is available in several production sched-
ulers, we did not find any work that would specifically discuss its suitability.
Also Moab’s and Maui’s documentation did not bring much insight into this
solution [2,1].

In the following section, we define several major principles that should be
followed by a multi resource-based fairshare algorithm and we closely analyze
selected promising multi resource-based fairshare metrics that are either based
on existing works or are our own contribution.

3 Multi Resource-based Fairshare Algorithm

As discussed in previous section, the core part of the fairshare algorithm is
the penalty function. Therefore, using the results from the literature, we now
present and analyze several variants of multi resource-based job penalty func-
tions that —beside the common CPU consumption—also consider additional
consumed resources. Before we start, we first formulate several basic rules that
are to be followed by an ideal multi resource-based penalty function. These rules
are a result of several discussions that were held within the MetaCentrum team
and reflect the specific requirements of MetaCentrum. We believe that these
rules are general enough, still we are aware that for different institutions they
may be either too restrictive or incomplete.

1) multiple resources: When calculating the value of penalty, the function
should not consider only one type of consumed resource, e.g., CPUs.

2) nondominant resources: Penalty function should consider the consump-
tion of nondominant resources as well. In another words, if two different jobs
have the same consumption of a given dominant resource then the one hav-
ing smaller consumption of nondominant resources should receive smaller
penalty.

3) max-min penalty: Maximum penalty (i.e., 1) should be applied whenever
a job completely utilizes at least one resource since the corresponding ma-
chine is then practically unusable for other jobs. Similarly, a job obtains
minimum penalty (i.e., 0) only when it does not consume any resource at
all”.

7 Max-min penalty rule defines when P; reaches its minimum and maximum. Appar-
ently, no “real” job should ever receive minimum penalty since it always consumes
some resources.

Multi Resource Fairness: Problems and Challenges 7

4) linearity: Penalty function should be linear with respect to a given con-
sumed resource. The linearity is important factor that guarantees that a user
cannot cheat by dividing his or her (large) job into several smaller jobs that
would —due to the nonlinear character of the penalty —together receive
smaller penalty than the original (large) job.

5) weights: For a given resource, penalty function should allow to use weights
that express the importance or the “cost” of that resource.

In the following text, we consider general formulas that allow inclusion of
r different resources. The x-th resource is denoted as z where x € (1, ..,r). For
better readability, all figures that illustrate these formulas will however only
contain the two most important resources— CPUs and RAM.

We start with an illustration of the penalties that are obtained when using
classical CPU-based single resource penalty that has been shown in Formula 2.
The resulting distribution of such penalties can be illustrated by the graph shown
in Fig. 3 (left). Clearly, the penalty of a given user’s job j has no relation to
RAM consumption and is only proportional to the number of required CPUs as
P; expresses the ratio of consumed to available CPUs. This function is therefore
impractical as it breaks all rules except for the “linearity” rule 4.

s
B s,
iy
LT

AN,
L ARSI e
LIRS AN NN LWy oy
| A e
| R TR e T
 itrite s te e N o 00, 0
A e it < R I
“‘:“‘W;‘ et ey
NNy,
AL A
AN s
H . H N 7T
Lo : 1ritts S - SR
P : G R) i N m
: . iy s 5 Ay T A
i . R e S b o
: . A : : - Ayl

i ’ 0 ’
RAM usage ! CPU usage RAM usage ! CPU usage

Fig. 3. Single resource CPU-based penalty (left) and maz-based penalty function
(right).

In order to resolve the unfairness of the single resource-based fairshare metric
we analyze/propose several candidate penalty formulas that somehow incorpo-
rate additional resource requirements.

3.1 Dominant Resource-based Penalty

Existing works [8, 10, 1, 2] suggest to measure and apply dominant resource-based
penalty. It means that a user is penalized according to the maximum relative

8 Multi Resource Fairness: Problems and Challenges

share he or she has been allocated of any resource [8]. In another words, instead of
combining all resource requests together, only the maximum (most restricting)
relative request is considered and penalized accordingly. The penalty is then
computed using Formula 3 and the corresponding distribution of penalties is
depicted in Fig. 3 (right).

T‘Gqu Teth
P; = max Yoy —— 3
/ <availl avazlr> ®)

Compared to the single resource-based penalty, this penalty function rep-
resents several benefits. First of all, it is very simple function so both users
and system administrators will find it easy to understand. Second, it solves the
problem described in Section 1, i.e., it adequately penalizes highly asymmetric
requests, following the rule 3. Last but not least, unlike some of the functions
that will be discussed in next section, this penalty is linear, fulfilling the rule 4.

Sadly, this penalty also represents several drawbacks. Although it does follow
the rule 1, it does not fulfill the rule 2, i.e., it does not consider the nondominant
resources at all. Therefore, users are not forced to better estimate their requests
concerning nondominant resources. As a side effect, this penalty is not fair.
Consider two users with equal dominant resource demands but with different
nondominant resource requirements. Clearly, the one having smaller demands
should be less penalized as he or she consumes less resources. However, they will
both receive the same penalty, disregarding their real resource consumptions,
which breaks the rule 2. We believe that this is an unfair behavior. The second
problem is that we cannot apply resource weights in a reasonable manner. In
reality, different resources are rarely considered as equally important. In fact,
some resources are more important than others. For example, in MetaCentrum,
the common sense is that CPUs are more “expensive” than, e.g., RAM. When
necessary, it is often possible to increase the amount of RAM on a given ma-
chine while it is not possible to increase the number of CPUs. Therefore, the
requirement is to apply resource-specific weights when computing the penalty
function. As we show now, in case of Formula 3 this process is somehow tricky.
There are two basic extensions of Formula 3 that involve weights and we show
them in Formula 4 and 5. Both of them guarantee that the values of P; will
remain within the interval [0, 1].

P; = min <1,max <w1 T w Tqu)) (4)

. bR T .
availy avail,
max (wy Bt qp, T
avatly ? ") avail,
Py = ()

max (wy, .., W)

Here, the weight of a given resource = is denoted as w, and we assume
that for every resource x the weight w, > 0. There are two major problems
with the weighted maz-based functions. The first problem (A) is that in some

Multi Resource Fairness: Problems and Challenges 9

situations we often cannot distinguish between full and partial consumption of
the most “expensive” resource. The second problem (B) is that sometimes we
cannot properly penalize total consumption of “cheap” resources. As stated by
the rule 3, if a job fully consumes some resource on a given machine, we require
full penalty for such a job as it “disabled” the whole machine that cannot be
used to process other jobs. Let us consider Formula 4 first. Problem (A) appears
whenever the most expensive resource has its weight wy,,st > 1. For example,
let wimest = 2. Then every job requiring at least 1/2 of that resource will always
receive maximum penalty. Clearly, this behavior is not fair. Problem (B) can
appear when wy,.s¢ < 1. Then it can easily happen, that we cannot properly
penalize full consumption of some “cheap” resource. For example, let the fully
consumed “cheap” resource has weight wjeqst = 0.1 while the weight of the
most expensive resource i, e.g., Wmost = 1 and its utilization is only 50%.
Then Formula 4 resolves as P; = min(1, max(0.5,0.1)) = 0.5. Clearly, instead of
P; =1 we only get 0.5, failing to meet the requirements described by the rule 3.
In case of Formula 5, the problem (A) is eliminated, however the second problem
(B) can still appear. For example, let the fully consumed “cheap” resource has
Wieast = 1. Let the “expensive” resource be only occupied by, e.g., 10% with
Wmost = 2.0. Then Formula 5 resolves as P; = max (0.2,1.0) /2 = 0.5. Clearly,
instead of P; =1 we only get 0.5, failing to meet the requirements described by
the rule 3. Therefore, maz-based penalty also breaks the “weights” rule 5. Based
on these findings we have decided to analyze whether there is a chance to find
a new penalty function that would overcome aforementioned problems.

3.2 Penalties Based on Combination of All Resources

Following text summarizes our attempts to develop a new penalty function that
would also reflect nondominant resources as required by the rule 2. Three types
of penalty functions are considered and their strengths and weaknesses are dis-
cussed in the following text.

P (®)

I
5
==
N
Q
S |3
SIF
~__
8
~—
E

The first candidate depicted by Formula 7 uses a product of each resource’s
relative requirement. Originally, this function has been used only on two re-
sources [15] where relative CPU and RAM requirements have been multiplied.
The idea behind this approach is that consumed CPUs and RAM can be repre-
sented as 2D objects, where the multiplication represents de facto a “rectangle

10 Multi Resource Fairness: Problems and Challenges

area” of consumed resources [15], thus reflecting consumption of both CPUs and
RAM. The resulting distribution of penalties is illustrated by Fig. 4 (left).

0SS
(%S
o

"
Lol

>
S5
5,

) :
RAM usage v CPU usage RAM usage Pt CPU usage

Fig. 4. Product-based penalty (left) and sum-based penalty function (right).

Sadly, this penalty function is not very suitable. As can be seen in the graph,
the function assigns low penalties for highly asymmetric requests, breaking the
rule 3. For example, if a user consumes all CPUs and little RAM the result-
ing penalty is very low compared to a scenario where “symmetric” user’s job
consumes all available CPUs and RAM. This appears to be unacceptable and
very unfair behavior. Our analysis quickly revealed that this penalty also breaks
the “linearity” rule 4. The problem lies in the adopted idea of “rectangle area”,
i.e., in the multiplication of CPU and RAM requests. Consider following simple
scenario with two users in a system consisting of 10 CPUs and 10 GB of RAM.
The first user requests 9 CPUs and 9 GB of RAM and thus gets the penalty
P; =0.9-0.9 = 0.81. The second user wants to run 9 jobs, each requiring 1
CPU and 1 GB of RAM. The total penalty for the second user is therefore
P+..+Py=9-(0.1-0.1) = 0.09. However, both users consumed the same
amount of resources. Apparently, the multiplication is a bad idea which leads to
nonlinear behavior that may produce different penalties for the same amount of
consumed resources. Due to the associative property of multiplication, we can-
not apply weights by multiplying each resource’s usage by its weight. Instead, we
have to apply slightly more complicated function as is presented in Formula 82.

In the next attempt we have removed the multiplication and applied a sum-
based function instead, to guarantee linear behavior. The resulting penalty func-
tion is shown in Formula 9 that summarizes all relative resource requests. Cor-
responding distribution of penalties is shown in Fig. 4 (right).

8 The W parameter used in Formula 8 and lately in Formula 10 and Formula 12 is
computed using Formula 6.

Multi Resource Fairness: Problems and Challenges 11

1 — reqy. i
pP. = = LIV 9
Ty 12:21 avail,)
1 — reqys,;
P, =— 2 10
W ; We avail, (10)

This formula is linear (rule 4) and considers all resources (rules 1, 2) and
can be extended to support weights as shows Formula 10. Still, it has one major
drawback since it does not assign maximum penalty when a given resource is
fully consumed, i.e., it breaks the important “max-min penalty” rule 3.

As a result, we propose a root-based penalty function that removes most of
the problems mentioned for Formulas 2-10. This penalty function is shown in
Formula 11 (symmetric version) and Formula 12 (weighted version), respectively.
Corresponding distributions of penalties are depicted in Fig. 5.

J regds
Pi=1-r 1——= 11
’ 3:1;[1(avaz’lw) (11)

Wy

=

reqy,;

P; -
avail,

) =1— 1—

i
s 2
(53¢

W
\\\\\\\\\\‘\"5’-"’1!#0 T 7
IS Ml
HhSihs o, Sttt
T e b I N Tt e ety i Ly
e s (S et tetty iy
SRl ST,] S ol ettt iy,
SR S il L5 Moty it
oo e s A o
30 ST e
.)
P SOOI 5 ‘0“':0'0“’!
i it SRR
T I
. LA

s

7

0 0
RAM uzage ’ CPU usage RAM usage ’ CPU usage

Fig. 5. Root-based penalty function (left) and its weighted version (right).

As can be seen in Fig. 5 (left) the function represents good compromise be-
tween the pure dominant resource-based max function and the aforementioned
functions that combine all resources. More precisely, this root-based penalty fol-
lows the rules 1, 2, 3 and 5 as we show in the following discussion. The function

12 Multi Resource Fairness: Problems and Challenges

combines all consumed resources, thus it fulfills the rules 1 and 2. Notably, unlike
the maz-based function, it also reflects all nondominant resources, i.e., it moti-
vates users to better estimate all resource-related parameters. It also follows the
rule 3 as it assigns reasonably high penalties for jobs with asymmetric requests,
especially total consumption of selected resource results in a full penalty. Last
but not least, it can be easily extended to follow the “weights” rule 5 as depicts
Formula 12. Using weights, the corresponding distribution of penalties is then
adjusted as shown in Fig. 5 (right). In this case we have chosen wepy = 2.0
and wrap = 1.0 which results in a steeper shape of CPU-related curve. Also,
RAM-related curve has changed, having lower initial elevation that only increases
when RAM usage approaches its upper limit. Still, one problem remains — the
root-based penalty function breaks the “linearity” rule 4.

4 Summary and Discussion

In this paper we have presented several problems that arise when seeking for truly
fair and flexible multi resource-based penalty function. The overall results are
presented in Table 1 that summarizes capabilities of considered penalty functions
with respect to those five rules that were established in order to represent our
requirements on a proper penalty function.

Table 1. Suitability of penalty functions with respect to required rules.

rulel rule2 rule3 rule4 ruleb

CPU-based penalty (Formula 2) NO NO NO YES NO
Maz-based penalty (Formula 3) YES NO YES YES NO
Product-based penalty (Formula 8) YES YES NO NO YES
Sum-based penalty (Formula 10) YES YES NO YES YES
Root-based penalty (Formula 12) YES YES YES NO YES

None of the presented functions fulfill all requirements at once. In fact, it is
impossible to find a function that would fulfill all five rules, especially the rule 2,
the rule 3 and the rule 4 cannot be fulfilled at the same time by one function.
For example, as soon as the desired function follows the “max-min penalty”
rule 3 it cannot fulfill the rules 2 and 4 at the same time. For simplicity, let
us assume a scenario with two resources. If the rule 3 is to be followed, then
the desired function must create a surface that comprises the “zero point” (no
resource is consumed at all) and the two “maximum lines” (at least one resource
is consumed completely) which are highlighted in black color in Fig. 6. Since the
“zero point” and the “maximum lines” do not lie in a plane, full linearity of such
a function is unattainable. Only partial linearity (linearity with respect to only

Multi Resource Fairness: Problems and Challenges 13

one resource) as prescribed by the rule 4 is attainable by the function depicted
in Fig. 6 (left). However, such a function clearly fails to follow the rule 2. On
the other hand, the rule 2 can be fulfilled if we allow the surface to be curved
and smooth as seen for the function in Fig. 6 (right), but then the linearity is
broken even in terms of the rule 4.

Thus, if we are decided to follow the rules 2 and 3, we therefore must break
the rule 4, i.e., the linearity. Fortunately, it is possible to minimize the adverse
effects of non-linearity by requiring that the desired function will assign linear
penalties at least when the corresponding jobs have symmetric requirements con-
cerning the relative amount of used resources. This requirement means that the
desired function’s surface is to comprise also the line connecting the “zero point”
and the interconnection point of the two “maximum lines” (all resources con-
sumed completely). As can be check-verified, the root-based function, including
its weighted version, fulfills this requirement.

i, B
A, S,
s ety OGS,
RN, s,
SN AT R e Thtstel
S e e, Ssattety
N e e, ey s tagh ey, 5 s
e e Lol
S SR
Sy e
o S S5
SRR ISR
. s AT ey e o SOt oS
E WA e ety LSS AITROCH L
P RN IR a0 s
: g ey, T
byt

e
s

RAM usage CPU usage RAM usage CPU usage

Fig. 6. Non-smooth, maz-based penalty function vs. smooth, root-based penalty func-
tion (right).

Still, some of the functions mentioned above are more suitable than the
others. The final decision on what penalty function should be applied is however
highly individual as different people and/or organizations may have different
notion of “what is fair” when it comes to multiple resources [12,8]. From our
point of view, CPU-based penalty as well as product and sum-based penalties are
not very good candidates. Clearly, single resource CPU-based penalty function
fails to meet all rules except for the “linearity” rule 4. As we have already shown
in Section 3.2, product-based penalty is a very bad candidate while sum-based
penalty function breaks the important “max-min penalty” rule 3 very heavily
(see Fig. 4 (right)).

From our perspective, only two suitable candidates remain: maz-based penalty
and root-based penalty. Maz-based penalty function (Formula 3) fails to fulfill

14 Multi Resource Fairness: Problems and Challenges

the rule 2. Moreover, once weights are applied they can cause breaking of the
rule 3 (see discussion in Section 3.1). Therefore, in Table 1 we claim that maz-
based penalty function cannot fulfill the “weights” rule 5. Root-based penalty
fulfills all rules except for the “linearity” rule 4, which is not desirable as it
allows users to cheat in some situations. For example, instead of one large job
a user can submit two smaller jobs. As a result, he or she will receive smaller
penalty. This particular problem can be considered as serious. However, in real
life users are often motivated to minimize their requirements concerning available
resources. For example, in Ohio Supercomputer Center (OSC) long jobs are only
allowed if a user is able to reasonably explain why he or she needs to run such
a long experiment [18]. Moreover, parallel jobs have smaller maximal runtime
limit compared to serial jobs in OSC. The reason is that long and/or massively
parallel jobs can cause fragmentation of system resources [20, 19]. On the other
hand, short jobs that are either serial or require only a small amount of CPUs
are very suitable for common schedulers as they can be used for backfilling [17].

5 Conclusion and Future Work

This paper addressed an urgent real life job scheduling problem. The goal was
to maintain the fairness among different users of the system. The novelty of
our work is related to the fact that we consider multiple consumed resources
when establishing users’ priorities. In the area of parallel job scheduling, this
problem is very urgent and seems to be rather unexplored. Therefore, we have
defined several rules that — according to our knowledge and experience — define
the properties that a suitable multi resource-based fairshare algorithm should
satisfy. Next, we have discussed the suitability of existing approaches, focusing
on the crucial penalty functions. Beside the existing maz-based functions we
have also proposed several other variants of penalty functions and show their
strengths and weaknesses. The main result of this paper is the fact that it is
impossible to find a penalty function that would satisfy all five rules that we
have used to express the fairness-related demands.

We plan to further investigate this problem in the future. MetaCentrum
will soon start to use multi resource-based fairshare algorithm. Therefore, we
will further analyze the performance and suitability of the production solution
as well as possible problems that may appear once the solution becomes fully
operational. For example, it is quite obvious that our “max-min penalty” rule 3
is too severe for jobs requiring special resources that are not needed by all jobs,
e.g., GPUs. If a given job consumes all GPUs on a machine, it does not mean that
such a machine cannot execute other jobs. Therefore, in such special situations
this rule is probably too severe and shall be relaxed in the future.

Acknowledgments. We highly appreciate the support of the Grant Agency
of the Czech Republic under the grant No. P202/12/0306. The access to the
MetaCentrum computing facilities provided under the programme LM2010005
funded by the Ministry of Education, Youth, and Sports of the Czech Republic

Multi Resource Fairness: Problems and Challenges 15

is highly appreciated. The Zewura workload log was kindly provided by the
Czech NGI MetaCentrum. The access to the CERIT-SC computing and storage
facilities provided under the programme Center CERIT Scientific Cloud, part of
the Operational Program Research and Development for Innovations, reg. no.
CZ. 1.05/3.2.00/08.0144 is appreciated.

References

1.

2.

10.

11.

12.

13.
14.

15.

16.
17.

Adaptive Computing Enterprises, Inc. Maui Scheduler Administrator’s Guide, ver-
sion 3.2, February 2013. http://docs.adaptivecomputing.com.

Adaptive Computing Enterprises, Inc. Moab workload manager administrator’s
guide, version 7.2.1, February 2013. http://docs.adaptivecomputing.com.
Adaptive Computing Enterprises, Inc. TORQUE Admininstrator Guide, version
4.2.0, February 2013. http://docs.adaptivecomputing.com.

Apache.org. Hadoop Capacity Scheduler, February 2013. http://hadoop.apache.
org/docs/rl.1.1/capacity_scheduler.html.

Apache.org. Hadoop Fair Scheduler, February 2013. http://hadoop.apache.org/
docs/r1.1.1/fair_scheduler.html.

Jacek Blazewicz, Maciej Drozdowski, and Mariusz Markiewicz. Divisible task
scheduling - concept and verification. Parallel Computing, 25(1):87-98, 1999.
Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman, and Nathan
Linial. No justified complaints: on fair sharing of multiple resources. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 6875, New York, NY, USA, 2012. ACM.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dom-
inant resource fairness: fair allocation of multiple resource types. In 8th USENIX
Symposium on Networked Systems Design and Implementation, 2011.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg.
Quincy: Fair scheduling for distributed computing clusters. In SOSP’09, 2009.
David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the Maui
scheduler. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 2221 of LNCS, pages 87—102. Springer Verlag,
2001.

Raj Jain, Dah-Ming Chiu, and William Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems. Technical
Report TR-301, Digital Equipment Corporation, 1984.

C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation: Fairness-
efficiency tradeoffs in a unifying framework. In INFOCOM, 2012.

James Patton Jones. PBS Professional 7, administrator guide. Altair, April 2005.
Stephen D. Kleban and Scott H. Clearwater. Fair share on high performance
computing systems: What does fair really mean? In Third IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’03), pages 146 — 153.
IEEE Computer Society, 2003.

Dalibor Klusacek, Miroslav Ruda, and Hana Rudova. New fairness and perfor-
mance metrics for current grids. In Cracow Grid Workshop, pages 73-74. ACC
Cyfronet AGH, 2012.

MetaCentrum, February 2013. http://www.metacentrum.cz/.

Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE
Transactions on Parallel and Distributed Systems, 12(6):529-543, 2001.

16

18.

19.

20.

Multi Resource Fairness: Problems and Challenges

Ohio Supercomputer Center. Batch Processing at OSC, February 2013. https:
//www.osc.edu/supercomputing/batch-processing-at-osc.

Edi Shmueli and Dror G. Feitelson. Backfilling with lookahead to optimize the
performance of parallel job scheduling. In Dror G. Feitelson, Larry Rudolph, and
Uwe Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Processing,
volume 2862 of LNCS, pages 228—251. Springer Verlag, 2003.

Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Backfilling using system-
generated predictions rather than user runtime estimates. IEEE Transactions on
Parallel and Distributed Systems, 18(6):789 —803, 2007.

