Skip to main content

A Periodic Portfolio Scheduler for Scientific Computing in the Data Center

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8429))

Abstract

The popularity of data centers in scientific computing has led to new architectures, new workload structures, and growing customer-bases. As a consequence, the selection of efficient scheduling algorithms for the data center is an increasingly costlier and more difficult challenge. To address this challenge, and contrasting previous work on scheduling for scientific workloads, we focus in this work on portfolio scheduling—here, the dynamic selection and use of a scheduling policy, depending on the current system and workload conditions, from a portfolio of multiple policies. We design a periodic portfolio scheduler for the workload of the entire data center, and equip it with a portfolio of resource provisioning and allocation policies. Through simulation based on real and synthetic workload traces, we show evidence that portfolio scheduling can automatically select the scheduling policy to match both user and data center objectives, and that portfolio scheduling can perform well in the data center, relative to its constituent policies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The simulator used in this section should not be confused with the simulator running as part of the portfolio scheduler. Replacing the simulator used in this section, we have begun experimenting with a real-world prototype of our portfolio scheduler.

References

  1. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122 (2003)

    Article  MATH  Google Scholar 

  2. Iosup, A., Dumitrescu, C., Epema, D.H.J., Li, H., Wolters, L.: How are real grids used? the analysis of four grid traces and its implications. In: GRID (2006)

    Google Scholar 

  3. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling — a status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Klusáček, D., Rudová, H.: Performance and fairness for users in parallel job scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Sabin, G., Lang, M., Sadayappan, P.: Moldable parallel job scheduling using job efficiency: an iterative approach. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp. 94–114. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Bucur, A.I.D., Epema, D.H.J.: Scheduling policies for processor coallocation in multicluster systems. IEEE Trans. Parallel Distrib. Syst. 18(7), 958–972 (2007)

    Article  Google Scholar 

  7. Iosup, A., Sonmez, O.O., Anoep, S., Epema, D.H.J.: The performance of bags-of-tasks in large-scale distributed systems. In: HPDC, pp. 97–108 (2008)

    Google Scholar 

  8. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 27(5296), 51–53 (1997)

    Article  Google Scholar 

  9. Greenberg, A.G., Hamilton, J.R., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in data center networks. Comp. Comm. Rev. 39(1), 68–73 (2009)

    Article  Google Scholar 

  10. Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica, I.: Faircloud: sharing the network in cloud computing. In: SIGCOMM (2012)

    Google Scholar 

  11. Greenberg, A.G., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network. Commun. ACM 54(3), 95–104 (2011)

    Article  Google Scholar 

  12. Farrington, N., Porter, G., Sun, P.C., Forencich, A., Ford, J., Fainman, Y., Papen, G., Vahdat, A.: A demonstration of ultra-low-latency data center optical circuit switching. In: SIGCOMM, pp. 95–96 (2012)

    Google Scholar 

  13. Gordon, A., Amit, N., Har’El, N., Ben-Yehuda, M., Landau, A., Schuster, A., Tsafrir, D.: ELI: bare-metal performance for I/O virtualization. In: ASPLOS (2012)

    Google Scholar 

  14. Ben-Yehuda, M., Day, M.D., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A., Liguori, A., Wasserman, O., Yassour, B.A.: The turtles project: design and implementation of nested virtualization. In: OSDI, pp. 423–436 (2010)

    Google Scholar 

  15. Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning and allocation policies for infrastructure-as-a-service clouds. In: CCGRID, pp. 612–619 (2012)

    Google Scholar 

  16. Agmon Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: Expert: pareto-efficient task replication on grids and a cloud. In: IPDPS (2012)

    Google Scholar 

  17. Iosup, A., Epema, D.H.J.: Grid computing workloads. IEEE Internet Comput. 15(2), 19–26 (2011)

    Google Scholar 

  18. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.: The grid workloads archive. Future Gener. Comp. Syst. 24(7), 672–686 (2008)

    Article  Google Scholar 

  19. Feitelson, D.: Parallel workloads archive, http://www.cs.huji.ac.il/labs/parallel/workload/

  20. Iosup, A., Sonmez, O.O., Epema, D.H.J.: DGSim: comparing grid resource management architectures through trace-based simulation. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 13–25. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Petrini, F., Fossum, G., Fernández, J., Varbanescu, A.L., Kistler, M., Perrone, M.: Multicore surprises: lessons learned from optimizing sweep3d on the cell broadband engine. In: IPDPS, pp. 1–10 (2007)

    Google Scholar 

  22. Sonmez, O.O., Mohamed, H.H., Epema, D.H.J.: On the benefit of processor coallocation in multicluster grid systems. IEEE Trans. Parallel Distrib. Syst. 21(6), 778–789 (2010)

    Article  Google Scholar 

  23. Shen, S., Deng, K., Iosup, A., Epema, D.: Scheduling jobs in the cloud using on-demand and reserved instances. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 242–254. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP (2003)

    Google Scholar 

  25. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing performance overheads in the Xen virtual machine environment. In: VEE, pp. 13–23 (2005)

    Google Scholar 

  26. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravirtualized memory hierarchy on linear algebra computational kernels and software. In: HPDC, pp. 141–152. ACM (2008)

    Google Scholar 

  27. Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and scalable simulation of volunteer computing systems using simgrid. In: HPDC, pp. 605–612 (2010)

    Google Scholar 

  28. Jacobson, V.: Congestion avoidance and control. In: SIGCOMM, pp. 314–329 (1988)

    Google Scholar 

  29. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.H.J.: Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)

    Article  Google Scholar 

  30. Feitelson, D.G.: Experimental analysis of the root causes of performance evaluation results: a backfilling case study. IEEE Trans. Parallel Distrib. Syst. 16(2), 175–182 (2005)

    Article  Google Scholar 

  31. Jones, J.P., Nitzberg, B.: Scheduling for parallel supercomputing: a historical perspective of achievable utilization. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659, pp. 1–16. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  32. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  33. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online. In: AAAI, pp. 1197–1203 (2007)

    Google Scholar 

  35. Bougeret, M., Dutot, P.F., Goldman, A., Ngoko, Y., Trystram, D.: Combining multiple heuristics on discrete resources. In: IPDPS, pp. 1–8 (2009)

    Google Scholar 

  36. Goldman, A., Ngoko, Y., Trystram, D.: Malleable resource sharing algorithms for cooperative resolution of problems. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  37. Streeter, M.J., Smith, S.F.: New techniques for algorithm portfolio design. CoRR abs/1206.3286 (2012)

    Google Scholar 

  38. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47(3–4), 295–328 (2006)

    MATH  MathSciNet  Google Scholar 

  39. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem with unbounded losses. Ann. Math. Artif. Intell. 61(2), 49–86 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. MIT, Cambridge (1970)

    Google Scholar 

  41. Magill, M.J., Constantinides, G.M.: Portfolio selection with transaction costs. J. Econ. Theory 13(2), 245–263 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  42. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 18(3), 637–654 (1973)

    Article  Google Scholar 

  43. Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically extend site resources. In: CCGRID, pp. 43–52 (2010)

    Google Scholar 

  44. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads. In: IEEE CLOUD, pp. 228–235 (2010)

    Google Scholar 

  45. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon s3 for science grids: a viable solution? In: Proceedings of the 2008 International Workshop on Data-Aware Distributed Computing, pp. 55–64. ACM (2008)

    Google Scholar 

  46. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual machine resources in cloud computing environment. In: PAAP, pp. 89–96 (2010)

    Google Scholar 

  47. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms. Future Gener. Comp. Syst. 21(1), 151–161 (2005)

    Article  Google Scholar 

  48. Calheiros, R.N., Ranjan, R., Buyya, R.: Virtual machine provisioning based on analytical performance and qos in cloud computing environments. In: ICPP, pp. 295–304 (2011)

    Google Scholar 

  49. Ali-Eldin, A., Kihl, M., Tordsson, J., Elmroth, E.: Efficient provisioning of bursty scientific workloads on the cloud using adaptive elasticity control. In: ScienceCloud, pp. 31–40 (2012)

    Google Scholar 

  50. Deng, K., Song, J., Ren, K., Iosup, A.: Exploring portfolio scheduling for long-term execution of scientific workloads in iaas clouds. In: SC (2013)

    Google Scholar 

Download references

Acknowledgments

Supported by the STW/NWO Veni grant 11881, the Dutch national research program COMMIT, the Commission of the European Union (Project No. 320013, FP7 REGIONS Programme, PEDCA), the National Natural Science Foundation of China (Grant No. 60903042 and 61272483), and the R&D Special Fund for Public Welfare Industry (Meteorology) GYHY201306003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefeng Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, K., Verboon, R., Ren, K., Iosup, A. (2014). A Periodic Portfolio Scheduler for Scientific Computing in the Data Center. In: Desai, N., Cirne, W. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2013. Lecture Notes in Computer Science(), vol 8429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43779-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43779-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43778-0

  • Online ISBN: 978-3-662-43779-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics