Skip to main content

Multi-touch Interface and Motion Control Model for Interactive Character Animation

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8490))

Abstract

In this paper, we propose a new method for interactive motion control with a multi-touch interface. A user of our system can touch and drag character’s body parts to control its motion. The character’s full body motion is driven by our interactive motion control model based on the movement of a few body parts which are directly manipulated by the user via the multi-touch interface. We propose a method for determining 3-dimensional positions of controlled body parts from 2-dimensional touch inputs based on the character’s local coordinates and drag speed. We introduce a point-based pose representation which consists of the positions or orientations of a small number of primary body parts. Based on the representation, we develop a motion control model that includes modules for tracking, balance, inter-body interaction, relaxing and self-collision avoidance. The character’s pose is reconstructed from the point-based pose representation. We present our experimental results to show that our framework can realize various natural-looking motions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Transactions on Graphics 23(3), 522–531 (2004)

    Article  Google Scholar 

  2. Oshita, M.: Multi-touch interface for character motion control using example-based posture synthesis. In: International Conference on Computer Graphics, Visualization and Computer Vision (WSCG 2012), pp. 213–222 (2012)

    Google Scholar 

  3. Oshita, M.: Multi-touch interface for character motion control using model-based approach. In: International Conference on Cyberworlds 2013, pp. 330–337 (2013)

    Google Scholar 

  4. Jakobsen, T.: Advanced character physics. In: Proceedings of Game Developer’s Conference 2001 (2001)

    Google Scholar 

  5. Popović, Z., Witkin, A.: Physically based motion transformation. In: SIGGRAPH 1999, pp. 11–20 (1999)

    Google Scholar 

  6. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum (Eurographics 2005) 24(3), 343–352 (2005)

    Article  Google Scholar 

  7. Neff, M., Kim, Y.: Interactive editing of motion style using drives and correlations. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation 2009, pp. 103–112 (2009)

    Google Scholar 

  8. Krause, M., Herrlich, M., Schwarten, L., Teichert, J., Walther-Franks, B.: Multitouch motion capturing. In: ACM International Conference on Interactive Tabletops and Surfaces 2008, p. 2 (2008)

    Google Scholar 

  9. Kipp, M., Nguyen, Q.: Multitouch puppetry: Creating coordinated 3d motion for an articulated arm. In: ACM International Conference on Interactive Tabletops and Surfaces 2010, pp. 147–156 (2010)

    Google Scholar 

  10. Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation based on motion blending. In: ACM SIGGRAPH Symposium on Computer Animation 2002, pp. 105–111 (2002)

    Google Scholar 

  11. Thorne, M., Burke, D., van de Panne, M.: Motion doodles: An interface for sketching character motion. ACM Transactions of Graphics (SIGGRAPH 2004) 23(3), 424–431 (2004)

    Article  Google Scholar 

  12. Oshita, M.: Motion control with strokes. Computer Animation and Virtual Worlds 16(3-4), 237–244 (2005)

    Article  Google Scholar 

  13. Igarashi, T., Moscovich, T., Hughes, J.F.: Spatial keyframing for performance-driven animation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2005, pp. 253–258 (2005)

    Google Scholar 

  14. Dontcheva, M., Yngve, G., Popović, Z.: Layerd acting for character animation. In: SIGGRAPH 2003, pp. 409–416 (2003)

    Google Scholar 

  15. Callennec, B.L., Boulic, R.: Interactive motion deformation with prioritized constraints. Graphical Models 68, 175–193 (2006)

    Article  Google Scholar 

  16. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletes. In: SIGGRAPH 1995, pp. 71–78 (1995)

    Google Scholar 

  17. Faloutsos, P., van de Panne, M., Terzopoulos, D.: Composable controllers for physics-based character animation. In: SIGGRAPH 2001, pp. 251–260 (2001)

    Google Scholar 

  18. Liu, C.K., Popović, Z.: Synthesis of complex dynamic character motion from simple animations. ACM Transactions on Graphics (SIGGRAPH 2002) 21(3), 408–416 (2002)

    Google Scholar 

  19. Jain, S., Ye, Y., Liu, C.K.: Optimization-based interactive motion synthesis. ACM Transactions on Graphics 28(1), Article No. 10 (2009)

    Google Scholar 

  20. Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Transactions of Graphics (SIGGRAPH 2009) 28(3), Article No. 80 (2009)

    Google Scholar 

  21. Monheit, G., Badler, N.I.: A kinematic model of the human spine and torso. IEEE Computer Graphics and Applications 11(2), 29–38 (1991)

    Article  Google Scholar 

  22. Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models and Image Processing 62(5), 353–388 (2000)

    Article  MATH  Google Scholar 

  23. Yonemoto, S., Arita, D., Ichiro Taniguchi, R.: Real-time human motion analysis and ik-based human figure control. In: Workshop on Human Motion 2000, pp. 149–154 (2000)

    Google Scholar 

  24. Gottschalk, S., Lin, M., Manocha, D.: Obbtree: A hierarchical structure for rapid interference detection. In: SIGGRAPH 1996, pp. 171–180 (1996)

    Google Scholar 

  25. Wu, C.-C., Medina, J., Zordan, V.B.: Simple steps for simply stepping. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 97–106. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oshita, M. (2014). Multi-touch Interface and Motion Control Model for Interactive Character Animation. In: Gavrilova, M.L., Tan, C.J.K., Mao, X., Hong, L. (eds) Transactions on Computational Science XXIII. Lecture Notes in Computer Science, vol 8490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43790-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43790-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43789-6

  • Online ISBN: 978-3-662-43790-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics