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Abstract. Motivated by the generation of polynomial loop invariants of
computer programs, we study P -solvable recurrences. While these recur-
rences may contain non-linear terms, we show that the solutions of any
such relation can be obtained by solving a system of linear recurrences.
We also study invariant ideals of P -solvable recurrences (or equivalently
of while loops with no branches). We establish sharp degree and dimen-
sion estimates of those invariant ideals.

1 Introduction

In many applications, such as program verification, non-linear recurrence rela-
tions, like the following one, may arise:

{

x(n+ 1) = x(n) + 1
y(n+ 1) = y(n) + x(n)2 + 1

, with
x(0) = 1
y(0) = 1.

In these recurrences, some variables may appear non-linearly, but not in a
completely arbitrary way. A fundamental case is that of the so-called P -solvable
recurrences. This paper focuses on P -solvable recurrences with rational coeffi-
cients, that we define formally below.

Definition 1 (P -solvable recurrence) Let n1, . . . , nk be positive integers and
define s := n1 + · · · + nk. Let M be a square matrix over Q and with order s.
We assume that M is block-diagonal with the following shape:

M :=











Mn1×n1

Mn2×n2

. . .

Mnk×nk











.

Consider an s-variable recurrence relation R in the variables x1, x2, . . . , xs and
with the following form:











x1(n+ 1)
x2(n+ 1)

...
xs(n+ 1)











= M ×











x1(n)
x2(n)

...
xs(n)











+











f1
f2
...
fk











,



where f1 is a vector of length n1 with coordinates in Q and where fi is a tuple
of length ni with coordinates in the polynomial ring Q[x1, . . . , xn1+···+ni−1

], for
i = 2, . . . , k. Then, the recurrence relation R is called P -solvable over Q and the
matrix M is called the coefficient matrix of R.

Example 6 in Section 4 illustrates the above definition with a 2-block matrix
and non-linear terms, while Example 1 below is a simpler case with a 1-block
matrix. Our study of P -solvable recurrences originates in a previous work [8]
dedicated to the computation of loop invariants of while-loops of the following
shape:

while cond do
X := A(X);

end do

where the recurrence X(n + 1) = A (X(n)) induced by the assignments in the
loop body is a P -solvable recurrence. We call P -solvable such while-loops.

Example 1 Consider the following code segment:

a, b := 0, 1 ;
while true do

a, b := b, a+ b;
end do

At each iteration, the variables a, b hold two consecutive elements in the Fi-
bonacci sequence. To be more precise, let us associate a counter variable n to the
variables a, b. Let us initialize n to 0 before entering the loop and let us increase
n by 1 after each loop iteration. Then we have

{

a(n+ 1) := b(n)
b(n+ 1) := a(n) + b(n)

, with
a(0) := 0
b(0) := 1

.

which is clearly a P -solvable recurrence.

There are several variants of the notion of a P -solvable recurrence, see the
concept of solvable mapping in [13] or that of solvable loop in [7].

For a recurrence X(n+1) = A (X(n)), or equivalently for a P -solvable while
loop, an invariant is a condition on the recurrence variables which holds for
all values of n. In this paper, we are mainly interested by invariants which are
polynomial equations, as defined formally below.

Definition 2 Given an s-variable P -solvable recurrence R with recurrence vari-
ables x1, x2, . . . , xs, a polynomial p in Q[x1, x2, . . . , xs] is called a polynomial in-
variant of R if for all n, we have p(x1(n), x2(n), . . . , xs(n)) = 0. All polynomial
invariants of R form an ideal of the polynomial ring Q[x1, x2, . . . , xs]; this ideal
is called the (polynomial) invariant ideal of R.



It is known that, for instance in [13], that P -solvable recurrences have poly-
geometrical expressions (which are defined formally in Definition 3) as closed
form solutions. However, solving P -solvable recurrences, even linear ones, is a
computationally hard problem, since many algebraic numbers could be involved.

Returning to the question of computing polynomial invariants of P -solvable
recurrences, there are approaches based on solving those recurrences explicitly.
See the work of Kauers and Zimmermann in [6] and that of Kovács in [7]. In
contrast, our goal in [8] as that of Kapur and Rodriguez-Carbonell in [2], is
to compute polynomial invariants of P -solvable recurrences without explicitly
solving those recurrences. In [8], we proposed a method, based on interpolating
polynomials at finitely many points on the trajectory (i.e. point sequence) of the
recurrence under study. This interpolation process yields “candidate invariants”
which are then checked by a criterion performing a polynomial ideal membership
test.

The objective of the present paper is to provide degree and dimension esti-
mates for invariant ideals. These results are clearly needed by the interpolation
method of [8] and can benefit any methods for computing polynomial invari-
ants that require a degree bound as input, such as the method by Kapur and
Rodriguez-Carbonell [12].

Our paper proposes the following original results. We show that P -solvable
recurrences and linear recurrences are equivalent in the sense that every P -
solvable recurrence can be obtained by solving a system of linear recurrences
(Theorem 1). We also supply a sharp degree bound (Theorems 2 and 3) for
invariant ideals as well as a dimension analysis (Theorem 4) of those ideals. In
addition, Corollary 2 states a sufficient condition for a given invariant ideal to
be trivial.

The paper is organized as follows. In Section 2, we review some results on
symbolic summation; those results are related to the properties of closed form
solutions of P -solvable recurrences. We also include a brief review on the notion
of a degree of a polynomial ideal. In Section 3, we show how solving P -solvable
recurrence reduces to solving linear recurrences; thus we refer to that process as
“linearizing” a P -solvable recurrence. Finally, in Section 4, we exhibit degree and
dimension estimates for invariant ideals of P -solvable recurrences. We conclude
this introduction with an example illustrating the notion of an invariant ideal
together with our results on dimension and degree of invariant ideals.

Example 2 Consider the following P -solvable recurrence relation with x, y as
recurrence variables:

x(n+ 1) = y(n), y(n+ 1) = x(n) + y(n), with x(0) = 0, y(0) = 1.

Closed form formulas for x(n) and y(n) are easily obtained:

x(n) =
(
√

5+1

2
)n√

5
− (−

√

5+1

2
)n√

5
,

y(n) =
√
5+1
2

(
√

5+1

2
)n√

5
− −

√
5+1
2

(−

√

5+1

2
)n√

5
.



Let a, u, v be 3 variables. Replace (
√
5+1
2 )n (resp. (−

√
5+1
2 )n) by u (resp. by v)

and replace
√
5 by a. Taking into account the dependencies u2 v2 = 1, a2 = 5,

one can check that the invariant ideal is given by:

〈x− au

5
+

av

5
, y − a

a+ 1

2

u

5
+ a

−a+ 1

2

v

5
, a2 − 5, u2v2 − 1〉 ∩ Q[x, y],

which turns out to be 〈1− y4+2xy3 +x2y2 − 2x3y− x4〉. Observe that this ideal
has dimension 1 and degree 4.

Now, we use Theorem 3 to estimate the degree of this invariant ideal. Denote

by A := −
√
5+1
2 ,

√
5+1
2 , the eigenvalues of the coefficient matrix of the input P -

solvable recurrence. One can easily check that the set A is weakly multiplicatively
independent, see Definition 6 for this notion. Note that the multiplicative rela-
tion ideal, See Definition 5, of A associated with the variables u, v is generated
by u2v2 − 1 and thus has degree 4 and dimension 1 in Q[u, v]. Therefore, by
Theorem 3, the degree of the invariant ideal is bounded by 4. This implies that
the degree bound given by Theorem 3 is sharp. Meanwhile, Theorem 4 estimates
the dimension as 1, which is also sharp.

2 Preliminaries

Let Q be the algebraic closure of Q. Let Q∗ (resp. Q
∗
) denote the non zero

elements in Q (resp. Q) .

2.1 Poly-geometric summation

In this subsection, we recall several well-known notions together with related
results around the topic of P -solvable recurrences. Those notions and results
are adapted to our needs and could be stated in a more general context. For
instance, the notion of multiplicative relation can be defined among elements of
an arbitrary Abelian group, whereas we define it for a multiplicative group of
algebraic numbers.

Definition 3 Let α1, . . . , αk be k pairwise distinct elements of Q
∗ \ {1}. Let

n be a variable taking non-negative integer values. We regard n, αn
1 , . . . , α

n
k as

independent variables and we call αn
1 , . . . , α

n
k n-exponential variables. Any poly-

nomial of Q[n, αn
1 , . . . , α

n
k ] is called a poly-geometrical expression in n over Q

w.r.t. α1, . . . , αk.
Let f, g be two poly-geometrical expressions n over Q w.r.t. α1, . . . , αk. Given

a non-negative integer number i, we denote by f |n=i the evaluation of f at i,
which is obtained by substituting all occurrences of n by i in f . We say that f
and g are equal whenever f |n=i = g|n=i holds for all non-negative integer i.

We say that f(n) is in canonical form if there exist

(i) finitely many numbers c1, . . . , cm ∈ Q
∗
, and



(ii) finitely many pairwise different couples (β1, e1), . . . , (βm, em) all in (Q
∗ \

{1})× Z≥0, and
(iii) a polynomial c0(n) ∈ Q[n],

such that each β1, . . . , βm is a product of some of the α1, . . . , αk and such that the
poly-geometrical expressions f(n) and

∑m
i=1 ci β

n
i nei + c0(n) are equal. When

this holds, the polynomial c0(n) is called the exponential-free part of f(n).

Remark 1 Note that sometime when referring to poly-geometrical expressions,
for simplicity, we allow n-exponential terms with base 0 or 1, that is, terms with
0n or 1n as factors. Such terms will always be evaluated to 0 or 1 respectively.

Proving the following result is routine.

Lemma 1 With the notations of Definition 3, let f a poly-geometrical expres-
sion in n over Q w.r.t. α1, . . . , αk. There exists a unique poly-geometrical ex-
pression c in n over Q w.r.t. α1, . . . , αk such that c is in canonical form and
such that f and c are equal. We call c the canonical form of f .

Example 3 The closed form f := (n+1)2 n2

4 of
∑n

i=0 i
3 is a poly-geometrical

expression in n over Q without n-exponential variables. The expression g :=
n2 2(n+1)−n 2n 3

n
2 is a poly-geometrical in n over Q w.r.t. 2, 3. Some evaluations

are: f |(n=0) = 0, f |n=1 = 1, g|n=0 = 0, g|n=2 = 8.

Notation 1 Let x be an arithmetic expression and let k ∈ N. Following [3], we
call k-th falling factorial of x and denote by xk the product

x (x− 1) · · · (x− k + 1).

For i = 1, . . . , k, we denote by
{

k
i

}

the number of ways to partition k into i non-
zero summands, that is, the Stirling number of the second kind also denoted by
S(n, k). We define

{

k
0

}

:= 0.

Example 4 Consider a fixed non-negative integer k. The sum
∑n−1

i=1 ik has n−1
terms while its closed form [3] below

k
∑

i=1

{

k

i

}

ni+1

i+ 1

has a fixed number of terms and thus is poly-geometrical in n over Q.

The following result is well-known and one can find a proof in [3].

Lemma 2 Let x be an arithmetic expression and let k ∈ N. Then we have

xk =

k
∑

i=1

{

k

i

}

xi.



Notation 2 Let r ∈ Q and let k ∈ N. We denote by H(r, k, n) the following
symbolic summation

H(r, k, n) :=

n−1
∑

i=0

ri ik.

Let’s denote by H(r, 0, n) the symbolic summation
∑n−1

i=0 ri. One can easily

check that H(r, 0, n) = rn−1
r−1 holds for r 6= 1. Moreover, we have the following

result.

Lemma 3 Assume r 6= 0. Then, we have

(r − 1)H(r, k, n) = (n− 1)k rn − r k H(r, k − 1, n− 1). (1)

In addition, we have

(i) if r = 1, then H(r, k, n) equals to nk+1

k+1 , which is a polynomial in n over Q

of degree k + 1.
(ii) if r 6= 1, then H(r, k, n) has a closed form like rn f(n) + c, where f(n) is a

polynomial in n over Q of degree k and c is a constant in Q.

Proof: We can verify Relation (1) by expanding H(r, k, n) and H(r, k −
1, n− 1). Now let us show the rest of the conclusion. First, assume r = 1. With
Relation (1), we have

kH(r, k − 1, n− 1) = (n− 1)k.

Therefore, we deduce

H(r, k, n) =
nk+1

k + 1
.

One can easily check that nk+1

k+1 is a polynomial in n over Q and the degree of n
is k + 1.

From now on assume r 6= 1. We proceed by induction on k. When k = 0, we
have H(r, 0, n) = rn−1

r−1 . We rewrite rn−1
r−1 as

rn
1

r − 1
− 1

r − 1
,

which is such a closed form. Assume there exists a closed form rn−1 fk−1(n −
1) + ck−1 for H(r, k − 1, n− 1), where fk−1(n− 1) is a polynomial in n− 1 over
Q of degree k − 1. Substitute H(r, k − 1, n − 1) by rn−1 fk−1(n − 1) + ck−1 in
Relation (1) and solve H(r, k, n), we have

H(r, k, n) =
(n− 1)k rn − r k (rn−1 fk−1(n− 1) + ck−1)

r − 1
.

We rewrite the right hand side of the above equation as

rn
(n− 1)k − k fk−1(n− 1)

r − 1
− r k ck−1

r − 1
,



from which one can easily check it satisfies the requirements of (ii) in the con-
clusion. This completes the proof. �

Lemma 4 Let k ∈ N and let λ be a non zero algebraic number over Q. Consider
the symbolic summation

S :=
n
∑

i=1

ik λi.

1. if λ = 1, then there exists a closed form s(n) for S, where s is a polynomial
in n over Q of degree k + 1.

2. if λ 6= 1, then there exists a closed form λn s(n) + c for S, where s is a
polynomial in n over Q of degree k and c ∈ Q is a constant.

Proof: By Lemma 2, we deduce

∑n

i=1 ik λi=
∑n

i=1

(

∑k

j=1

{

k
j

}

ij
)

λi

=
∑k

j=1

(

{

k
j

}
∑n

i=1 ij λi
)

=
∑k

j=1

(

{

k
j

}

H(λ, j, n)
)

Then, the conclusions on each case follow from the corresponding results in
Lemma 3. �

The following definition is a specialization of the general definition of multi-
plicative relation to the case of non-zero algebraic numbers.

Definition 4 (Multiplicative relation) Let k be a positive integer. Let A :=
(α1, . . . , αk) be a sequence of k non-zero algebraic numbers over Q and e :=
(e1, . . . , ek) be a sequence of k integers. We say that e is a multiplicative relation

on A if
∏k

i=1 αei
i = 1 holds. Such a multiplicative relation is said non-trivial if

there exists i ∈ {1, . . . , n} such that ei 6= 0 holds. If there exists a non-trivial
multiplicative relation on A, then we say that A is multiplicatively dependent;
otherwise, we say that A is multiplicatively independent.

All multiplicative relations of A form a lattice, called the multiplicative re-
lation lattice on A, which can effectively be computed, for instance with the
algorithm proposed by G. Ge in his PhD thesis [4].

For simplicity, we need the following generalized notion of multiplicative rela-
tion ideal, which is defined for a sequence of algebraic numbers that may contain
0 and repeated elements.

Definition 5 Let A := (α1, . . . , αk) be a sequence of k algebraic numbers over
Q. Assume w.l.o.g. that there exists an index ℓ, with 1 ≤ ℓ ≤ k, such that
α1, . . . , αℓ are non-zero and αℓ+1, . . . , αk are all zero. We associate each αi with
a variable yi, where y1, . . . , yk are pairwise distinct. We call the multiplicative



relation ideal of A associated with variables y1, . . . , yk, the binomial ideal of
Q[y1, y2, . . . , yk] generated by

{
∏

j∈{1,...,ℓ}, vj>0

y
vj
j −

∏

i∈{1,...,ℓ}, vi<0

y−vi
i | (v1, . . . , vℓ) ∈ Z}

and {yℓ+1, . . . , yk}, denoted by MRI(A; y1, . . . , yk), where Z is the multiplica-
tive relation lattice on (α1, . . . , αℓ). When no confusion is possible, we shall not
specify the associated variables y1, . . . , yk.

Lemma 5 Let α1, . . . , αk be k multiplicatively independent elements of Q and
let n be a non-negative integer variable. Let f(n) be a poly-geometrical expression
in n w.r.t. α1, . . . , αk. Assume that f |(n=i) = 0 holds for all i ∈ N. Then, f is

the zero polynomial of Q[n, αn
1 , . . . , α

n
k ].

The following definition will be convenient in later statements.

Definition 6 (Weak multiplicative independence) Let A := (α1, . . . , αk)
be a sequence of k non-zero algebraic numbers over Q and let β ∈ Q. We say
that β is weakly multiplicatively independent w.r.t. A, if there exist no non-
negative integers e1, e2, . . . , ek such that β =

∏k
i=1 αei

1 holds. Furthermore, we
say that A is weakly multiplicatively independent if

(i) α1 6= 1 holds, and
(ii) αi is weakly multiplicatively independent w.r.t.

{α1, . . . , αi−1, 1}, for all i = 2, . . . , s.

Lemma 7 is a structural result for the closed form solutions of single-variable
linear recurrences involving poly-geometrical expressions. For the proof, we need
Lemma 6, which is easy to check, see for instance [11].

Lemma 6 Let n a variable holding non-negative integer values. Let a and b be
two sequences in Q indexed by n. Consider the following recurrence equation of
variable x:

x(n) = a(n− 1)x(n− 1) + b(n− 1).

Then we have

x(n) =

n−1
∏

i=0

a(i)



x(0) +

n−1
∑

j=0

b(j)
∏j

s=0 a(s)



 .

Lemma 7 Let α1, . . . , αk be k elements in Q
∗ \ {1}. Let λ ∈ Q

∗
. Let h(n) be a

poly-geometrical expression in n over Q w.r.t. α1, . . . , αk. Consider the following
single-variable recurrence relation R:

x(n+ 1) = λx(n) + h(n).



Then, there exists a poly-geometrical expression s(n) in n over Q w.r.t. α1, . . . , αk

such that we have

deg(s(n), αn
i ) ≤ deg(h(n), αn

i ) and deg(s(n), n) ≤ deg(h(n), n) + 1,

and such that

– if λ = 1 holds, then s(n) solves R,
– if λ 6= 1 holds, then there exists a constant c depending on x(0) (that is, the

initial value of x) such that c λn + s(n) solves R.

Moreover, in both cases, if the exponential-free part of the canonical form of
( 1
λ
)n h(n) is 0, then we can further require that deg(s(n), n) ≤ deg(h(n), n) holds.

Proof: By Lemma 6, we have

x(n) = λn



x(0) +

n−1
∑

j=0

h(j)

λj+1



 . (2)

Denote by terms(h) all the terms of the canonical form of h(n). Assume each
t ∈ terms(h) is of form

ct n
qt βn

t ,

where ct is a constant in Q, qt is a non-negative integer and βt is a prod-
uct of finitely many elements (with possible repetitions) from {α1, . . . , αk}.
Define g(n) := h(n)

λn+1 . Then g(n) is a poly-geometrical expression in n w.r.t.
{βt}t∈terms(h), 1

λ
. Clearly we have

g(n) =
∑

t∈terms(h(n))

ct
λ
nqt (

βt

λ
)n.

Therefore, we have

n−1
∑

j=0

h(j)

λj+1
=

∑

t∈terms(h)

n−1
∑

j=0

ct
λ
jqt (

βt

λ
)j . (3)

According to Lemma 4, for each t ∈ terms(h), we can find a poly-geometrical
expression

st := (
βt

λ
)nft(n) + at

in n over Q w.r.t. βt

λ
satisfying

1. st =
∑n−1

j=0
ct
λ
jqt (βt

λ
)j ;

2. ft is a polynomial in n over Q of degree qt ( if βt 6= λ) or qt + 1 (if βt = λ),
and at is a constant in Q; note in the later case, ct n

qt (βt

λ
)n is a summand

of the constant term of the canonical form of ( 1
λ
)n h(n) is 0 when viewed as

a polynomial of the n-exponential variables.



Therefore, using st, for t ∈ terms(h), we can simplify the right hand side of
Equation (2) to



x(0) +
∑

t∈terms(h)
at



 λn +
∑

t∈terms(h)
ft(n)β

n
t . (4)

Assume that, for each t ∈ terms(h), we have βt = α
et,1
1 α

et,2
1 · · · αet,k

1 . Define

βt(n) := (αn
1 )

et,1 (αn
1 )

et,2 · · · (αn
1 )

et,k ,

c := x(0) +
∑

t∈terms(h)
at and s(n) :=

∑

t∈terms(h)
ft(n)βt(n).

We easily deduce deg(s(n), αn
i ) = maxt∈terms(h)(deg(βt(n), α

n
i ) ≤ deg(h(n), αn

i ).
Finally, one can easily verify that c and s(n) satisfy the requirements of the
conclusion. �

Remark 2 In Lemma 7, if λ is weakly multiplicatively independent w.r.t. α1, . . . , αk,
then we know that the exponential-free part of the canonical form of ( 1

λ
)n h(n)

is 0, without computing the canonical form explicitly.

2.2 Degree of a polynomial ideal

In this subsection, we review some notions and results on the degree of a poly-
nomial ideal. Up to our knowledge, Proposition 1 is a new result which provides
a degree estimate for an ideal of a special shape and which can be applied to
estimate the degree of invariant ideals of P -solvable recurrences. Throughout
this section, K is an algebraically closed field. Let F be a set of polynomials of
K[x1, x2, . . . , xs]. We denote by VKs(F ) (or simply by V (F ) when no confusion
is possible) the zero set of the ideal generated by F ⊂ K[x1, x2, . . . , xs] in Ks.

Definition 7 Let V ⊂ Ks be an r-dimensional equidimensional algebraic vari-
ety. The number of points of intersection of V with an (s−r)-dimensional generic
linear subspace L ⊂ Ks is called the degree of V [1], denoted by deg(V ). The
degree of a non-equidimensional variety is defined to be the sum of the degrees
of its equidimensional components. The degree of an ideal I ⊆ K[x1, x2, . . . , xs]
is defined to be the degree of the variety of I in Ks.

We first recall a few well-known results. Note that, for a zero-dimensional
algebraic variety, the degree is just the number of points in that variety.

Lemma 8 Let V ⊂ Ks be an r-dimensional equidimensional algebraic variety of
degree δ. Let L be an (s− r)-dimensional linear subspace. Then, the intersection
of L and V is either of positive dimension or consists of no more than δ points.

Lemma 9 Let V ⊂ Ks be an algebraic variety. Let L be a linear map from Ks

to Kk, for some integer k > 0. Then, we have deg(L(V )) ≤ deg(V ).



Lemma 10 ([5]) Let I ⊂ Q[x1, x2, . . . , xs] be a radical ideal of degree δ. Then
there exist finitely many polynomials in Q[x1, x2, . . . , xs] generating I and such
that each of these polynomials has total degree less than or equal to δ.

The following Lemma is a generalized form of Bézout’s Theorem.

Lemma 11 Let V,W, V1, V2, . . . Ve be algebraic varieties in Ks such that we have
V = W ∩ ∩e

i=1 Vi Define r := dim(W ). Then, we have

deg(V ) ≤ deg(W ) max({deg(Vi) | i = 1 · · · e})r.

Proposition 1 Let X = x1, x2, . . . , xs and Y = y1, y2, . . . , yt be pairwise differ-
ent s + t variables. Let M be an ideal in Q[Y ] of degree dM and dimension r.
Let f1, f2, . . . , fs be s polynomials in Q[Y ], each with maximum total degree df .
Denote by I the ideal 〈x1 − f1, x2 − f2, . . . , xs − fs〉. Then the ideal J := I +M
has degree upper bounded by dM df

r.

Proof: We assume first that M is equidimensional. Let L := l1, l2, . . . , lr
be r linear forms in X,Y such that the intersection of the corresponding r
hyperplanes and V (J) consists of finitely many points, i.e. HL := J + 〈L〉 is
zero-dimensional. By virtue of Lemma 8, the degree of J equals the maximum
degree of HL among all possible choices of linear forms l1, l2, . . . , lr satisfying
the above conditions.

Let L∗ := l∗1 , l
∗
2, . . . , l

∗
r , where each l∗j (j = 1 · · · r) is the polynomial obtained

by substituting xi with fi, for i = 1 · · · s, in the polynomial lj. Consider the
ideal L∗ + M in Q[Y ]. It is easy to show that the canonical projection map
ΠY onto the space of Y coordinates is a one-one-map between VCt(M +L∗) and
ΠY (VCt+s(HL)). Therefore, VCt(M+L∗) is zero-dimensional and deg(M+L∗) =
deg(HL). Hence, viewing VCt(M + L∗) as

VCt(M)

r
⋂

j=1

VCt(l∗j )

and thanks to Lemma 11, we have deg(VCt(M + L∗)) ≤ dM drf . Therefore, we
deduce that deg(J) = maxL deg(M + L∗) ≤ dM drf holds, by Lemma 8.

Assume now that VCt(M) is not necessarily equidimensional. Let V1, V2, . . . , Vk

be an irredundant equidimensional decomposition of VCt(M), with correspond-
ing radical ideals P1, P2, . . . , Pk. Then, applying the result proved in the first
part of the proof to each I + Pi (i = 1 · · · k), we deduce

deg(J) =
∑k

i=1 deg(I + Pi)

≤ ∑k

i=1 deg(Pi) d
ri
f

≤ ∑k
i=1 deg(Pi) d

r
f

= dM drf ,

where ri is the dimension of Pi in Q[Y ]. This completes the proof. �



Remark 3 For J in Proposition 1, a less tight degree bound, namely

dM dr+s
f ,

can easily be deduced from a generalized form of Bezout’s bound, since VCt+s(M)
has degree dM and is of dimension r + s in Ct+s.

Example 5 Consider M := 〈n2−m3〉, g1 := x−n2−n−m, g2 := y−n3−3n+1,
and the ideal J := M + 〈g1, g2〉. The ideal M has degree 3, and is of dimension
1 in Q[n,m]. The degree of J is 9, which can be obtained by computing the
dimension of

Q(a, b, c, d, e)[x, y,m, n]/(J + 〈a x+ b y + c n+ dm+ e〉),

where a, b, c, d, e are indeterminates. The degree bound estimated by Proposition 1
is 3× 3, which agrees with the actual degree.

3 Linearization of P -solvable recurrences

In this section, we show that every P -solvable recurrence can be “linearized”,
that is, given an s-variable P -solvable recurrence R, there exists an affine recur-
rence L, such that the first s components of the solution to L solves R. In other
words, although non-linear terms are allowed in P -solvable recurrences, these
recurrences are essentially linear ones.

We will first show that, every poly-geometrical expression is a component of
the solution of some affine recurrence.

Lemma 12 Given a positive integer k, there exists a k-variable affine recurrence
A with rational coefficients such that (n, n2, . . . , nk−1, nk) is the solution to A.

Proof: We proceed by induction on k. The case k = 1 is easy: n solves the
recurrence x(n) = x(n− 1) + 1. Now assume that there exists a (k− 1)-variable
affine recurrence B of variables x1, x2, . . . , xk−1 with rational coefficients, whose
solution is (n, n2, . . . , nk−1). Let xk(n) = nk and consider xk(n) − xk(n − 1),
which is a polynomial in n of degree k − 1. Therefore, xk(n) − xk(n − 1) can
be written as a linear form with basis 1, n− 1, (n− 1)2, . . . , (n− 1)k−1 (say by
Taylor expansion) with coefficients c0, c1, . . . , ck−1. We deduce that:

xk(n) = c0 + xk(n− 1) +

k−1
∑

i=1

ci xi(n− 1) (5)

Let A be the affine recurrence of recurrence variables x1, x2, . . . , xk defined by
the recurrence equations from B and Equation (5). Clearly (n, n2, . . . , nk) is the
solution to the k-variable affine recurrenceA, which coefficients are all rational.�

Similarly, for hyper-geometrical terms in n, we have the following result.



Lemma 13 Given a non-negative integer k and an algebraic number λ (λ 6= 1),
there exists an (k+1)-variable affine recurrence A such that (λn, n λn, . . . , nk λn)
is the solution of A.

Proof: We proceed by induction on k as well. The case of k = 0 is trivial:
the recurrence x(n) = λx(n − 1) has the properties specified in the conclu-
sion. Now assume there exists a k-variable affine recurrence B with recurrence
variables x0, x1, . . . , xk−1, whose solution is (λn, n λn, n2, . . . , nk−1 λn). Consider
xk(n) = nkλn, which can be rewritten as (nkλ)λn−1. Now consider nk λ, which
can be rewritten as a linear combination c0 + c1 (n− 1)+ · · ·+ ck(n− 1)k where
c0, c1, . . . , ck are constants. Therefore, we have:

xk(n) =

k
∑

i=0

ci xi(n− 1) (6)

Let A be the affine recurrence with recurrence variables x0, x1, . . . , xk defined by
the recurrence equations from B and Equation (6). Clearly (λn, n λn, . . . , nk λn)
is the solution to the (k + 1)-variable affine recurrence A. �

Next, as a consequence, we shall show that every poly-geometrical expression
is a component of the solution of some affine recurrence.

Proposition 2 Given a poly-geometrical expression h in n, there exists an affine
recurrence A such that h equals the first component of the solution to A.

Proof: Assume w.l.o.g. that h is in canonical form and has m terms, say
h =

∑m

i=1 ci ti(n). We know that each term ti(n) of h is either of the form nk or
the form nk λn. According to Lemma 12 and Lemma 13, we can substitute each
term ti(n) by a recurrence variable xi from some affine recurrence, say Ai. We
can assume w.l.o.g the variables in those recurrences are all pairwise different.

Then, we can form a new affine recurrence A by putting together x0(n) =
∑m

t=0 ci xi(n) and the equations in Aj , for j = 1 · · ·m, yielding a system where
h will be the first component of the solution to A. �

Since the solutions to P -solvable recurrences consist of poly-geometrical ex-
pressions, Proposition 2 implies that there exists a ‘linearization” procedure for
P -solvable recurrences. Next, we show that we can “linearize” P -solvable recur-
rences without knowing their solutions. More precisely, Theorem 1 states that
if one has a P -solvable recurrence R with rational coefficients, we can always
find an affine recurrence A with rational coefficients such that each component
of a solution of R is a component of a solution of A. One of the key point is the
construction made in Lemma 14.

Lemma 14 Given any two recurrence variables x1 and x2 from an affine re-
currence A with rational coefficients, there exists an affine recurrence A∗ with
rational coefficients such that x1(n)x2(n) is a component of the solution to A∗.



Proof: Let x1, x2, . . . , xs be all the recurrence variables in A. For each pair
(i, j), with 1 ≤ i ≤ j ≤ s, we define a new recurrence variable yi,j = xixj . It is
easy to check that yi,j(n) can be represented as a linear combination of yk,ℓ(n−1)
with rational coefficients, for 1 ≤ k, ℓ ≤ s. Indeed, each xi(n), i = 1 · · · s, is a
linear combination of xj(n− 1), for j = 1 · · · s. �

Theorem 1 Given a P -solvable recurrence R with rational coefficients, we can
find an affine recurrence A∗ with rational coefficients, without solving the recur-
rence R, such that each component of the solution of R is a component of the
solution of A∗.

Proof: Assume R has k blocks. If k = 1, then R is an affine recurrence and
nothing needs to be done for this case.

From now on, we assume k > 1. As we shall see, however, treating the case
of two blocks is sufficient to raise the key argument in the construction. Thus,
for clarity, we assume that the coefficient matrix M of R is 2-block diagonal.

Let xi1(n − 1)xi2(n − 1) · · ·xij (n − 1) be a non-linear term occuring in the
second block. Note that xi1 , xi2 , . . . , xij are actually variables of the affine recur-
rence induced by the first block. According in Lemma 14, there exists an affine
recurrence A with rational coefficients, such that xi1 xi2 is solution to some vari-
able y of A. Substitute in R each occurrence of xi1(n− 1)xi2(n− 1) by y(n− 1)
we obtain recurrence equations Ay. Let A1 be the recurrence defined by the
equations in Ay and R. Note that

(1) A1 is a P -solvable recurrence with rational coefficients and allows a 2 block
coefficient matrix;

(2) each component of the solution of R is a component of the solution of A1.

If A1 still has non-linear terms, we apply again the above trick to A1, yielding
a recurrence A2. It is easy to check, that this ”linearization” process will be
completed in a finite number of steps. Finally, we obtain an affine recurrence
A∗ with rational coefficients, such that each component of the solution of R is a
component of the solution of A∗. �

Actually, the proof of Theorem 1 implies an algorithm for “linearizing” any P -
solvable recurrence. However, the resulting affine recurrence by this an algorithm
will have exponentially many (roughly

(

n+d+1
d

)

variables, which is hardly of
practical use. An interesting problem would be to find an “optimal linearization”,
with a minimum number of recurrence variables.

4 Invariant ideal of P -solvable recurrences

We will first formalize the notion of a P -solvable recurrence. Then in the rest
of this section, we will investigate the shape of the closed form solutions of a
P -solvable recurrence equation, for studying the degree and the dimension of



invariant ideal. We will provide degree estimates for the invariant ideal, which is
useful for all invariant generation methods which need a degree bound, like the
proposed polynomial interpolation based method and those in [9, 10, 2]. Last
but not least, we will investigate the dimension of the invariant ideal. So that
we can get a sufficient for non-trivial polynomial invariants of a given P -solvable
recurrence to exist. Note that in our invariant generation method, we do not
need (thus never compute) the closed form solutions explicitly.

It is known that the solutions to P -solvable recurrences are poly-geometrical
expressions in n w.r.t. the eigenvalues of the matrixM , see for example [13]. How-
ever, we need to estimate the “shape”, e.g. the degree of those poly-geometrical
expression solutions, with the final goal of estimating the “shape” (e.g. degree,
height, dimension) of the invariant ideal. In this paper, we focus on degree and
dimension estimates.

We first generalize the result of Lemma 7 to the multi-variable case.

Proposition 3 Let α1, . . . , αm ∈ Q
∗ \ {1}. Let λ ∈ Q and M ∈ Q

s×s
be a

matrix in the following Jordan form



















λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ 0 0 0

0
. . .

. . .
. . .

. . . 0
0 0 0 · · · λ 0
0 0 0 · · · 1 λ



















.

Consider an s-variable recurrence R defined as follows:

X(n+ 1)s×1 = Ms×s X(n)s×1 + F (n)s×1, where

(a) X := x1, x2, . . . , xs are the recurrence variables;
(b) F := (f1, f2, . . . , fs) is a list of poly-geometrical expression in n w.r.t. α1, . . . ,

αm, with maximal total degree d.

Then we have:

1. if λ = 0, then (f1, f1 + f2, . . . , f1 + f2 + · · ·+ fs) solves R.
2. if λ = 1, then there exist s poly-geometric expressions (g1, g2, . . . , gs) in

α1, . . . , αm such that for each i ∈ 1 · · · s, gi is a poly-geometrical expression
in n w.r.t. α1, . . . , αm with total degree less or equal than d+ i.

3. if λ 6∈ {0, 1}, then there exists a solution of R, say (y1, y2, . . . , ys), such that
for each i = 1, . . . , s we have

yi := ciλ
n
i + gi, where (7)

for each i ∈ 1 · · · s: (a) ci is a constant depending only on the initial value
of the recurrence; and (b) gi is like in the case of λ = 1. Moreover, assume
furthermore that the following conditions hold:



(i) λ is weakly multiplicatively independent w.r.t. α1, . . . , αm;
(ii) deg(fj , n) = 0 holds for all j ∈ {1, 2, . . . , s}.

Then, for all i = 1, . . . , s, we can further choose gi such that deg(gi, n) = 0
holds and the total degree of gi is less or equal than max(d, 1).

Proof: We observe that the recurrence variables of R can be solved one after
the other, from x1 to xs. When λ = 0, the conclusion is easy to verify. The case
λ 6= 0 is easy to prove by induction on s with Lemma 7. �

Proposition 4 Let λ1, . . . , λs, α1, . . . , αm ∈ Q
∗\{1}. Let M ∈ Q

s×s
be a matrix

in the following Jordan form



















λ1 0 0 · · · 0 0
ǫ2,1 λ2 0 · · · 0 0
0 ǫ3,2 λ3 0 0 0

0
. . .

. . .
. . .

. . . 0
0 0 0 · · · λs−1 0
0 0 0 · · · ǫs,s−1 λs



















,

where for i = 2, . . . , s, ǫi,i−1 is either 0 or 1. Consider an s-variable recurrence
R defined as follows:

X(n+ 1)s×1 = Ms×s X(n)s×1 + F (n)s×1,

where

1. X := x1, x2, . . . , xs are the recurrence variables;
2. F := (f1, f2, . . . , fs) is a list of poly-geometrical expression in n w.r.t. α1, . . . , αm,

with maximal total degree d.

Then there exists a solution of R, say (y1, y2, . . . , ys), such that for each i =
1, . . . , s we have

yi := ciλ
n
i + gi, (8)

where

(a) ci is a constant depending only on the initial value of the recurrence and
(b) gi is a poly-geometrical expression in n w.r.t. λ1, . . . , λi−1, α1, . . . , αm, with

total degree less or equal than d+ i.

Assume furthermore that the following conditions hold:

(i) the sequence consisting of λ1, λ2, . . . , λs is weakly multiplicatively indepen-
dent;

(ii) deg(fj , n) = 0 holds for all j ∈ {1, 2, . . . , s}.

Then, for all i = 1, . . . , s, we can further choose yi such that deg(gi, n) = 0 holds
and the total degree of gi is less or equal than max(d, 1).



Proof: We observe that the recurrence variables of R can be solved one
after the other, from x1 to xs. We proceed by induction on s. The case s = 1
follows directly from Lemma 7. Assume from now on that s > 1 holds and that
we have found solutions (y1, y2, . . . , ys−1) for the first s− 1 variables satisfying
the requirements, that is, Relation (8) with (a) and (b). We define

f̃(n) = fs(n)− ǫs,s−1 ys−1(n+ 1). (9)

Note that f̃(n) is a poly-geometrical expression in n w.r.t. λ1, . . . , λs−1, α1, . . . , αm

with total degree less than or equal to d+s−1. Moreover, for v ∈ {n, λn
1 , . . . , λ

n
s−1,

αn
1 , . . . , α

n
m} we have

deg(f̃(n), v) ≤ max (deg(fs(n), v), deg(ys−1(n), v)) . (10)

It remains to solve xs from

xs(n+ 1) = λs xs(n) + f̃(n) (11)

in order to solve all the variables x1, . . . , xs. Again, by Lemma 7, there exists a
poly-geometrical expression

ys := cs λ
n
s + gs(n),

where gs(n) is poly-geometrical expression in n w.r.t. λ1, . . . , λs−1, α1, . . . , αm, of
total degree upper bounded by d+ s. This completes the proof of the properties
(a) and (b) for ys.

Now we assume that (i), (ii) hold and we prove the second half of the conclu-
sion. Observe that we have deg(gs(n), n) = deg(f̃(n), n), which is 0, according to
Relation (10) and the fact that we can choose ys−1 such that deg(ys−1(n), n) = 0
holds. Next, we observe that for each

v ∈ {n, λn
1 , . . . , λ

n
s−1, α

n
1 , . . . , α

n
m},

we have deg(gs(n), v) = deg(f̃(n), v), which is less or equal to deg(ys−1(n), v)
by Relation (10). Therefore, the total degree of gs is less or equal than the total
degree of ys−1, which is less or equal than max(d, 1) by our induction hypothesis.
This completes the proof. �

Theorem 2 Let R be a P -solvable recurrence relation. Using the same notations
M,k, s, F, n1, n2, . . . , nk as in Definition 1. Assume M is in a Jordan form. As-
sume the eigenvalues λ1, . . . , λs of M (counted with multiplicities) are different
from 0, 1, with λi being the i-th diagonal element of M . Assume for each block j
the total degree of any polynomial in fj (for i = 2 · · · k) is upper bounded by dj.
For each i, we denote by b(i) the block number of the index i, that is,

b(i)−1
∑

j=1

nj < i ≤
b(i)
∑

j=1

nj . (12)



Let D1 := n1 and for allj ∈ {2, . . . , k} let Dj := dj Dj−1+nj. Then, there exists
a solution (y1, y2, . . . , ys) for R of the following form:

yi := ciλ
n
i + gi, (13)

for all i ∈ 1 · · · s, where
(a) ci is a constant depending only on the initial value of the recurrence;
(b) gi is a poly-geometrical expression in n w.r.t. λ1, . . . , λi−1, and with total

degree less or equal than Db(i).

Moreover, if the sequence consisting {λ1, . . . , λs} is weakly multiplicatively inde-
pendent, then, for all i = 1, . . . , k, we can further choose yi such that deg(gi, n) =
0 holds and the total degree of gi is less or equal than

∏

2≤t≤b(i) max(dt, 1).

Proof: We proceed by induction on the number of blocks, that is, k. The case
k = 1 follows immediately from Proposition 4. Assume from now on that the
conclusion holds for a value k = ℓ, with ℓ ≥ 1 and let us prove that it also holds
for k = ℓ + 1. We apply the induction hypothesis to solve the first ℓ blocks of
variables, and suppose that yℓ is a solution satisfying the properties in the con-
clusion. For solving the variables in the (ℓ+1)-th block, we substitute yℓ to fℓ+1

and obtain a tuple of poly-geometrical expressions in n w.r.t the eigenvalues of
the first ℓ blocks and with total degree bounded by dℓ Dℓ. Therefore, applying
again Proposition 4, we can find solutions for the variables in the (ℓ+1)-th block
satisfying the properties required in the conclusion. This completes the proof. �

Note that the degree estimate in Theorem 2 depends on how the block struc-
ture of the recurrence is exploited, for example, a 2 × 2 diagonal matrix can
be viewed as a matrix with a single block or a matrix with two 1 × 1 diagonal
blocks.

In practice, one might want to decouple the recurrence first, and then study
the recurrence variable one by one (after a linear coordinate change) to get
better degree estimates for the poly-geometrical expression solutions, regarded
as polynomials of n-exponential terms as the eigenvalues of the coefficient matrix.
We will just use a simple example to illustrate this idea.

Example 6 Consider the recurrence:




x(n+ 1)
y(n+ 1)
z(n+ 1)



 :=





2 0 0
0 3 0
0 0 3



 ×





x(n)
y(n)
z(n)



 +





0
x(n)2

x(n)3





Viewing the recurrence as two blocks corresponding to variables (x) and (y, z)
respectively, the degree estimate according to Theorem 2 would be bounded by
5 = 3× 1 + 2.

If we decouple the (y, z) block to the following two recurrences

y(n+ 1) = 3 y(n) + x(n)2 and z(n+ 1) = 3 z(n) + x(n)3,

then we can easily deduce that the degree of the poly-geometrical expression for
y and z are upper bounded by 2 and 3 respectively, again according to Theorem 2.



It is easy to generalize the previous results to the case of a matrix M which
is not in Jordan form. Let Q be a non-singular matrix such that J := QM Q−1

is a Jordan form of M . Let the original recurrence R be

X(n+ 1) = M X(n) + F.

Consider the following recurrence RQ

Y (n+ 1) = J Y (n) +QF.

It is easy to check that if

(y1(n), y2(n), . . . , ys(n))

solves RQ, then
Q−1 (y1(n), y2(n), . . . , ys(n))

solves R. Note that an invertible matrix over Q maps a tuple of poly-geometrical
expressions to another tuple of poly-geometrical expressions; moreover it pre-
serves the highest degree among the expressions in the tuple.

We turn now our attention to the question of estimating the degree of the
invariant ideal of a P -solvable recurrence relation.

Proposition 5 Let R be an s-variable P -solvable recurrence relation, with re-
currence variables (x1, x2, . . . , xs). Let I ⊂ Q[x1, x2, . . . , xs] be the invariant
ideal of R. Denote by Ie the extension of I in Q[x1, x2, . . . , xs]. Let A = α1, α2, . . . ,
αs be the eigenvalues (counted with multiplicities) of the coefficient matrix of
R. Let M be the multiplicative relation ideal of A associated with variables
y1, . . . , ys. Then, there exists a sequence of s poly-geometrical expressions in
n w.r.t. α1, α2, . . . , αs, say

f1(n, α
n
1 , . . . , α

n
k ), . . . , fs(n, α

n
1 , . . . , α

n
k ),

which solves R. Moreover, we have

Ie = (S +M) ∩ Q[x1, x2, . . . , xs],

where S is the ideal generated by 〈x1−f1(n, y1, . . . , ys), . . . , xs−fs(n, y1, . . . , ys)
in Q[x1, x2, . . . , xs, n, y1, . . . , ys].

Proof: The existence of f1, f2, . . . , fs follows by Theorem 2 and the fact
that linear combination of poly-geometrical expressions w.r.t. n are still poly-
geometrical expressions. The conclusion follows from Lemma 5. �

The following lemma is not hard to prove and one can find a proof in [6].

Lemma 15 Let R be a P -solvable recurrence relation defining s sequences in
Qs, with recurrence variables (x1, x2, . . . , xs). Let I be the invariant ideal of R
in Q[x1, x2, . . . , xs]; let I be the invariant ideal of R in Q[x1, x2, . . . , xs]. Then
I equals to Ie, the extension of I in Q[x1, x2, . . . , xs].



With Proposition 5 and Proposition 1, we are able to estimate the degree
of polynomials in a generating system of the invariant ideals. Now we are able
to estimate the total degree of closed form solutions of a P -solvable recurrence
without solving the recurrence explicitly.

Theorem 3 Let R be a P -solvable recurrence relation defining s sequences in
Qs, with recurrence variables (x1, x2, . . . , xs). Let I ⊂ Q[x1, x2, . . . , xs] be the
invariant ideal of R. Let A = α1, α2, . . . , αs be the eigenvalues (counted with
multiplicities) of the coefficient matrix of R. Let M be the multiplicative relation
ideal of A associated with variables y1, . . . , yk. Let r be the dimension of M.
Let f1(n, α

n
1 , . . . , α

n
k ), . . . , fs(n, α

n
1 , . . . , α

n
k ) be a sequence of s poly-geometrical

expressions in n w.r.t. α1, α2, . . . , αs that solves R. Suppose R has a k block
configuration as (n1, 1), (n2, d2), . . . , (nk, dk). Let D1 := n1; and for all j ∈
{2, . . . , k}, let Dj := dj Dj−1 + nj. Then we have

deg(I) ≤ deg(M)Dr+1
k .

Moreover, if the degrees of n in fi (i = 1 · · · s) are 0, then we have

deg(I) ≤ deg(M)Dr
k.

Proof: Denoting by Π the standard projection from Q
s+1+s

to Q
s
:

(x1, x2, . . . , xs, n, y1, . . . , ys) 7→ (x1, x2, . . . , xs),

we deduce by Proposition 5 that

V (I) = Π(V (S +M)), (14)

where S is the ideal generated by 〈x1−f1(n, y1, . . . , ys), . . . , xs−fs(n, y1, . . . , ys)
in Q[x1, x2, . . . , xs, n, y1, . . . , ys]. Thus, by Lemma 9, we have

deg(I) ≤ deg(S +M).

It follows from Proposition 1 that

deg(S +M) ≤ deg(M)Dr+1
k ,

since the total degree of fi of R is bounded by Dk according to Theorem 2 and
the dimension of M is r + 1 is in Q[n, y1, . . . , ys].

With similar arguments, the second part of the conclusion follows from the
fact that S + M can be viewed as an ideal in in Q[x1, x2, . . . , xs, n, y1, . . . , ys],
where M has dimension r. �

Indeed, the degree bound in Theorem 3 is “sharp” in the sense that it is
reached by many of the examples (Example 2) we have considered.

In the rest of this section, we are going to investigate the dimension of the
invariant ideal of a P -solvable recurrence. This can help checking whether or
not the invariant ideal of a P -solvable recurrence over Q is the trivial ideal of
Q[x1, . . . , xs]. Note that it is obvious that the invariant ideal is not the whole
polynomial ring.



Theorem 4 Using the same notations as in Definition 1. Let λ1, λ2, . . . , λs be
the eigenvalues of M counted with multiplicities. Let M be the multiplicative re-
lation ideal of λ1, λ2, . . . , λs. Let r be the dimension of M. Let I be the invariant
ideal of R. Then I is of dimension at most r + 1. Moreover, for generic initial
values,

1. the dimension of I is at least r;
2. if 0 is not an eigenvalue of M and the sequence consisting of λ1, λ2, . . . , λs

is weakly multiplicatively independent, then I has dimension r.

Proof: Assume without loss of genericity that M is in Jordan form. By The-
orem 2, we deduce that R has a solution (f1, f2, . . . , fs) as follows

(c1 λ
n
1 + h1(n), c2 λ

n
2 + h2(n), . . . , cs λ

n
s + hs(n)) ,

where for each i ∈ 1 · · · s, ci is a constant in Q depending only on the initial value
of R, and hi is a poly-geometrical expression in n w.r.t. λ1, . . . , λi−1. Moreover,
we have

1. for generic initial values, none of c1, c2, . . . , cs is 0;
2. if the eigenvalues of M can be ordered in λ1, λ2, . . . , λs s.t. λ1 6= 1 and for

each i ∈ 2 · · · s, λi is weakly multiplicatively independent w.r.t. λ1, λ2, . . . , λi−1,
then we can require that, for all i ∈ 1 · · · s, we have deg(fi, n) = 0.

Viewing n, λn
i (for i = 1, . . . , s) as indeterminates, let us associate coordinate

variable u0 to n, ui to λn
i (for i = 1, . . . , s). Denote by V the variety of I in Q

s

(with coordinates x1, x2, . . . , xs). Note that we have

dim(V ) = dim(I).

Denote by W1,W2 respectively the variety of M in Q
s
(with coordinates

u1, u2, . . . , us) and in Q
s+1

(with coordinates u0, u1, u2, . . . , us). Note that we
have

dim(W1) = r and dim(W2) = r + 1.

Consider first the map F0 defined below:

F0 : Q
s+1 7→ Q

s+1

(u0, u1, . . . , us) → (c1 u1 + f1, . . . , cs us + fs).

By Theorem 3, we have V = F0(W2). Therefore, we have we have dim(I) =
dim(V ) ≤ dim(W2) = r + 1.

Now assume the initial value of R is generic, thus we have ci 6= 0, for all
i ∈ 1 · · · s. Let us consider the map F1 defined below:

F1 : Q
s+1 7→ Q

s+1

(u0, u1, . . . , us) → (u0, c1 u1 + f1, . . . , cs us + fs).



Let us denote by V2 the variety F1(W2). By virtue of Theorem 3, we have
dim(V2) = dim(W2) = r + 1. Denote by Π the standard projection map that
forgets the first coordinate, that is, u0. We observe that V = Π(V2). Therefore,
we have dim(V ) ≥ dim(Π(V2))− 1 = r.

Now we further assume λ1 6= 1 and for each i ∈ 2 · · · s, λi is weakly mul-
tiplicatively independent w.r.t. λ1, λ2, . . . , λi−1 the invariant ideal of R. In this
case, we have that for all i ∈ 1 · · · s, deg(fi, n) = 0. Let us consider the map F2

defined below:

F2 : Q
s 7→ Q

s

(u1, . . . , us) → (c1 u1 + f1, c2 u2 + f2, . . . , cs us + fs).

By Theorem 3, we have V = F2(W1). Therefore, we have dim(I) = dim(V ) =
dim(W1) = r. This completes the proof. �

The following result, which is a direct consequence of Theorem 4, can serve
as a sufficient condition for the invariant ideal to be non-trivial. This condition
is often satisfied when there are eigenvalues with multiplicities or when 0 and 1
are among the eigenvalues.

Corollary 1 Using the same notations as in Theorem 4. If r + 1 < s holds,
then I is not the zero ideal in Q[x1, x2, . . . , xs].

The following corollary indicates that, the fact that the invariant ideal of a
given P -solvable recurrence is trivial could be determined by just investigating
the multiplicative relation among the eigenvalues of the underlying recurrence.

Corollary 2 Using the same notations as in Theorem 4, consider an s variable
P -solvable recurrence R with initial value x1(0) := a1, . . . , xs(0) := as, where
a1, . . . , as are indeterminates. If the eigenvalues of R are multiplicatively inde-
pendent, then the invariant ideal of R is 〈0〉 in Q(a1, . . . , as)[x1, x2, . . . , xs].

Proof: The assumption implies that the multiplicative relation ideal of the
eigenvalues is of dimension s. By Theorem 4, the dimension of the invariant
ideal of R must be at least s, thus the invariant ideal of R must be zero ideal in
Q(a1, . . . , as)[x1, . . . , xs]. �

Example 7 Consider the recurrence:

(x(n + 1), y(n+ 1)) := (3 x(n) + y(n), 2 y(n)) with x(0) = a, y(0) = b.

The two eigenvalues f the coefficient matrix are 2 and 3 which are multiplicatively
independent. Therefore, by Corollary 2, the invariant ideal of the recurrence is
trivial.

Note in Theorem 4, if we drop the “generic” assumption on the initial values,
then the conclusion might not hold. The following example illustrate this for the
case when all the eigenvalues are different and multiplicatively independent, but
the invariant ideal is not trivial.



Example 8 Consider the linear recurrence x(n+1) = 3 x(n)− y(n), y(n+1) =
2 y(n) with (x(0), y(0)) = (a, b). The eigenvalues of the coefficient matrix are
2, 3, which are multiplicatively independent. One can check that, when a = b, the
invariant ideal is generated by x − y. However, generically, that is when a 6= b
holds, the invariant ideal is the zero ideal.

5 Concluding remarks

In this article, we study the equivalence between P -solvable recurrences and
linear recurrences, and supply sharp estimate on the degree and dimension of
invariant ideals of P -solvable recurrences. As future work, we would be inter-
ested on finding simple linearizations of P -solvable recurrences, which could help
obtaining more precise estimates on the degree of the invariant ideal.
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7. Laura Kovács. Invariant generation for p-solvable loops with assignments. In
Proceedings of the 3rd international conference on Computer science: theory and
applications, CSR’08, pages 349–359, Berlin, Heidelberg, 2008. Springer-Verlag.

8. Marc Moreno Maza and Rong Xiao. Generating program invariants via interpola-
tion. CoRR, abs/1201.5086, 2012.

9. Markus Müller-Olm and Helmut Seidl. Computing polynomial program invariants.
Inf. Process. Lett., 91(5):233–244, September 2004.

10. Markus Müller-Olm and Helmut Seidl. A Note on Karr’s Algorithm. In Josep
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