
Stepping into fully GPU accelerated biomedical
applications

Caroline Mendonca Costa2, Gundolf Haase1, Manfred Liebmann1, Aurel Neic1,
and Gernot Plank2

1 Institute for Mathematics and Scientific Computing, University of Graz, Austria??

gundolf.haase@uni-graz.at,
WWW home page: http://http://www.uni-graz.at/~ghaase
2 Institute of Biophysics, Medical University of Graz, Austria

Abstract. We present ideas and first results on a GPU acceleration
of a non-linear solver embedded into the biomedical application code
CARP. The linear system solvers have been transferred already in the
past and so we concentrate on how to extend the GPU acceleration to
larger portions of the code. The finite element assembling of stiffness
and mass matrices takes at least 50% of the CPU time and therefore
we investigate this process for the bidomain equations but with focus
on later use in non-linear and/or time-dependent problems. The CUDA
code for matrix calculation and assembling is faster by a factor up to 90
compared to a single CPU core. The routines were integrated to CARP’s
main code and they are already used to assemble the FE matrices of the
bidomain model. Further performance studies are still required for the
bidomain-mechanics model.

1 Introduction

During the last years GPUs became very attractive to reduce simulation time
by porting linear solvers to the accelerator card. Due to the large problem size
multigrid methods have been preferred by parts of the community. GPU acceler-
ated geometrical multigrid has been carefully investigated by several authors, see
[6, 5] for structured grids and its further development for locally structured grids
in [3] as examples for success in a monolithic code. Starting from third party
demands and large unstructured discretizations, the algebraic multigrid (AMG)
has to be applied. Here, the authors proved one order of magnitude acceleration
by using GPUs [7, 16] also in the multi-GPU context [13]. While the AMG setup
in our code still remains on the CPU there is an interesting attempt to move
also the AMG setup completely onto the GPU [1] but only with an acceleration
of two.

?? The final publication can be found in I. Lirkov, S. Margenov, and J. Wasniewski,
editors, Large Scale Scientific Computing LSSC13, volume 8353 of Lecture Notes in
Computer Science, pages 314. Springer, 2014 and it is available at
http://www.springer.com/computer/theoretical+computer+science/book/978-3-
642-29842-4

2

The situation changes when the linear solvers are embedded into a larger
framework. When solving the Bidomain equations to simulate cardiac electro-
physiology via the Finite Element Method, the stiffness and mass matrices have
to be assembled only once, since the spatial domain is not modified during com-
putation. Thus, in this case, the assembly of the FE matrices it is not a bottle-
neck of computation. On the other hand, when solving the bidomain-mechanics
model, which involves non-linear elasticity, the FE matrices must to be updated
at each Newton step, as the spatial domain is deformed, which becomes very
expensive as the system increases in size. Therefore, it is the goal of this pa-
per, to implement a highly efficient FE assembly routine using CUDA [14] to
increase performance when solving this model. This paper investigates the GPU
acceleration for the FE matrix computation in the bidomain model in order to
study whether a GPU implementation might pay off for the real challenging
bidomain-mechanics equations [15].

We will introduce the bidomain model in §2 providing the equations for the
numerical tests. Section 3 starts with a brief primer on the simulation code CARP
and presents the strategy how to reduce critical data transfer between CPU
and GPU memory in the non-linear solver when AMG is used as linear solver
therein. The improvement of the FE matrix calculations by vectorization and
GPU acceleration is described in §4. The paper finishes with speedups regarding
the matrix computation and assembling on GPU and with some conclusions.

2 The Bidomain model

The bidomain equations in the elliptic-parabolic form are given by[
−∇ · (σi + σe)∇φe
−∇ · σb∇φe

]
=

[
∇ · σi∇Vm + Ii

Ie

]
(1)

Im = (∇ · σi∇φi)

Im = Cm
∂Vm
∂t

+ Iion(Vm,η)− Ii (2)

dη

dt
= f(t,η) (3)

Vm = φi − φe (4)

where φi and φe are the intracellular and extracellular potentials, respectively,
Vm = φi − φe is the transmembrane voltage, σi and σe are the intracellular
and extracellular conductivity tensors, respectively, β is the membrane surface
to volume ratio, Im is the transmembrane current density, Ie are extracellular
stimuli applied in the extracellular space, Ii is an intracellular current stimulus,
Cm is the membrane capacitance per unit area, and Iion is the membrane ionic
current density which depends on Vm and a set of state variables, η which is
defined by f .

At tissue boundaries, no flux boundary conditions are imposed for φi, with
the potential φe and the normal component of the extracellular current being

3

continuous. At boundaries of the conductive bath surrounding the tissue, no flux
boundary conditions for φe are imposed.

Combining the interstitial and bath spaces into the extracellular space, the
bidomain equations can be written as follows

−∇ · σe∇φe = ∇ · σi∇φi + Ie (5)

βIm = ∇ · σi∇φi

Im = Cm
∂Vm
∂t

+ Iion(Vm,η)− Ii (6)

dη

dt
= f(t,η) (7)

Vm = φi − φe (8)

With no-flux boundary conditions imposed for φi and φe.

The matrix representation for the FE discretization for the bidomain equa-
tions, written for Vm and φe only, is given by

Kieφe = −P (KiVm)−MeIe (9)

KiVm = −βMiIm −Ki(P
Tφe) (10)

where K∗ and M∗ are stiffness and mass matrices, respectively, with ∗ = e|i
being either the extracellular space, Ωe, or the intracellular space, Ωi, P is a
prolongation operator from Ωi to Ωe and its transpose, PT , is a restriction
operator from Ωe to Ωi.

3 GPU strategy for non-linear FE solvers

3.1 CARP environment

The CARP environment [18, 19] (Cardiac Arrhythmia Research Package) is a
collection of various contributors for the detailed simulation of cardiovascular
phenomena, see Fig. 1 for the software scheme. The gray box in the center con-
tains the kernel for the linear algebra that has to be combined with the non-linear
iteration in case of the bidomain-mechanics model. The FE assembly routine is
implemented within the CARP environment. The assembly involves the mod-
ule FEM, which comprises all the finite element computations, particularly the
stiffness and mass matrices assembly, and contains the “Matrix Market”, which
comprises matrix basic operations and is implemented within the Module FMa-
trix. This module is subject to GPU acceleration in this paper for the matrices
resulting from the bidomain equations (5). This is meant as a study whether a
GPU implementation might pay off for the real challenging bidomain-mechanics
equations, see [15]. We use unstructured tetrahedral FE meshes with linear test
functions.

4

Fig. 1. Structure of the CARP code.

3.2 Draft for a non-linear solver on GPUs

In the context of a non-linear setting where we have to solve frequently a linear
system as

K
(
uold

)
unew = f

(
uold

)
. (11)

It makes not much sense to accelerate the application of the linear solver (cg
with AMG preconditioning) by a factor of 10 on the GPU when the setup of the
AMG solver as well as the re-calculation and the re-assembling of the stiffness
matrix K

(
uold

)
are still performed on the CPU. Additionally we have to avoid

costly data transfer between CPU and GPU memory. We should also take into
account that calculations are very fast on the GPU in contrast to the slow
performing search and reorder routines.

The CARP code does not use spatial adaptivity and therefore the topology
of the mesh will remain unchanged throughout the non-linear computation, and
even during the outer time integration. Therefore, we have to determine the ma-
trix pattern only once in a matrix setup on the CPU, afterwards transfer that
pattern once to the GPU and perform (re-)calculation and the (re-)assembling of
the stiffness on the GPU repeatedly. Clearly, that requires that the mesh infor-
mation and the material properties are also available in GPU memory. Section §4
will report on first experiences regarding the matrix calculation on GPU.

The AMG preconditioner setup contains parts which do not accelerate well
on a GPU [1] so a closer look at it is necessary. The AMG setup consists of the
following parts:

5

1. Find coarse/fine nodes.
2. Determine interpolation pattern.
3. Calculate interpolation matrix entries.
4. Determine coarse matrix pattern.
5. Calculate coarse matrix entries.

Due to CPU performance issues items 2./3. as well as items 4./5. are handled
usually in one routine. In the CARP context we can again assume that material
anisotropies will not change dramatically, i.e., that the coarse/fine splitting will
remain the same in all (or many) non-linear steps. The same will be assumed for
the pattern determinations in items 2. and 4. This indicates a splitting of the
setup such that items 1., 2. and 4. are still performed once on the CPU while
items 3. and 5. can be handled very efficiently on the GPU. This splitting is still
subject to investigation.

4 FE matrix calculation on GPU

4.1 Stiffness matrix

The entries of stiffness matrices K from (9) and (10) are computed as

K = {Ki,j} =

nElem−1∑
e=0

Ke =

nElem−1∑
e=0

(
−Ce Ge C

T
e vole

)
, (12)

where Ke is the stiffness matrix of element e, Ce is the matrix of basis coefficients,
G is the matrix of conductivity tensors and vol is the element volume [4, 9, 10].
Using tetrahedral elements, the basis coefficients of each element are given by
the inverse of the matrix

C−1e =


1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

 (13)

The conductivity tensor of each element is computed as

G = gf f × f + gs s× s+ gn n× n, (14)

for the orthotropic case, where f, s, n are the longitudinal, transverse and normal
eigenaxis, gf , gs, gn are the principal eigenvalues. The volume of each tetrahedra

is computed as vol = |det(Ce)|
6 .

The mass matrix M = {Mij} in (10) is also computed element wise and
simplifies to

Mij =

{∑nElem−1
e=0 Me,ij = 2 factor vole, i = j∑nElem−1
e=0 Me,ij = factor vole, i 6= j

(15)

for linear elements with the factor depending on simple material coefficients.

6

4.2 The FMatrixArray structure

The current interface between matrix element calculation and its accumulation
into the global matrix consists of a structure FMatrixArray containing a large
array of size number of elements × number of nodes per element with some
additional information that stores all the element matrices. This allows to cal-
culate the elements matrices in parallel on many-core chips without fatal data
races. Additionally, all the information needed for element matrix calculation as
coordinates and material coefficients is also stored as FMatrixArray structures
with 1D arrays of appropriate size. Although this approach requires additional
temporal memory it outperforms the classical approach without redundant stor-
ing of input data and of accumulating the local entries directly into the global
matrix by a factor of 5 on a single CPU core.

Specialized explicit expressions were written to compute matrix determinant
and matrix inversion, which are the most expensive routines. An example of
the vectorized code using an FMatrixArray ent to compute the determinant
is shown below for a triangular element. The code for a tetrahedra looks the
same just much longer. Note that only local variables and explicit expressions
are used.

Listing 1.1. Code to compute matrix determinant (vole) for a triangular element

1 switch (rows)
2 case 3 : {
3 for (int i = 0 ; i < nmats ; i++) {
4 const Real a11 = ent [i ∗matSize] , a12 = ent [1+ i ∗matSize] ,
5 a13 = ent [2+ i ∗matSize] , a21 = ent [3+ i ∗matSize] ,
6 a22 = ent [4+ i ∗matSize] , a23 = ent [5+ i ∗matSize] ,
7 a31 = ent [6+ i ∗matSize] , a32 = ent [7+ i ∗matSize] ,
8 a33 = ent [8+ i ∗matSize] ;
9 det [i] = (a12∗a23 − a13∗a22)∗ a31

10 − (a11∗a23 − a13∗a21)∗ a32
11 + (a11∗a22 − a12∗a21)∗ a33 ;
12 }

This calculation of the determinant belongs to the volume computation in list-
ing 1.2. The code below gets the element list and the node list as input pa-
rameters and computes all local stiffness matrices after the appropriate setup
of volume, Ce from (13) and G from (14) for each element. The listing 1.1 is
representative for the data handling in all subroutines involved.

Listing 1.2. Code to compute element stiffness matrices Ke

1 int f l t e t F i l l L o c a l S t i f f n e s sMa t r i xA r r a y
2 (const ElemList ∗ e l s t , const NodeList ∗ n l s t ,
3 FMatrixArray ∗nodes , FMatrixArray ∗ c o e f f s ,
4 FMatrixArray ∗g , FMatrixArray ∗lK , Real ∗ vo l s)
5 {
6 f l f i l l N o d e s (e l s t , nodes , n l s t) ; // F i l l coordinates
7 f l computeVolumes (nodes , vo l s) ; // Compute Volumes
8 FMatrix InvArray (nodes , c o e f f s) ; // Comp. Basis Coe f f i c i en t s C e
9 Real pevs [] = {1 .0 , 1 . 0 , 1 . 0} ; // simple materia l parameters

10 fl getCondTensorGPU (e l s t , g , pevs) ; // Comp. Conductivi ty Tensor G
11 f l i n t e g r a t e S t i f f n e s s (lK , g , c o e f f s , vo l s) ; // Comp. l o c a l matrices
12 }

The calculation of the mass matrices is handled the same way.

7

4.3 Implementation of the CUDA kernels

Non-coalesced memory allocation and access Matrix entries (stored lin-
early) are reordered as shown in Fig. 2, so that each thread has access to the
first element of its corresponding matrix in cache memory. In the GPU imple-

0 1 2 3 4 5 6 7

0 4 1 5 2 6 3 7

Fig. 2. Coalesced (top) versus non-coalesced (bottom) memory access. Matrix entries
are reordered using a predefined stride size.

mentation the stride value is 32, which is half the number of maximal threads
per block, i.e. 64 threads per block. When allocating memory for an array in
non-coalesced format the size of the memory chunk will depend also on the size
of this stride. Keeping arrays in both formats is important to obtain maximum
performance in both CPU and GPU, as the non-coalesced format is inefficient
in the CPU, but the most efficient in the GPU. Therefore, whenever we copy
data over to or from the GPU, a conversion routine has to be used.

Data structure on the GPU In order to copy data to the GPU, some changes
were required in the Element list and Nodes list structures implemented in the
standard code. In the standard code, this lists are implemented as general struc-
tures holding detailed information about each element and node in the mesh. In
the CUDA version, this lists are implemented as one-dimensional arrays, which
size varies depending on the element type and number of elements in the mesh.
More detailed information is given below and in Fig. 3, where N and L are the
global and local indices describing each element, respectively; Lon, Sheet and
Sheet normal are the fiber orientation arrays; and Pts and Exp. Pts are the
arrays of points in regular and exploded format, respectively.
Element list: array of nodal (local or global) indices describing each element,
it is copied in non-coalesced form to the GPU.
Axes lists: arrays of longitudinal, sheet and sheet normal fiber orientations, it
is copied to the GPU in non-coalesced form.
Nodes list: an array of point coordinates is copied to the GPU in coalesced
form. Can be copied using the regular format, where each point is unique in the
list and the element list is used to access the nodes of each element, or in the
exploded format, where the points are duplicated and copied in element index
order. The latter one uses the nodal indices to describe the elements and the
nodes are duplicated in the array. In this case, the element list is not copied to
the GPU, as the nodes list can be accessed sequentially.

8

p0 p1 p5 p12 p7 p15 p12 p20 ...

p0 p1 p4 p7 p0 p2 p7 p15 ...
N

L

x0 y0 z0 ...
...

Lon

Sheet

x1 y1 z1

x0 y0 z0 x1 y1 z1

...Sheet
normal

x0 y0 z0 x1 y1 z1

x0 y0 z0 ...Pts x1 y1 z1

x0 y0 z0 ...Exp. Pts x1 y1 z1 x4 y4 z4 x7 y7 z7

x2 y2 z2 x3 y3 z3

x0 y0 z0

x4 y4 z4

e0 e1

e1e0

p0 p1 p2 p3 p4

p0 p1 p4 p7 p0

Fig. 3. Data structure organization in the GPU. Elements, axes and nodes lists are
structured as linear arrays.

Device routines For each kernel, an interface routine was implemented in C,
in which a structure with all kernel parameters is assembled before the kernel
is called. The kernel is then called with (p.nElem+ N − 1)/ N blocks and N
threads per block. In this case, the total number of threads might be larger than
the number of elements, but only nElem threads execute the calculations.

In the device routines, i.e. the kernels, the start indexes are computed by
each thread for each array that is accessed in the routine. In the example below
(code 1.3), mStart, lStart and pStart stores the initial index of mPtr, dLon,
and pevs, respectively, for each thread. Local variables are used to access the
register directly. The calculations are done using explicit expressions to avoid
loops in the kernel routine. Again the following listing is representative for all
kernel routines needed in the element matrix calculations.

Listing 1.3. Kernel to compute conductivity tensor G

1 g l o b a l void
2 device f l getCondTensorGPU (device f l getCondTensorGPU params p)
3 {
4 int mStart = p . msz∗ N∗blockIdx . x + (threadIdx . x/ L)∗p . msz∗ L
5 + (threadIdx . x% L) ;
6 int l S t a r t = 3∗ N∗blockIdx . x + (threadIdx . x/ L)∗3∗ L
7 + (threadIdx . x% L) ;
8 int pStart = 3∗ N∗blockIdx . x + 3∗ threadIdx . x ;
9 int maxsize = N∗blockIdx . x + threadIdx . x ;

10

11 i f (maxsize < p . nElem) {
12 double f 1 = p . dLon [l S t a r t] ;
13 double f 2 = p . dLon [l S t a r t+= L] ;

9

14 double f 3 = p . dLon [l S t a r t+= L] ;
15

16 double g f = p . pevs [pStart++];
17 double gs = p . pevs [pStart] ;
18

19 // (gf−gs)∗ f x f + gs ∗ I
20 p .mPtr [mStart] = f1 ∗ f 1 ∗(g f − gs) + gs ;
21 p .mPtr [mStart+= L] = f1 ∗ f 2 ∗(g f − gs) ;
22 p .mPtr [mStart+= L] = f1 ∗ f 3 ∗(g f − gs) ;
23 p .mPtr [mStart+= L] = f1 ∗ f 2 ∗(g f − gs) ;
24 p .mPtr [mStart+= L] = f2 ∗ f 2 ∗(g f − gs) + gs ;
25 p .mPtr [mStart+= L] = f2 ∗ f 3 ∗(g f − gs) ;
26 p .mPtr [mStart+= L] = f1 ∗ f 3 ∗(g f − gs) ;
27 p .mPtr [mStart+= L] = f2 ∗ f 3 ∗(g f − gs) ;
28 p .mPtr [mStart+= L] = f3 ∗ f 3 ∗(g f − gs) + gs ;
29 }
30 }

Further optimization The computation of the matrix inverse for the 4− by − 4
(tetrahedra) case exhibited register spilling, which was removed by rearranging
computations such that compiler generated temporary expressions have been
reused. Additionally we removed the asserting function, used to stop the com-
putations in case the determinant is zero. Memory (de)allocation overhead was
identified when computing the stiffness and mass matrix. Thus, the memory
(de)allocation calls were moved outside the main loop. Therefore, it is only done
once and it is not included in the final assembly times. When using the nodes
list with elemental indexing, as described in Sec. 4.3, the array with the points
was accessed via texture cache to compensate for the overhead of accessing the
nodes in non-sequential order. This approach saves memory, as the points in the
nodes list are not duplicated, and computation time is only marginally affected.

4.4 Global assembly

The accumulation of the element matrices stored in a FMatrixArray structure
into one global matrices implemented within the parallel toolbox [12, 13]. Therein
the element matrix entries will be reordered according to their global row and
column indices such that these entries can be accumulated for each global matrix
entry in parallel afterwards. Again, the permutation vector for this mapping is
determined in an a priori setup. Another approach which would save a lot of
temporary memory requires the coloring of the finite elements such that no data
races will appear in the accumulation process. This has been applied success-
fully on vector processors [17] as well as on GPUs [2] general many-core envi-
ronments [11]. Our own improved version of these parallel matrix accumulations
is still ongoing research.

5 Results

We used the following configuration for our experiments. The CPU was an Intel
Xeon E5645 with 6 cores (12 threads), clock Speed of 2.4 GHz, 12MB of L2-
cache and 24 GB DDR3 memory with 32 GB/sec of memory bandwidth. The

10

GPU is an NVidia GTX 680 with 1536 CUDA cores, 1006 MHz Base Clock and
with 2048 GB GDDR5 memory with 192.2 GB/sec of memory bandwidth. The
Performance was measured with one vectorized CPU core and compared to the
GPU CUDA code for tetrahedral meshes of different sizes. The .cu files, where
the GPU kernels are implemented, are compiled with NVCC using architecture
sm 20 and -O3 option. The .c files for the CPU are compiled with GCC, using
options -g -O3 -std=gnu99, but when compiling for the GPU, the output file of
the kernels and the CUDA libraries must be linked to the resulting output file
of the .c files.

The numerical tests have been performed for the bidomain equations (5)
and several discretization of the unit cube. The assembling process has been
performed 10 times in order to get average run times and all the data needed
have been initialized and transferred before the timing started. Table 1 presents
the assembly times of the CPU and GPU as well as the related speedups achieved
which are also depicted in Fig. 4. It can be concluded that the GPU speedup

Time in sec. Speedup
Stiffness Mass Stiffness Mass

n elements CPU GPU CPU GPU

12,500 0.007289 0.000216 0.002725 0.000131 33.74 20.80
50,000 0.034600 0.000517 0.013445 0.000239 66.92 56.25
112,500 0.078769 0.001038 0.030778 0.000439 75.88 70.11
450,000 0.312762 0.003712 0.124095 0.001373 84.26 90.38

1,250,000 0.745111 0.010108 0.300238 0.003620 73.71 82.93

Table 1. Assembly time and speedup for two matrices in double precision.

is approximately 80 for larger numbers of tetrahedrals and up even 90 for the
assembling of the simpler mass matrices. If we assume a perfect speedup of 8
when all 8 CPU cores are used then a quite good GPU speedup of 10 still
remains. Our algorithms are bandwidth limited and therefore the 8 CPU cores
sharing that bandwidth will perform worse. Therefore, even a (good) consumer
card as the GTX 680 achieves a significant speedup for matrix calculation and
assembling in double precision.

6 Conclusion

The implementation of the FE matrices assembly using vectorized code for the
CPU and CUDA for the GPU has proved to be highly efficient, with the CUDA
code reaching a maximum speedup of 90. On the other hand, it appears that
there is a limit in performance when using CUDA, as the speedup drops when
a mesh with more than 450000 elements is used. This might be due to memory
bandwidth limitation, as only a limited number of threads can have access to
the cache memory at the same time. The work presented is still ongoing.

11

0 2 4 6 8 10 12 14

x 10
5

20

30

40

50

60

70

80

90

100
Speedup GPU vs. CPU (1 core)

Number tetrahedra

S
pe

ed
up

Stiffness matrix
mass matrix

Fig. 4. Speedup of GPU vs. one CPU core for assembling routines in double precision.

Nevertheless, we expect that vectorized code as well as the CUDA codes will
increase performance when used within the mechanical model, where the matri-
ces have to be re-assembled at each step. Moreover, the modifications required
in the main branch to include the new implementation are minimized by mod-
ularity, and only a few routines within FEM and FMatrix have to be modified.
The next step will consist in applying the described methodology to mechanical
problems and test the bidomain-mechanical problem [15] on NVidia’s Tesla 20K
with eight time more double precision compute units available. Together with
the already available a priori calculation of the matrix patterns and the splitting
of the AMG preconditioner setup the whole non-linear iteration in the solution
process of the bidomain-mechanical problem should run on the GPU.

Acknowledgment

This work has been partially supported by Austrian Science Fund (FWF): F 3201-
N18.

References

1. N. Bell, S. Dalton, and L. N. Olson. Exposing fine-grained parallelism in algebraic
multigrid methods. SIAM J. Sci. Comput., 34(2):C123–C152, 2012.

2. C. Cecka, A. J. Lew, and E. Darve. Assembly of finite element methods on graphics
processors. Int. J. for Numerical Methods in Engineering, 85(5):640–669, 2011.

3. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek. Towards a complete
FEM-based simulation toolkit on GPUs: Unstructured grid finite element geomet-
ric multigrid solvers with strong smoothers based on sparse approximate inverses.
Computers & Fluids, 80:327–332, July 2013.

12

4. M. S. Gockenbach. Understanding and Implementing the Finite Element Method.
SIAM, Philadelphia, 2007.

5. D. Göddeke. Fast and Accurate Finite-Element Multigrid Solvers for PDE Simu-
lations on GPU Clusters. PhD thesis, Technische Universität Dortmund, Fakultät
für Mathematik, http://hdl.handle.net/2003/27243, May 2010.

6. D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, H. Wobker, C. Becker,
and S. Turek. Using GPUs to improve multigrid solver performance on a cluster.
International Journal of Computational Science and Engineering, 4(1):36–55, Nov.
2008.

7. G. Haase, M. Liebmann, C. C. Douglas, and G. Plank. A parallel algebraic multi-
grid solver on graphics processing units. In W. Zhang, Z. Chen, C. C. Douglas,
and W. Tong, editors, HPCA (China), Revised Selected Papers, volume 5938 of
Lecture Notes in Computer Science, pages 38–47. Springer, 2009.

8. K. Jónasson, editor. Applied Parallel and Scientific Computing - PARA 2010, Part
II, volume 7134 of Lecture Notes in Computer Science. Springer, 2012.

9. M. Jung and U. Langer. Methode der finiten Elemente für Ingenieure. Lehrbuch.
Springer Vieweg, Wiesbaden, 2nd edition, 2013.

10. M. G. Larson and F. Bengzon. The Finite Element Method: Theory, Implemen-
tations and Applications, volume 10 of Texts in Computational Science and Engi-
neering. Springer, Berlin, Heidelberg, 1st edition, 2013.

11. G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J.
Sherwin. Finite element assembly strategies on multi-core and many-core archi-
tectures. Int. J. for Numerical Methods in Fluids, 71(1):80–97, 2013.

12. A. Neic, M. Liebmann, G. Haase, and G. Plank. Algebraic multigrid solvers on
clusters of CPUs and GPUs. In Jónasson [8], pages 389–398.

13. A. Neic, M. Liebmann, E. Hötzl, L. Mitchell, E. Vigmond, G. Haase, and G. Plank.
Accelerating cardiac bidomain simulations using graphics processing units. IEEE
Transactions on Biomedical Engineering, 59(8):2281–2290, 2012.

14. NVIDIA Corporation. CUDA programming guide 5.0, 2012.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

15. P. Pathmanathan and J. P. Whiteley. A numerical method for cardiac mechano-
electric simulations. Ann Biomed Eng, 37(5):860–73, 2009.

16. B. Rocha, F. Campos, G. Plank, R. Weber dos Santos, M. Liebmann, and G. Haase.
Simulations of the electrical activity in the heart with graphic processing units.
Concurrency Computat.: Pract. Exper., 23:708–720, 2011.

17. F. T. Tracy. Optimizing finite element programs on the cray x1 using coloring
schemes. In Proceedings of the 2004 Users Group Conference, DOD UGC ’04,
pages 329–333, Washington, DC, USA, 2004. IEEE Computer Society.

18. E. Vigmond, M. Hughes, G. Plank, and L. Leon. Computational tools for modeling
electrical activity in cardiac tissue. J Electrocardiol, 36:69–74, 2003.

19. E. Vigmond and G. Plank. http://carp.meduni-graz.at. Online, 2009.

