Skip to main content

Camera Source Identification Game with Incomplete Information

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8389))

Abstract

Image forensics with the presence of an adversary has raised more and more attention recently. A typical case is the interplay between the sensor-based camera source identification and fingerprint-copy attack. This paper gives a game theory analysis in such an adversarial environment. We use a counter anti-forensic method based on noise level estimation to detect the possible forgery (forgery test). Next, we introduce a game theory model to evaluate the ultimate performance when both the investigator and the forger have complete information. Finally, for a more practical scenario that one of the parties has incomplete information, a Bayesian game is introduced and the ultimate performance is compared with that of complete information game.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  2. Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)

    Article  Google Scholar 

  3. Li, C.-T., Li, Y.: Color-decoupled photo response non-uniformity for digital image forensics. IEEE Trans. Circ. Syst. Video Technol. 22(2), 260–271 (2012)

    Article  Google Scholar 

  4. Bayram, S., Sencar, H.T., Memon, N.D.: Efficient sensor fingerprint matching through fingerprint binarization. IEEE Trans. Inf. Forensics Secur. 7(4), 1404–1413 (2012)

    Article  Google Scholar 

  5. Li, C.-T.: Source camera identification using enhanced sensor pattern noise. IEEE Trans.Inf. Forensics Secur. 5(2), 280–287 (2010)

    Article  Google Scholar 

  6. Chuang, W., Su, H., Wu, M.: Exploring compression effects for improved source camera identification using strongly compressed video. In: IEEE International Conference on Image Processing, Brussels, Belgium, pp. 1953–1956 (2011)

    Google Scholar 

  7. Wu, G., Kang, X., Liu, K.J.R.: A context adaptive predictor of sensor pattern noise for camera source identification. In: IEEE International Conference on Image Processing, Orlando, USA, pp. 237–240 (2012)

    Google Scholar 

  8. Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7(2), 393–402 (2012)

    Article  Google Scholar 

  9. Gloe, T., Kirchner, M., Winkler, A., Bohme, R.: Can we trust digital image forensics? Multimedia ’07. In: Proceedings of the 15th international conference on Multimedia, pp. 78–86 (2007)

    Google Scholar 

  10. Steinebach, M., Liu, H., Fan, P., Katzenbeisser, S.: Cell phone camera ballistics: attacks and countermeasures. In: SPIE 2010, Multimedia on Mobile Devices, vol. 7542, pp. 0B–0C (2010)

    Google Scholar 

  11. Goljan, M., Fridrich, J., Chen, M.: Defending against fingerprint-copy attack in sensor-based camera identification. IEEE Trans. Inf. Forensics Secur. 6(1), 227–236 (2011)

    Article  Google Scholar 

  12. Caldelli, R., Amerini, I. Novi, A.: An analysis on attacker actions in fingerprint-copy attack in source camera identification. In: 2011 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2011)

    Google Scholar 

  13. Liu, X., Tanaka, M., Okutomi,M.: Noise level estimation using weak textured patches of a single noisy image. In: IEEE International Conference on Image Processing, Orlando, USA, pp. 665–668 (2012)

    Google Scholar 

  14. Barni, M.: A game theoretic approach to Source Identification with known statistics. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, pp. 1745–1748 (2012)

    Google Scholar 

  15. Barni, M., Tondi, B.: Optimum forensic and counter-forensic strategies for source identification with training data. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 199–204 (2012)

    Google Scholar 

  16. Barni, M., Tondi, B.: The source identification game: An information theoretic perspective. IEEE Trans. Inf. Forensics Secur. 8(3), 450–463 (2013)

    Article  Google Scholar 

  17. Stamm, M.C., Lin, W.S., Liu, K.J.R.: Forensics vs. anti-forensics: a decision and game theoretic framework. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, pp. 1749–1752 (2012)

    Google Scholar 

  18. Chen, Y., Lin, W.S., Liu, K.J.R.: Risk-distortion analysis for video collusion attacks: a mouse-and-cat game. IEEE Trans. Image Process. 19(7), 1798–1807 (2010)

    Article  MathSciNet  Google Scholar 

  19. Zeng, H., Kang, X., Huang, J.: Mixed-strategy Nash equilibrium in the camera source identification game.In: IEEE International Conference on Image Processing, Melbourne, Australia (2013)

    Google Scholar 

  20. Goljan, M.: Digital camera identification from images – estimating false acceptance probability. In: Kim, H.-J., Katzenbeisser, S., Ho, A.T.S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 454–468. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Zeng, H., Jiang, Y., Kang, X., Liu, L.: Game theoretic analysis of camera source identification. In: APSIPA Annual Summit and Conference, Kaohsiung, Taiwan (2013)

    Google Scholar 

  22. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    Google Scholar 

  23. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  24. Hespanha, J.: An introductory course in noncooperative game theory. Published online, 2011. http://www.ece.ucsb.edu/˜hespanha/

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Gloe, T., Bohme, R.: The dresden image database for benchmarking digital image forensics. J. Digit. Forensic Pract. 3(2–4), 150–159 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NSFC (Grant nos. 61379155, 61070167, U1135001), NSF of Guangdong province (Grant no. s2013020012788), the Research Fund for the Doctoral Program of Higher Education of China (Grant no. 20110171110042), 973 Program (Grant no. 2011CB302204) and National Science & Technology Pillar Program(Grant no. 2012BAK16B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangui Kang .

Editor information

Editors and Affiliations

Appendix

Appendix

Proposition 1.

For selected patches in noise level estimation [13], the fingerprint-copy attack (1) can be considered as a procedure of Gaussian noise addition.

Proof.

For each selected weak textured patch J p , the procedure of fingerprint-copy attack can be denoted as:

$$ \begin{gathered} \varvec{J}_{p}^{\prime} = \varvec{J}_{p} (1 + \beta \hat{\varvec{K}}_{p} )\\ \text{ } = \varvec{J}_{p} + \varvec{J}_{p} \beta \hat{\varvec{K}}_{p}\\ \text{ } \approx \varvec{J}_{p} + j_{p} \beta \hat{\varvec{K}}_{p}\\ \end{gathered} $$
(15)

where \( \hat{\varvec{K}}_{p} \) is the fingerprint \( \hat{\varvec{K}} \) of the corresponding location. The last approximately equal sign is because only weak textured patch is selected in the noise level estimation [13]. That is, J p j p is approximately constant on the selected patch. j p β \( \hat{\varvec{K}}_{p} \) can be modelled as Gaussian noise due to \( \hat{\varvec{K}}_{p} \) is modelled as Gaussian noise. Hence, the fingerprint-copy attack is a procedure of Gaussian noise addition from (15). QED.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, H., Kang, X. (2014). Camera Source Identification Game with Incomplete Information. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43886-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43885-5

  • Online ISBN: 978-3-662-43886-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics