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Abstract. This paper investigates the practical security of RC4 in broad-
cast setting where the same plaintext is encrypted with different user
keys. We introduce several new biases in the initial (1st to 257th) bytes of
the RC4 keystream, which are substantially stronger than known biases.
Combining the new biases with the known ones, a cumulative list of
strong biases in the first 257 bytes of the RC4 keystream is constructed.
We demonstrate a plaintext recovery attack using our strong bias set of
initial bytes by the means of a computer experiment. Almost all of the
first 257 bytes of the plaintext can be recovered, with probability more
than 0.8, using only 232 ciphertexts encrypted by randomly-chosen keys.
We also propose an efficient method to extract later bytes of the plain-
text, after the 258th byte. The proposed method exploits our bias set of
first 257 bytes in conjunction with the digraph repetition bias proposed
by Mantin in EUROCRYPT 2005, and sequentially recovers the later
bytes of the plaintext after recovering the first 257 bytes. Once the pos-
sible candidates for the first 257 bytes are obtained by our bias set, the
later bytes can be recovered from about 234 ciphertexts with probability
close to 1.

Keywords: RC4 · Broadcast setting · Plaintext recovery attack · Bias ·
Experimentally-verified attack · SSL/TLS · Multi-session setting

1 Introduction

RC4, designed by Rivest in 1987, is one of most widely used stream ciphers in
the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. RC4 consists
of a key scheduling algorithm (KSA) and a pseudo-random generation algorithm
(PRGA). The KSA converts a user-provided variable-length key (typically, 5–32
bytes) into an initial state S consisting of a permutation of {0, 1, 2, . . . , N − 1},
where N is typically 256. The PRGA generates a keystream Z1, Z2, . . ., Zr,
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. . . from S, where r is a round number of the PRGA. Zr is XOR-ed with the
r-th plaintext byte Pr to obtain the ciphertext byte Cr. The algorithm of RC4
is shown in Algorithm 1, where + denotes arithmetic addition modulo N , � is
the key length, and i and j are used to point to the locations of S, respectively.
Then, S[x] denotes the value of S indexed x.

After the disclosure of its algorithm in 1994, RC4 has attracted intensive
cryptanalytic efforts over past 20 years. Distinguishing attacks, which attempt
to distinguish an RC4 keystream from a random stream, were proposed in [3,
4,8,10,11,14,16]. State recovery attack, which recovers a full state instead of
the user-provided key, was shown by Knudsen et al. [7], and it was improved
by Maximov and Khovratovich [13]. Other types of attacks are also proposed,
e.g., key collision attack [12], keystream predictive attack [10] and key recovery
attacks from a state [1,15].

In FSE 2001, Mantin and Shamir presented an attack on RC4 in the broad-
cast setting where the same plaintext is encrypted with different user keys [11].
The Mantin-Shamir attack can extract the second byte of the plaintext from only
Ω(N) ciphertexts encrypted with randomly-chosen different keys by exploiting
a bias of Z2. Specifically, the event Z2 = 0 occurs with twice the expected prob-
ability of a random one. In FSE 2011, Maitra, Paul and Sen Gupta showed that
Z3, Z4, . . . , Z255 are also biased to 0 [8]. Then the bytes 3 to 255 can also be
recovered in the broadcast setting, from Ω(N3) ciphertexts.

Although the broadcast attacks were theoretically estimated, we find that
three questions are still open in terms of a practical security of broadcast RC4.

1. Are the biases exploited in the previous attacks the strongest biases for the
initial bytes 1 to 255?

2. While the previous results [8,11] estimate only lower bounds (Ω), how many
ciphertexts encrypted with different keys are actually required for a practical
attack on broadcast RC4?

3. Is it possible to efficiently recover the later bytes of the plaintext, after byte
256?

Algorithm 1. RC4 Algorithm
KSA(K[0 . . . � − 1]):

for i = 0 to N − 1 do
S[i] ← i

end for
j ← 0
for i = 0 to N − 1 do

j ← j + S[i] + K[i mod �]
Swap S[i] and S[j]

end for

PRGA(K):

i ← 0
j ← 0
S ← KSA(K)
loop

i ← i + 1
j ← j + S[i]
Swap S[i] and S[j]
Output Z ← S[S[i] + S[j]]

end loop
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1.1 Our Contribution

In this paper, we provide answers to all the aforesaid questions. To begin with,
we introduce a new bias regarding Z1, which is a conditional bias such that
Z1 is biased to 0 when Z2 is 0. Using this bias in conjunction with the bias of
Z2 = 0 [11], the first byte of a plaintext is extracted from Ω(N2) ciphertexts
encrypted with different keys. Although the strong bias of the first byte, which is
a negative bias towards zero, has already been pointed out in [6,14], it requires
Ω(N3) ciphertexts to extract the first byte of the plaintext. Thus, the new
conditional bias observed by us is very useful, because the number of required
ciphertexts to recover the first byte reduces by a factor of N/2 compared the
straightforward method. Besides, we introduce new strong biases, i.e., Z3 = 131,
Zr = r for 3 ≤ r ≤ 255, and extended keylength-dependent biases such that
Zx·� = −x·� for x = 2, 3, . . . , 7 and � = 16, which are extensions of the keylength-
dependent biases in which only the parameter of x = 1 is considered [5]. These
new biases are substantially stronger than known biases of Zr = 0 in case of
certain bytes within Z3, Z4, . . . , Z255. After providing theoretical considerations
for these biases, we experimentally confirm the validity of the same. Combining
the new biases with known biases, we construct a cumulative list of strongest
known biases in Z1, Z2, . . . , Z255. At the same time, we experimentally show two
new biases of Z256 and Z257, and add these to our bias set. Note that biases of
Z2, Z3, . . . , Z257 included in our bias set are strongest biases amongst all single
positive and negative biases of each byte when a 16-byte (128-bit) key is used.

We demonstrate a plaintext recovery attack using our bias set by the com-
puter experiment, and estimate the number of required ciphertexts and success
probability when N = 256. Almost all first 257 bytes, P1, P2, . . . , P257, can be
extracted with probability more than 0.8 from 232 ciphertexts encrypted by
randomly-chosen keys. Given 234 ciphertexts, all bytes of P1, P2, . . . , P257 can be
narrowed down to two candidates each with probability one. This is a first prac-
tical security evaluation of broadcast RC4 using all known biases of the cipher,
and some new ones that we observe.

Finally, an efficient method to extract later bytes of the plaintext, namely
bytes after P258, is given. It exploits our bias set of Z1, Z2, . . . , Z257 in con-
junction with the digraph repetition bias proposed by Mantin [10], and then
sequentially recovers bytes of the plaintext. Once the possible candidates for
P1, P2, . . . , P257 are obtained by our bias set, Pr (r ≥ 258) are recovered from
about 234 ciphertexts with probability one. Since the digraph repetition bias is
a long-term bias, which occurs in any keystream byte, our sequential method is
expected to recover any plaintext byte from only ciphertexts produced by differ-
ent randomly-chosen keys. We show that the first 250 bytes ≈ 1000 T bytes of
the plaintext can be recovered from 234 ciphertexts with probability of 0.97170.

Also, the broadcast setting is converted into the multi-session setting of
SSL/TLS where the target plaintext block are repeatedly sent in the same posi-
tion in the plaintexts in multiple sessions.
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2 Known Attacks on Broadcast RC4

This section briefly reviews known attacks on RC4 in the broadcast setting where
the same plaintext is encrypted with different randomly-chosen keys.

2.1 Mantin-Shamir (MS) Attack

Mantin and Shamir first presented a broadcast RC4 attack exploiting a bias of
Z2 [11].

Theorem 1 [11]. Assume that the initial permutation S is randomly chosen
from the set of all the possible permutations of {0, 1, 2, . . . , N − 1}. Then the
probability that the second output byte of RC4 is 0 is approximately 2

N .

This probability is estimated as 2
256 when N = 256. Based on this bias, the

broadcast RC4 attack is demonstrated by Theorems 2 and 3.

Theorem 2 [11]. Let X and Y be two distributions, and suppose that the event
e happens in X with probability p and in Y with probability p · (1 + q). Then for
small p and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with a constant
probability of success.

In this case, p and q are given as p = 1/N and q = 1. The number of samples is
about N .

Theorem 3 [11]. Let P be a plaintext, and let C(1), C(2), . . . , C(k) be the RC4
encryptions of P under k uniformly distributed keys. Then, if k = Ω(N), the
second byte of P can be reliably extracted from C(1), C(2), . . . , C(k).

According to the relation C
(i)
2 = P

(i)
2 ⊕ Z

(i)
2 , if Z

(i)
2 = 0 holds, then C

(i)
2 is same

as P
(i)
2 . From Theorem 1, Z2 = 0 occurs with twice the expected probability of

a random one. Thus, most frequent byte in amongst C
(1)
2 , C

(2)
2 , . . . , C

(k)
2 is likely

to be P2 itself. When N = 256, it requires more than 28 ciphertexts encrypted
with randomly-chosen keys.

2.2 Maitra, Paul and Sen Gupta (MPS) Attack

Maitra, Paul and Sen Gupta showed that Z3, Z4, . . . , Z255 are also biased to
0 [6,8]. Although the MS attack assumes that an initial permutation S is random,
the MPS attack exploits biases of S after the KSA [9]. Let Sr[x] be the value of
S indexed x after r round, where S0 is the initial state of RC4 after the KSA.
Biases of the initial state of the PRGA are given as follow.

Proposition 1 [9]. After the end of KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,
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Pr(S0[u] = v) =

{
1
N · (

(N−1
N )v + (1 − (N−1

N )v) · (N−1
N )N−u−1

)
(v ≤ u),

1
N · (

(N−1
N )N−u−1 + (N−1

N )v
)

(v > u).

The probability of Sr−1[r] in the PRGA are given as the follows.

Theorem 4 [6]1. For 3 ≤ r ≤ N − 1, the probability Pr(Sr−1[r] = v) is approx-
imately

Pr(S1[r] = v) ·
(

1 − 1

N

)r−2

+

r−1∑
t=2

r−t∑
w=0

Pr(S1[t] = v)

w! · N
·
(

r − t − 1

N

)w

·
(

1 − 1

N

)r−3−w

,

where Pr(S1[t] = v) is given as

Pr(S1[t] = v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pr(S0[1] = 1) +
∑

X �=1 Pr(S0[1] = X ∧ S0[X] = 1) (t = 1, v = 1),∑
X �=1,v Pr(S0[1] = X ∧ S0[X] = v) (t = 1, v �= 1),

Pr(S0[1] = t) +
∑

X �=t Pr(S0[1] = X ∧ S0[t] = t) (t �= 1, v = t),∑
X �=t,v Pr(S0[1] = X ∧ S0[t] = v) (t �= 1, v �= t).

Then, the bias of Pr(Zr = 0) is estimated as follows.

Theorem 5 [6]. For 3 ≤ r ≤ N − 1, Pr(Zr = 0) is approximately

Pr(Zr = 0) ≈ 1
N

+
cr

N2
,

where cr is given as

cr =
{ N

N−1 · (N · Pr(Sr−1[r] = r) − 1) − N−2
N−1 (r = 3),

N
N−1 · (N · Pr(Sr−1[r] = r) − 1) (r �= 3).

Since the parameters of p and q are given as p = 1/N and q = cr/N , The number
of required ciphertexts with different keys for the extraction of P3, P4, . . . , P255

is roughly estimated as Ω(N3).

3 New Biases : Theory and Experiment

This section introduces four new biases in the keystream of RC4. To begin with,
we prove a conditional bias of Z1 towards 0 when Z2 = 0. After that, we present
new biases in the events, Z3 = 131, Zr = r, and extended keylength-dependent
biases, which are substantially stronger than the known biases such as Zr = 0.
Then, we construct a cumulative list of strong biases in Z1, Z2, . . . , Z257 to mount
an efficient plaintext recovery attack on broadcast RC4.
1 The theorems with respect to Zr = 0 in [8] and [6] are slightly different. This paper

uses the results from the full version [6].
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3.1 Bias of Z1 = 0|Z2 = 0

A new conditional bias such that Z1 is biased to 0 when Z2 = 0 is given as
Theorem 6.

Theorem 6. Pr(Z1 = 0|Z2 = 0) is approximately

Pr(Z1 = 0|Z2 = 0) ≈ 1
2

·
(
Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1

N

)
+

1
2

· 1
N

.

Proof. Two cases of S0[2] = 0 and S0[2] �= 0 are considered. As mentioned in
[11], when Z2 is 0, S0[2] is also 0 with probability of 1

2 .

– S0[2] = 0
For i = 1, if S0[1] is 1, the index j is updated as j = S0[i] = S0[1] = 1. Then
the first output byte Z1 is expressed as follows (see Fig. 1),

Z1 = S1[S1[i] + S1[j]] = S1[S1[1] + S1[1]] = S1[2] = S0[2] = 0.

Assuming that Z1 = 0 holds with probability of 1
N when S0[1] �= 1, the

probability of Pr(Z1 = 0|S0[2] = 0) is estimated as

Pr(Z1 = 0|S0[2] = 0) = Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1
N

.

– S0[2] �= 0
Suppose that the event of Z1 = 0 occurs with probability of 1

N . Then Pr(Z1 =
0|S0[2] = 0) is estimated as

Pr(Z1 = 0|S0[2] �= 0) =
1
N

.

Therefore Pr(Z1 = 0|Z2 = 0) is approximately

Pr(Z1 = 0|Z2 = 0) = Pr(Z1 = 0|S0[2] = 0) · Pr(S0[2] = 0|Z2 = 0)
+Pr(Z1 = 0|S0[2] �= 0) · Pr(S0[2] �= 0|Z2 = 0)

≈ 1
2

·
(
Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1

N

)
+

1
2

· 1
N

.

��
When N = 256, Pr(S0[1] = 1) is obtained by Proposition 1.

Pr(S0[1] = 1) =
1

256
·
((

1
256

)
+

(
1 −

(
1

256

))
·
(

1
256

)254
)

= 0.0038966.

Then, Pr(Z1 = 0|Z2 = 0) is computed as

Pr(Z1 = 0|Z2 = 0) =
1
2

·
(

Pr(S0[1] = 1) + (1 − Pr(S0[1] = 1)) · 1
256

)
+

1
2

· 1
256

= 0.0058470 = 2−7.418 = 2−8 · (1 + 2−1.009).
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Since the experimental value of Pr(Z1 = 0|Z2 = 0) for 240 randomly-chosen
keys is obtained as 0.0058109 = 2−8 · (1 + 2−1.036), the theoretical value is
correctly approximated.

From this bias, Pr(Z1 = 0 ∧ Z2 = 0) can also be estimated, as follows.

Pr(Z1 = 0 ∧ Z2 = 0) = Pr(Z2 = 0) · Pr(Z1 = 0|Z2 = 0).

When N = 256, it is estimated as

Pr(Z1 = 0 ∧ Z2 = 0) =
2

256
· 2−7.418 = 2−14.418 = 2−16 · (1 + 20.996).

This type of bias, called digraph bias, was proved as a long term bias by Fluhrer
and McGrew [3]. However, such a strong bias in initial bytes was not reported.
Specifically, the probability of the general long-term digraph bias is estimated as
2−16 · (1 + 2−8) in [3] when N = 256, while that of our bias is 2−16 · (1 + 20.996).
Thus our result reveals that the digraph bias in initial bytes is much stronger
than what is estimated in [3].

Note that we searched for the similar form of conditional biases in first 256
bytes of the RC4 keystream. In particular, we check following specific patterns,
(Zr−a = X|Zr = Y ) for 0 ≤ X, Y ≤ 255, 2 ≤ r ≤ 256, 1 ≤ a ≤ 8. However, such
a strong bias could not be found in our experiment, while all conditional biases
are not covered.

Application to Broadcast RC4 attack. Using this new conditional bias of
Z1 = 0|Z2 = 0 in conjunction with the bias of Z2 = 0 [11], the first byte of the
plaintext can be efficiently extracted, where N = 256. After 217 ciphertexts with
randomly-chosen keys are collected, following procedures are performed.

Step 1. Extract the second byte of the target plaintext, P2, from 28 cipher-
texts [11].

Step 2. Find the ciphertext in which Z2 = 0 is XOR-ed by the computation
of C2 ⊕ P2. Then, 210 = 217 · 2/256 ciphertexts matching this criterion are
expected to be obtained.

Step 3. Regard the most frequent byte in the first byte C1 of these matching
210 ciphertexts as P1.

In Step 3, using the bias of Pr(Z1 = 0|Z2 = 0) = 2−8 · (1 + 2−1.009), P1 is
extracted from remaining 210(∼ 1

2−8·(2−1.009)2 ) ciphertexts by Theorems 2 and 3,
assuming the relation of C1 = P1 ⊕Z1 = P1 holds. Although the bias of the first
byte has already been pointed out in [6,14], it requires 224 ciphertexts to extract
the first byte using the known biases, because the probability of the strongest
bias, which is a negative bias of Z1 towards 0, is estimated as about 2−8 ·(1−2−8)
[6]. Thus, the new conditional bias identified by us is very efficient, because the
number of required ciphertexts reduces by a factor close to N/2 compared to
that of the straightforward method.
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0 1 2 3 256

i j
Increment

Swap(S0[i], S0[j])

1 0S0

0 1 2 3

0 1 2 3

1 0

1 0

i j (=S0[i]=1)

i j
Z1 = S1[S1[1] + S1[1]] = S1[2] = 0

256

256

Fig. 1. Event for bias of Z1 = 0|Z2 = 0

0 1 2 3 256

S0

0 1 2 3

0 1 2 3
Z3 = S3[S3[3] + S3[131]]

= S3[131 + 128]
= S3[3] = 131

0 1 2 3

256

256

256

S1

S2

S3

131

131

131

131

131

131

131

131

128

128

128

128

i = 1
j = S0[1] = 131

i = 2
j = 131 + S1[2]
  = 131 + 128 = 3

i = 3
j = 3 + S2[3]
  = 3 + 128 = 131

Fig. 2. Event for bias of Z3 = 131

3.2 Bias of Z3 = 131

A new bias of Z3 = 131, which is stronger than Z3 = 0 [6,8], is given as
Theorem 7.

Theorem 7. Pr(Z3 = 131) is approximately

Pr(Z3 = 131) ≈ Pr(S0[1] = 131) · Pr(S0[2] = 128) +
(1 − Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1/N.

Proof. Suppose the events S0[1] = 131 and S0[2] = 128 occur after the KSA. For
i = 1, j is updated as S0[1] = 131. After S0[1] and S0[131] are swapped, S1[131]
becomes 131. For i = 2, j is updated as 131+S1[2] = 131+S0[2] = 131+128 = 3,
and S1[2] and S1[3] are swapped. Then S2[3] = 128 is obtained. Finally, for
i = 3, j is updated as 3 + S2[3] = 3 + 128 = 131. After S2[3] and S2[131] are
swapped, S3[3] = 131 and S3[131] = 128 holds. Then, a third output byte Z3 is
Z3 = S3[S3[3] + S3[131]] = S3[131 + 128] = S3[3] = 131. Thus, when S0[1] = 131
and S0[2] = 128 hold, Z3 = 131 holds with probability one. Figure 2 depicts this
event.

Assuming that in other cases, that is when S0[1] �= 131 or S0[2] �= 128, the
event Z3 = 131 holds with probability of 1/N , the probability of Pr(Z3 = 131)
is estimated as

Pr(Z3 = 131) ≈ Pr(S0[1] = 131) · Pr(S0[2] = 128) +
(1 − Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1/N. ��

When N = 256, by Proposition 1, Pr(S0[1] = 131) and Pr(S0[2] = 128) are
estimated as

Pr(S0[1] = 131) =
1

256
·
((

255
256

)256−1−1

+
(

255
256

)131
)

= 0.0037848,

Pr(S0[2] = 128) =
1

256
·
((

255
256

)256−2−1

+
(

255
256

)128
)

= 0.0038181.
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Thus, Pr(Zr = 131) is computed as

Pr(Z3 = 131) ≈ 0.0039206 = 2−8 · (1 + 2−8.089).

Since experimental value of this bias for 240 randomly-chosen keys is obtained as
0.0039204 = 2−8 · (1 + 2−8.109), the theoretical value is correctly approximated.

Let us compare it to the bias of Z3 = 0 of the MPS attack [6,8]. The exper-
imental value for 240 randomly-chosen keys is obtained as

Pr(Z3 = 0) = 0.0039116 = 2−8 · (1 + 2−9.512).

Thus, the bias of Z3 = 131 is stronger than that of Z3 = 0.
We should utilize Z3 = 131 instead of Z3 = 0 for the efficient plaintext

recovery attack. When Z3 = 131 and Z3 = 0 are jointly used, two candidates
of P3 remain. Thus, in order to detect one correct value of P3, the only use of
Z3 = 131 is more efficient.

3.3 Bias of Zr = r for 3 ≤ r ≤ N − 1

We also present a new bias in the event Zr = r for 3 ≤ r ≤ N − 1, whose
probabilities are very close to those of Zr = 0 [8], and the new biases are stronger
than those of Zr = 0 in some rounds. Thus, for an efficient attack, we need to
carefully consider which biases are stronger in each round. The probability of
Zr = r is given as Theorem 8.

Theorem 8. Pr(Zr = r) for 3 ≤ r ≤ N − 1 is approximately

Pr(Zr = r) ≈ pr−1,0 · 1
N

+ pr−1,r · 1
N

· N − 2
N

+

(1 − pr−1,0 · 1
N

− pr−1,r · 1
N

− (1 − pr−1,0) · 1
N

· 2) · 1
N

,

where pr−1,0 = Pr(Sr−1[r] = 0) and pr−1,r = Pr(Sr−1[r] = r).

Proof. Let ir and jr be r-th i and j, respectively. For ir = r, an output Zr is
expressed as

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr[r] + Sr−1[r]].

Then, let us consider four independent cases.

Case 1 : Sr−1[r] = 0 ∧ Sr[r] = r
Case 2 : Sr−1[r] = r ∧ Sr[r] = jr − r ∧ jr �= r, r + r
Case 3 : Sr−1[r] �= 0 ∧ Sr[r] = r − Sr−1[r]
Case 4 : Sr−1[r] �= 0 ∧ Sr[r] = r

In Case 1 and Case 2, the output is always Zr = r. On the other hand, in Case
3 and Case 4, the output is not Zr = r.
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Case 1 : Sr−1[r] = 0 ∧ Sr[r] = r
The output is expressed as Zr = Sr[Sr[r] + Sr−1[r]] = Sr[r + 0] = Sr[r] = r (see
Fig. 3). Then, the probability of Zr = r is one. Here Sr[r] is chosen by pointer
j. Since jr for r ≥ 3 behaves randomly [8], Sr[r] is assumed to be uniformly
random. it is estimated as

Pr(Sr−1[r] = 0 ∧ Sr[r] = r) = pr−1,0 · 1
N

.

Case 2 : Sr−1[r] = r ∧ Sr[r] = jr − r ∧ jr �= r, r + r
The output is expressed as Zr = Sr[Sr[r] + Sr−1[r]] = Sr[jr − r + r] = Sr[jr] =
Sr−1[r] = r (see Fig. 4). Then, the probability of Zr = r is one. Similar to Case
1, Sr[r] is assumed to be uniformly random.

When jr = r, the probability of Zr = r is zero because of the relation of
Zr = Sr[Sr[r] + Sr−1[r]] = Sr[0 + r] = Sr[r] = 0. Also, when jr = r + r, since
Sr[r] = r and Zr = Sr[Sr[r] +Sr−1[r]] = Sr[r + r] �= r, the probability of Zr = r
is zero. Thus, the conditions of jr �= r, r + r are necessary for Zr = r. Then, it
is estimated as

Pr(Sr−1[r] = r ∧ Sr[r] = jr − r ∧ jr �= r, r + r) = pr−1,r · 1
N

· N − 2
N

.

Case 3 : Sr−1[r] �= 0 ∧ Sr[r] = r − Sr−1[r]
The equation of Zr = Sr[r − Sr−1[r] + Sr−1[r]] = Sr[r] holds. Then, Sr[r] =
r − Sr−1[r] is not r, because Sr−1[r] is not 0. Thus, it is estimated as

Pr(Sr−1[r] �= 0 ∧ Sr[r] = r − Sr−1[r]) = (1 − pr−1,0) · 1
N

.

Case 4 : Sr−1[r] �= 0 ∧ Sr[r] = r
The output is expressed as Zr = Sr[r + Sr−1[r]]. According to the equation of
Sr−1[r] �= 0, The probability of Zr = r is zero. Thus, it is estimated as

Pr(Sr−1[r] �= (0, r) ∧ Sr[r] = r − Sr−1[r]) = (1 − pr−1,0) · 1
N

.

Assuming that in other cases, Zr = r holds with probability of 1/N , the
probability of Pr(Zr = r) is estimated as

Pr(Zr = r) ≈ pr−1,0 · 1
N

+ pr−1,r · 1
N

· N − 2
N

+

(1 − pr−1,0 · 1
N

− pr−1,r · 1
N

− (1 − pr−1,0) · 1
N

· 2) · 1
N

.

��
Here, pr−1,r and pr−1,0 are obtained from Theorem 4. Figure 5 shows the com-

parison of theoretical values and experimental values of Zr = r for 240 randomly-
chosen keys when N = 256. Since the theoretical values do not exactly coincide
with the experimental values, we do not claim that Theorem 8 completely prove
this bias. We guess that several minor events are not covered in our approach.
However, the order of the bias seems to be well matched. At least it can be said
that the main event causing this bias is discovered.



Full Plaintext Recovery Attack on Broadcast RC4 189

0 256

0Sr - 1

0

Zr = Sr[Sr[r] + Sr[j]] = Sr[r] = r

0

i = r

Sr

j

i = r j 256

r

r

Swap(Sr - 1[i], Sr - 1[j])

Fig. 3. Event (Case 1) for bias of
Zr = r

0 256

Sr - 1

0

Zr = Sr[Sr[r] + Sr[j]] = Sr[j] = r

i = r

Sr

j

i = r j 256

r

r

Swap(Sr - 1[i], Sr - 1[j])

j - r

j - r

Fig. 4. Event (Case 2) for bias of
Zr = r

0.00385

0.00386

0.00387

0.00388

0.00389

0.00390

0.00391

0.00392

0.00393

0.00394

 0  50  100  150  200  250

P
ro

ba
bi

lit
y 

of
 th

e 
ev

en
t Z

 =
 r

r

Round number (r)

Experimental value
Theoretical value

Random

Fig. 5. Theoretical values and experimental values of Zr = r

3.4 Extended Keylength-Dependent Biases

Extended keylength-dependent biases, which are extensions of keylength-
dependent biases [5,17], are the bias of Z� = −� when the key length is � bytes.
For example, when using a 128-bit key (16 bytes), Z16 is biased to −16 (= 240).
In addition to it, we show that when the key length is � bytes, Zx·� is also
biased to −x · � (x = 2, 3, 4, 5, 6, 7), e.g., Zr = −r for r = 32, 48, 64, 80, 96,
112, assuming � = 16. Importantly, the extended keylength-dependent biases are
much stronger than the other known biases such as Zr = 0 and Zr = r. Table 1
shows experimental values of the extended keylength-dependent bias Zr = −r,
Zr = 0, and Zr = r for 240 randomly-chosen keys, when r is a multiple of the
key length, � = 16 in this case.

The probability of these biases is given as Theorem 9 (the proof is in Appen-
dix A).

Theorem 9. When r = x · � (x = 1, 2, . . . , 7), the probability of Pr(Zr = −r) is
approximately

Pr(Zr = −r) ≈ 1
N2

+
(

1 − 1
N2

)
· γr + (1 − δr) · 1

N
,
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Table 1. Experimental values of Zr = −r, Zr = 0 and Zr = r

r Pr(Zr = −r) Pr(Zr = 0) Pr(Zr = r)

16 2−8 · (1 + 2−4.811) 2−8 · (1 + 2−7.714) 2−8 · (1 + 2−7.762)
32 2−8 · (1 + 2−5.383) 2−8 · (1 + 2−7.880) 2−8 · (1 + 2−7.991)
48 2−8 · (1 + 2−5.938) 2−8 · (1 + 2−8.043) 2−8 · (1 + 2−8.350)
64 2−8 · (1 + 2−6.496) 2−8 · (1 + 2−8.244) 2−8 · (1 + 2−8.664)
80 2−8 · (1 + 2−7.224) 2−8 · (1 + 2−8.407) 2−8 · (1 + 2−9.052)
96 2−8 · (1 + 2−7.911) 2−8 · (1 + 2−8.577) 2−8 · (1 + 2−9.351)
112 2−8 · (1 + 2−8.666) 2−8 · (1 + 2−8.747) 2−8 · (1 + 2−9.732)
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16, 32, 48, 64, 80, 96, 112

where

γr =
1

N2
·
(

1 − r + 1
N

)

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+2r−4

,

and δr = Pr(Sr[jr] = 0) = Pr(Sr−1[r] = 0).

Figure 6 shows our experimental values for 240 randomly-chosen keys and
theoretical values of these extended keylength-dependent biases. Since theoreti-
cal and experimental values have almost the same value, theoretical values are
correctly approximated.

3.5 Cumulative Bias Set of First 257 Bytes

When N = 256, a set of strong biases in Z1, Z2, . . . , Z255 is given in Table 2.
Our new biases, namely the ones involving Z1, Z3, Z32, Z48, Z64, Z80, Z96,
Z112, are included. Here, let us compare between the biases of Zr = 0 [6,8] and
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Zr = r, whose probabilities are of the same order, and are very close in the range
3 ≤ r ≤ 255. According to our experiments with 240 randomly-chosen keys (see
Fig. 7), Zr = r is stronger than Zr = 0 in Z5, Z6, . . . , Z31. Thus we choose the
bias Zr = r in Z5, Z6, . . . , Z31 and the bias Zr = 0 in the other cases as the
strongest bias except for the cases involving Z3, Z16, Z32, Z48, Z64, Z80, Z96,
Z112. Besides, we experimentally found two new biases for the events Z256 �= 0
and Z257 = 0, and added these to our bias set, while we could not provide
the theoretical proofs. Note that it is experimentally confirmed that biases of
Z2, Z3, . . . , Z257 included in our bias set are strongest known biases amongst all
the positive and negative biases that have been discovered for these bytes.

For the first time, we propose a cumulative list of strongest known biases in
the initial bytes of RC4 that can be exploited in a practical attack against the
broadcast mode of the cipher.

4 Experimental Results of Plaintext Recovery Attack

We demonstrate a plaintext recovery attack using our cumulative bias set of first
257 bytes by a computer experiment, when N = 256, and estimate the number
of required ciphertexts and the probability of success for our attack. The details
of our experiment are as follows.

Step 1. Randomly generate a target plaintext P .
Step 2. Encrypt P with 2x randomly-chosen keys, and obtain 2x ciphertexts

C.
Step 3. Find most frequent byte in each byte, and extract Pr, assuming Pr =

Cr ⊕ Zr where Zr is the value of the keystream byte from our bias set.

In the case of P1, the method mentioned in Sect. 3.1 is used for efficient extraction
of P1. Specifically, after P2 is recovered, we extract P1 by using the conditional
bias such that Z1 = 0 when Z2 = 0.

We perform the above experiment for 256 different plaintexts in the cases
where 26, 27, . . . , 235 ciphertexts with randomly-chosen keys are given. Figure 8
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Table 2. Cumulative bias set of first 257 bytes

r Strongest known bias of Zr Prob.(Theoretical) Prob.(Experimental)

1 Z1 = 0|Z2 = 0 (Our) 2−8 · (1 + 2−1.009) 2−8 · (1 + 2−1.036)
2 Z2 = 0 [11] 2−8 · (1 + 20) 2−8 · (1 + 20.002)
3 Z3 = 131 (Our) 2−8 · (1 + 2−8.089) 2−8 · (1 + 2−8.109)
4 Z4 = 0 [8] 2−8 · (1 + 2−7.581) 2−8 · (1 + 2−7.611)
5–15 Zr = r (Our) max: 2−8 · (1 + 2−7.627) max: 2−8 · (1 + 2−7.335)

min: 2−8 · (1 + 2−7.737) min: 2−8 · (1 + 2−7.535)

16 Z16 = 240 [5] 2−8 · (1 + 2−4.841) 2−8 · (1 + 2−4.811)
17–31 Zr = r (Our) max: 2−8 · (1 + 2−7.759) max: 2−8 · (1 + 2−7.576)

min: 2−8 · (1 + 2−7.912) min: 2−8 · (1 + 2−7.839)
32 Z32 = 224 (Our) 2−8 · (1 + 2−5.404) 2−8 · (1 + 2−5.383)
33–47 Zr = 0 [8] max: 2−8 · (1 + 2−7.897) max: 2−8 · (1 + 2−7.868)

min: 2−8 · (1 + 2−8.050) min: 2−8 · (1 + 2−8.039)
48 Z48 = 208 (Our) 2−8 · (1 + 2−5.981) 2−8 · (1 + 2−5.938)
49–63 Zr = 0 [8] max: 2−8 · (1 + 2−8.072) max: 2−8 · (1 + 2−8.046)

min: 2−8 · (1 + 2−8.224) min: 2−8 · (1 + 2−8.238)
64 Z64 = 192 (Our) 2−8 · (1 + 2−6.576) 2−8 · (1 + 2−6.496)
65–79 Zr = 0 [8] max: 2−8 · (1 + 2−8.246) max: 2−8 · (1 + 2−8.223)

min: 2−8 · (1 + 2−8.398) min: 2−8 · (1 + 2−8.376)
80 Z80 = 176 (Our) 2−8 · (1 + 2−7.192) 2−8 · (1 + 2−7.224)
81–95 Zr = 0 [8] max: 2−8 · (1 + 2−8.420) max: 2−8 · (1 + 2−8.398)

min: 2−8 · (1 + 2−8.571) min: 2−8 · (1 + 2−8.565)
96 Z96 = 160 (Our) 2−8 · (1 + 2−7.831) 2−8 · (1 + 2−7.911)
97–111 Zr = 0 [8] max: 2−8 · (1 + 2−8.592) max: 2−8 · (1 + 2−8.570)

min: 2−8 · (1 + 2−8.741) min: 2−8 · (1 + 2−8.722)
112 Z112 = 144 (Our) 2−8 · (1 + 2−8.500) 2−8 · (1 + 2−8.666)
113–255 Zr = 0 [8] max: 2−8 · (1 + 2−8.763) max: 2−8 · (1 + 2−8.760)

min: 2−8 · (1 + 2−10.052) min: 2−8 · (1 + 2−10.041)
256 Z256 = 0 (negative bias) (Our) N/A 2−8 · (1− 2−9.407)
257 Z257 = 0 (Our) N/A 2−8 · (1 + 2−9.531)

shows the probability of successfully recovering the values of P1, P2, P3, P5, and
P16 for each amount of ciphertexts. Here, the success probability is estimated by
the number of correctly-extracted plaintexts for each byte. For example, if the
target byte of only 100 plaintexts out of 256 plaintexts can be correctly recovered,
the probability is estimated as 0.39 (= 100/256). The second byte of plaintext P2

can be extracted from 212 ciphertexts with probability one. In previous attacks
such as the MS attack [11] and the MPS attack [8], the number of required
ciphertexts is theoretically estimated only in terms of the lower bound Ω. Our
results first reveal the concrete number of ciphertexts, and the corresponding
success probability.

Figure 9 shows that the success probability of extracting each byte Pr (1 ≤
r ≤ 257) when 224, 228, 232, 235 ciphertexts are given. Note that the probability
of a random guess is 1/256 = 0.00390625. Given 232 ciphertexts, all bytes of
P1, P2, . . . , P257 can be extracted with probability more than 0.5. In addition,
most bytes can be extracted with probability more than 0.8. Also, the bytes
having stronger bias such as P1, P2, P16, P32, P48, P64, are extracted from



Full Plaintext Recovery Attack on Broadcast RC4 193

0.0

0.2

0.4

0.6

0.8

1.0

 5  10  15  20  25  30  35

S
uc

ce
ss

 P
ro

ba
bi

lit
y

The number of ciphertexts (2 )x

P1
P2
P3
P5

P16

Fig. 8. Relation of the number of cipher-
texts and success probability of recovering
P1, P2, P3, P5, and P16

0.0

0.2

0.4

0.6

0.8

1.0

 0  50  100  150  200  250

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Round number (r)

224

228

232

235

Fig. 9. Success probability of extracting
Pr (1 ≤ r ≤ 257) with different number of
samples (one candidate)

0.0

0.2

0.4

0.6

0.8

1.0

 0  50  100  150  200  250

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Round number (r)

224

228

232

234

Fig. 10. Success probability of extracting
Pr (1 ≤ r ≤ 257) with different number
of samples (two candidates)

0

50

100

150

200

250

 5  10  15  20  25  30  35

N
um

be
r o

f p
la

in
te

xt
 b

yt
es

The number of ciphertexts (2 )x

one candidate

Fig. 11. The number of plaintext bytes
that are extracted with five times higher
than that of a random guess

only 224 ciphertexts with high probability. However, even if 235 ciphertexts are
given, the probability does not become one in some bytes. It is guessed that in
such bytes, the difference of probability of the strongest known bias (as in our
cumulative bias set) and the second one is very small. Thus, more ciphertexts
are required for an attack with probability one.

We additionally utilize the second most frequent byte in the ciphertexts for
extracting plaintext bytes. In other words, two candidates are obtained by using
the relation of Pr = Cr⊕Zr, where Cr are most and second most frequent cipher-
text bytes and Zr is chosen from our bias set. This result is shown in Fig. 10, and
its success probability is estimated as the probability that the guess for the cor-
rect plaintext byte is narrowed down to two possible candidates. Note that the
probability of a random guess for such a scenario is 2/256 = 0.0078125. Given
234 ciphertexts, each byte of P1, P2, . . . , P257 can be extracted with probability
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one. In this case, although we can not obtain the correct byte of the plaintext,
it is narrowed down to only two candidates. For the experiments of Figs. 9, 10,
it requires about one day if one uses a single CPU core (Intel(R) Core(TM) i7
CPU 920@ 2.67 GHz) to obtain the result of one plaintext, where 256 plaintexts
are used.

Figure 11 shows the number of plaintext bytes that are extracted with five
times higher probability than that of a random guess, i.e., where the success
probability is more than 5

256 . Given 229 ciphertexts, all the plaintext bytes
P1, P2, . . . , P257 are guessed with much higher probability than random guesses.

5 How to Recover Bytes of the Plaintext After P258

In this section, we propose an efficient method to recover later bytes of the
plaintext, namely bytes after P258. The method using our bias in initial bytes
is not directly applied to extract these bytes, because it exploits biases existing
in only the initial keystream. For the extraction of the later bytes, a long-term
bias, which occurs in any keystream bytes, is utilized. In particular, the digraph
repetition bias (also called ABSAB bias) proposed by Mantin [10], which is the
strongest known long-term bias, is used. Combining it with our cumulative bias
set of Z1, Z2, . . . , Z257, we can sequentially recover bytes of a plaintext, even
after P258, given only the ciphertexts.

5.1 Best Known Long-Term Bias (ABSAB bias)

ABSAB bias is statistical biases of the digraph distribution in the RC4 keystream
[10]. Specifically, digraphs AB tend to repeat with short gaps S between them,
e.g., ABAB, ABCAB and ABCDAB, where gap S is defined as zero, C, and
CD, respectively. The detail of ABSAB bias is expressed as follows,

Zr || Zr+1 = Zr+2+G || Zr+3+G for G ≥ 0, (1)

where || is a concatenation. The probability that Eq. (1) holds is given as Theo-
rem 10.

Theorem 10 [10]. For small values of G the probability of the pattern ABSAB
in RC4 keystream, where S is a G-byte string, is (1 + e(−4−8G)/N/N) · 1/N2.

For the enhancement of these biases, combining use of ABSAB biases with
different G is considered by using the following lemma for the discrimination.

Lemma 1 [10]. Let X and Y be two distributions and suppose that the indepen-
dent events {Ei: 1 ≤ i ≤ k } occur with probabilities pX(Ei) = pi in X and
pY (Ei) = (1 + bi) · pi in Y. Then the discrimination D of the distributions is∑

i pi · b2i .

The number of required samples for distinguishing the biased distribution from
the random distribution with probability of 1−α is given as the following lemma.
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Lemma 2 [10]. The number of samples that is required for distinguishing two
distributions that have discrimination D with success rate 1 − α (for both direc-
tions) is (1/D) · (1 − 2α) · log2

1−α
α .

This lemma shows that in the broadcast RC4 attack, given D and the number
of samples Nciphertext, the success probability for distinguishing the distribution
of correct candidate plaintext byte (the biased distribution) from the distribution
of one wrong candidate of plaintext byte (a random distribution) is a constant.
Prdistinguish denotes this probability.

5.2 Plaintext Recovery Method Using ABSAB Bias and Our Bias
Set

The following equation allows us to efficiently use ABSAB bias in the broadcast
RC4 attack.

(Cr || Cr+1) ⊕ (Cr+2+G || Cr+3+G)
= (Pr ⊕ Zr || Pr+1 ⊕ Zr+1) ⊕ (Pr+2+G ⊕ Zr+2+G || Pr+3+G ⊕ Zr+3+G)
= (Pr ⊕ Pr+2+G ⊕ Zr ⊕ Zr+2+G || Pr+1 ⊕ Pr+3+G ⊕ Zr+1 ⊕ Zr+3+G). (2)

Assuming that Eq. (1) (the event of the ABSAB bias) holds, the relation of
plaintexts and ciphertexts without keystreams is obtained, i.e., (Cr || Cr+1)
⊕ (Cr+2+G || Cr+3+G) = (Pr ⊕ Pr+2+G || Pr+1 ⊕ Pr+3+G) = (Pr || Pr+1) ⊕
(Pr+2+G || Pr+3+G).

However, in the straight way, we can not combine these relations with dif-
ferent G to enhance the biases, as we do in the distinguishing attack setting.
When the value of G is different, the above equation is surely different even if
r is properly chosen. For example, in the cases of (r and G = 1) and (r + 1
and G = 0), right parts of equations are given as (Pr || Pr+1) ⊕ (Pr+3 || Pr+4)
and (Pr+1 || Pr+2) ⊕ (Pr+3 || Pr+4), respectively. Thus, due to independent use
of these equations with different G, we are not able to efficiently make use of
ABSAB bias in the broadcast setting.

In order to get rid of this problem, we give a method that sequentially recovers
the plaintext after P258 with the knowledge of pre-guessed plaintext bytes. For
example, in the cases of (r and G = 1) and (r + 1 and G = 0), if Pr, Pr+1,
and Pr+2 are already known, the two equations with respected to (Pr+3 || Pr+4)
is obtained by transposing Pr, Pr+1, and Pr+2 to the left part of the equation.
Then, these equations with different G can be merged.

Suppose that P1, P2, . . . , P257 are guessed by our cumulative bias set of the
initial bytes, where the success probability of finding these bytes are evaluated
in Sect. 4. Then we aim to sequentially find Pr for r = 258, 259, . . . , PMAX by
using ABSAB biases of G = 0, 1, . . . , GMAX . The detailed procedures are given
as follows.
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Step 1. ObtainC258−3−GMAX
, C258−2−GMAX

, . . . , CPMAX
in each ciphertext, and

make frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G)⊕(Cr−1 || Cr) for all
r = 258, 259, . . . , PMAX and G = 0, 1, . . . , GMAX , where (Cr−3−G ||
Cr−2−G) ⊕ (Cr−1 || Cr) = (Pr−3−G || Pr−2−G) ⊕ (Pr−1 || Pr) only if Eq. (1)
holds.

Step 2. Set r = 258.
Step 3. Guess the value of Pr.
Step 3.1. For G = 0, 1, . . . , GMAX , convert Tcount[r][G] into a frequency table

Tmarge[r] of (Pr−1 || Pr) by using pre-guessed values of Pr−3−GMAX
, . . . ,

Pr−2, and merge counter values of all tables.
Step 3.2. Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r]

with knowledge of the Pr−1. To put it more precisely, using a pre-guessed
value of Pr−1, only Tables Tmarge[r] corresponding to the value of Pr−1 is
taken into consideration. Finally, regard most frequency one in table Tguess[r]
as the correct Pr.

Step 4. Increment r. If r = PMAX +1, terminate this algorithm. Otherwise, go
to Step 3.

The bytes of the plaintext are correctly extracted from Tmarge[r] only if it
is distinguished from other N2 − 1 wrong candidate distributions. Assuming
that wrong candidates are randomly distributed, a probability of the correct
extraction from Tmarge[r] is estimated as (Prdistingush)N2−1. In Step 3.2, our
method converts Tmarge[r] into Tguess[r] by using knowledge of Pr−1, where
Tguess[r] has N−1 wrong candidates. It enables us to reduce the number of wrong
candidates from N2 − 1 to N − 1. Then, a probability of the correct extraction
from Tguess[r] is estimated as (Prdistingush)N−1, which is 1/(Prdistingush)N+1

times higher than that of Tmarge[r]. Therefore, the table reduction technique of
Step 3.2 enables us to further optimize the attack.

Experimental Results. We perform practical experiments using our algorithm
to find P258, P259, P260, and P261 (PMAX = 261). As a parameter of ABSAB
bias, GMAX = 63 is chosen, because the increase of D is converged around
GMAX = 63. Then, D is estimated as D = 2−28.0. The success probability of
our algorithm for recovering Pr (r ≥ 258) when 230 to 234 ciphertexts are given
is shown in Table 3, where the number of tests is 256. Note that P1, P2, . . . , P257

are obtained by using our bias set (candidate one) with success probability as
shown in Fig. 9. For this experiment, it requires about one week if one uses a
single CPU core (Intel(R) Core(TM) i7 CPU 920@ 2.67 GHz) to get the result
of one plaintext, where 256 plaintexts are used.

Interestingly, given 234 ciphertexts, P258, P259, P260, and P261 can be recov-
ered with probability one, while the success probability of some bytes in P1,
P2, . . . , P257 is not one. Combining multiple biases allows us to omit negative
effects of some uncorrected value of P1, P2, . . . , P257. Although our experiment
is performed until P261, the success probability is expected not to change even
in the case of later bytes, because ABSAB bias is a long-term bias.
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Table 3. Success Probability of our algorithm for recovering Pr (r ≥ 258).

# of ciphertexts P258 P259 P260 P261

230 0.003906 0.003906 0.000000 0.000000
231 0.039062 0.007812 0.003906 0.007812
232 0.386719 0.152344 0.070312 0.027344
233 0.964844 0.941406 0.921875 0.902344
234 1.000000 1.000000 1.000000 1.000000

Let us discuss the success probability of extracting bytes after P262 when
234 ciphertexts are given. According to Lemma 2 and D = 2−28.0, 234 cipher-
texts allow us to distinguish an RC4 keystream from a random stream with the
probability of Prdistinguish = 1 − 10−19. Then, assuming that wrong candidates
are randomly distributed, the probability of correctly extracting the candidate
from (N − 1) wrong candidates is estimated as (Prdistinguish)N−1. Therefore,
our method enables to extract consecutive (257 + X) bytes of a plaintext with
the probability of ((Prdistinguish)N−1)X = (Prdistinguish)(N−1)·X . For instance,
when X = 240 and X = 250, the success probabilities are estimated as 0.99997
and 0.97170, respectively.

As a result, by using our sequential method, a large amount of plaintext
bytes, e.g., first 250 bytes ≈ 1000 T bytes, is recovered from 234 ciphertext with
a probability of almost one. Therefore, it can be said that our attack is a full
plaintext recovery attack on broadcast RC4, the first of its kind proposed in the
literature.

6 Conclusion

In this paper, we have evaluated the practical security of RC4 in the broadcast
setting. After the introduction of four new biases of the keystream of RC4, i.e.,
the conditional bias of Z1, the biases of Z3 = 131 and Zr = r for 3 ≤ r ≤ 255, and
the extended keylength-dependent biases, a cumulative list of strongest known
biases in Z1, Z2, . . . , Z257 is given. Then, we demonstrate a practical plaintext
recovery attack using our bias set by a computer experiment. As a result, most
bytes of P1, P2, . . . , P257 could be extracted with probability more than 0.8 using
232 ciphertexts encrypted by randomly-chosen keys. Finally, we have proposed
an efficient method to extract bytes of plaintexts after P258. Our attack is able to
recover any plaintext byte from only ciphertexts generated using different keys.
For example, first 250 bytes of the plaintext are expected to be recovered from
234 ciphertexts with high probability.

Note that our attack on broadcast RC4, as proposed in this paper, utilizes
the advantage of sequential recovery of plaintext bytes. If the initial 256/512/768
bytes of the keystream are suppressed in the protocol, as recommended in case
of RC4 usages [14], our attack does not work any more. However, widely-used
protocols such as SSL/TLS use initial bytes of the keystream. For SSL/TLS,
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the broadcast setting is converted into the multi-session setting where the target
plaintext block are repeatedly sent in the same position in the plaintexts in
multiple SSL/TLS sessions [2].

Our evaluation reveals that broadcast RC4 is practically vulnerable to the
plaintext recovery attacks as moderate amount of ciphertexts, i.e., 224 to 234

ciphertexts generated by different keys, leaks considerable information about
the plaintext. Thus, RC4 is not to be recommended for the encryption in case
of the typical broadcast setting and multi-session setting of SSL/TLS.
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A Proof of Theorem 9

In order to prove Theorem 9, we give following Lemma 3 and Theorem 11, which
are extensions of Lemma 2 and Theorem 3 in [6]. Let (SK

r , iKr , jK
r ) be (S, i, j) of

the r-th round in the KSA, respectively.

Lemma 3. When r = x · � (x = 1, 2, . . . , 7), the probability of Pr(SK
r+1[r − 1] =

−r ∧ SK
r+1[r] = 0) is approximately

Pr(SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0) ≈ 1
N2

+
(

1 − 1
N2

)
· αr,

where αr = 1
N · (

1 − 3
N

)r−2 · (
1 − r+1

N

)
.

Proof. The event of (SK
r+1[r−1] = −r∧SK

r+1[r] = 0) consists of following events.
In the first round of the KSA, when iK1 = 0 and jK

1 = K[0], the value 0 is
swapped for the value of SK

0 [K[0]] with probability of one. The index jK
1 requires

jK
1 = K[0] �∈ {r − 1, r,−r}, so that the values r − 1, r, −r are not swapped in

the first round of the KSA, respectively. In addition to it, it is required that
K[0] �∈ {1, 2, . . . , r − 2}, so that the value 0 at index K[0] is not touched by
these values of iK during the next r − 2 rounds of the KSA. This happens with
probability of

(
1 − r+1

N

)
. From round 2 to r − 1 of the KSA, jK

2 , jK
3 , . . . , jK

r−1

do not touch the three indices {r,−r,K[0]}, respectively. This happens with
probability of

(
1 − 3

N

)r−2. In the r-th round of the KSA, if the index jK
r has

the index −r, which happens with probability of 1/N , the value −r is swapped
into the index r − 1. In the (r + 1)-th round of the KSA, when iKr+1 = r and
jK
r+1 = jK

r + SK
r [r] + K[r] = −r + r + K[0] = K[0], the value SK

r [r] is swapped
for the value SK

r [K[0]], and from the above discussion, this index contains the
value 0. Considering the above events to be independent, the probability that
all of above events happen together is given by αr = 1

N · (1 − 3
N

)r−2 · (1 − r+1
N

)
.
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Fig. 12. Event for bias of SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0

Assuming that in other cases, (SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0) holds with
probability of 1/N2, the probability of Pr(SK

r+1[r − 1] = −r ∧ SK
r+1[r] = 0) is

estimated as

Pr(SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0) ≈ 1
N2

+
(

1 − 1
N2

)
· αr.

��
Figure 12 shows the major path of SK

r+1[r − 1] = −r ∧ SK
r+1[r] = 0.

Theorem 11. When r = x · � (x = 1, 2, . . . , 7), the probability of Pr(Zr =
−r ∧ Sr[jr] = 0) is approximately

Pr(Zr = −r ∧ Sr[jr] = 0) ≈ 1
N2

+
(

1 − 1
N2

)
· γr,

where

γr =
1

N2
·
(

1 − r + 1
N

)

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+2r−4

.

Proof. From the algorithm of the PRGA, we have jr = jr−1 + Sr−1[r]. Hence,
Sr[jr] = Sr−1[r] = 0 implies jr = jr−1. In this case, an output Zr is expressed
as

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr−2[r − 1]].

Then, let us consider Pr(Sr[Sr−2[r − 1]] = −r ∧ Sr[jr] = 0).
The major path for the joint event (SK

r+1[r−1] = −r∧SK
r+1[r] = 0) constitutes

the first part of our main path leading to the target event. The second part can
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be constructed as follows. In an index y ∈ [r + 1, N − 1], if the jK do not
touch the index y, we have SK

y [y] = y with probability of
(
1 − 1

N

)y. From round
r + 2 to y of the KSA, jK do not touch the two indices {r − 1, r}, respectively.
This happens with probability of

(
1 − 2

N

)y−r−1. In the (y + 1)-th round of the
KSA, if the index jK

y+1 has the index r − 1, which happens with probability of
1/N , the value y is swapped for the value −r. Then, the value −r moves to
SK

y+1[y] = SK
y+1[S

K
y+1[r − 1]]. For the remaining N − y − 1 rounds of the KSA

and for the first r − 1 rounds of the PRGA, the jK or j values should not touch
the indices {r − 1, S[r − 1], r}, respectively. This happens with probability of(
1 − 3

N

)N−y+r−2. Now, we have (Sr−1[Sr−2[r − 1]] = −r ∧ Sr−1[r] = 0). And
then, we should also have jr �∈ {r−1, y} for Sr[Sr−2[r−1]] = −r. The probability
of this condition is

(
1 − 2

N

)
. Then, from algorithm of the PRGA, the output is

Zr = Sr[Sr−2[r − 1]] = −r. Considering the above events to be independent, the
probability that the second part events happen together is given by

α′
r =

1
N

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+r−2

.

Then, the probability that all of the events happen together is estimated as

γr = αr · α′
r

=
1

N2
·
(

1 − r + 1
N

)

·
N−1∑

y=r+1

(
1 − 1

N

)y

·
(

1 − 2
N

)y−r

·
(

1 − 3
N

)N−y+2r−4

.

Assuming that in other cases, Zr = −r ∧ Sr[jr] = 0 holds with probability of
1/N2, the probability of Pr(Zr = −r ∧ Sr[jr] = 0) is approximately

Pr(Zr = −r ∧ Sr[jr] = 0) ≈ 1
N2

+
(

1 − 1
N2

)
· γr.

��
Figures 13, 14 show the major path of Zr = −r ∧ Sr[jr] = 0.
Using these extended joint events, the theorem 9 is proved as follows.

Proof. We can write Pr(Zr = −r) = Pr(Zr = −r ∧ Sr[jr] = 0) + Pr(Zr =
−r ∧ Sr[jr] �= 0), where the first term is given by Theorem 11. When Sr[jr] �= 0,
the event Zr = −r can be assumed to hold with probability of 1/N . Then, the
probability of Pr(Zr = −r) is estimated as

Pr(Zr = −r) ≈ 1
N2

+
(

1 − 1
N2

)
· γr + (1 − δr) · 1

N
. ��
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4. Golić, J.D.: Linear statistical weakness of alleged RC4 keystream generator. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer, Hei-
delberg (1997)

5. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: Proof of empirical RC4 biases and
new key correlations. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 151–168. Springer, Heidelberg (2012)

6. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: (Non-)random sequences from
(Non-)random permutations - analysis of RC4 stream cipher. J. Cryptol 27(1),
67–108 (2014). http://dblp.uni-trier.de/rec/bibtex/journals/joc/GuptaMPS14

http://dblp.uni-trier.de/rec/bibtex/journals/joc/GuptaMPS14


202 T. Isobe et al.

7. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis meth-
ods for (alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol.
1514, pp. 327–341. Springer, Heidelberg (1998)

8. Maitra, S., Paul, G., Sen Gupta, S.: Attack on broadcast RC4 revisited. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 199–217. Springer, Heidelberg (2011)

9. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel (2001). http://www.wisdom.weizmann.ac.il/itsik/RC4/
rc4.html

10. Mantin, I.: Predicting and distinguishing attacks on RC4 keystream generator. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

11. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, p. 152. Springer, Heidelberg (2002)

12. Matsui, M.: Key collisions of the RC4 stream cipher. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 38–50. Springer, Heidelberg (2009)

13. Maximov, A., Khovratovich, D.: New state recovery attack on RC4. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

14. Mironov, I.: (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

15. Paul, G., Maitra, S.: Permutation after RC4 key scheduling reveals the secret key.
In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 360–
377. Springer, Heidelberg (2007)

16. Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

17. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Discovery and exploitation of new
biases in RC4. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 74–91. Springer, Heidelberg (2011)

http://www.wisdom.weizmann.ac.il/itsik/RC4/rc4.html
http://www.wisdom.weizmann.ac.il/itsik/RC4/rc4.html

	Full Plaintext Recovery Attack on Broadcast RC4
	1 Introduction
	1.1 Our Contribution

	2 Known Attacks on Broadcast RC4
	2.1 Mantin-Shamir (MS) Attack
	2.2 Maitra, Paul and Sen Gupta (MPS) Attack

	3 New Biases : Theory and Experiment
	3.1 Bias of Z1 = 0 | Z2 = 0
	3.2 Bias of Z3 = 131
	3.3 Bias of Zr = r for 3 r N - 1
	3.4 Extended Keylength-Dependent Biases
	3.5 Cumulative Bias Set of First 257 Bytes

	4 Experimental Results of Plaintext Recovery Attack
	5 How to Recover Bytes of the Plaintext After P258
	5.1 Best Known Long-Term Bias (ABSAB bias)
	5.2 Plaintext Recovery Method Using ABSAB Bias and Our Bias Set

	6 Conclusion
	A Proof of Theorem 9
	References


