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Abstract. In this paper, we revisit Demirci and Selçuk meet-in-the-
middle attacks on AES. We find a way to automatically model SPN block
cipher and meet-in-the-middle attacks that allows to perform exhaustive
search of this kind of attacks. This search uses the tool developed by
Bouillaguet, Derbez and Fouque at CRYPTO 2011 as a subroutine to
solve specific systems. We also take into account ideas introduced by
Dunkelman, Keller and Shamir at ASIACRYPT 2010 which can be seen
as a new tradeoff of the classical time/memory tradeoff used by Demirci
and Selçuk. As a result, we automatically recover all the recent improved
attacks of Derbez, Fouque and Jean on AES and we show new improved
attacks against 8-rounds of AES-192 and AES-256.

1 Introduction

The AES encryption scheme [18] has been developed in the late nineties and has
been specifically designed to resist against differential and linear cryptanaly-
sis. Since 2008, the best attack for the 128-bit version was an impossible dif-
ferential attacks by Lu et al. in [16] going back to a remark of Biham and
Keller [1] improved by Bahrak and Aref in 2007. For the 192-bit and 256-bit ver-
sions, Demirci and Selçuk have described generalization of the Gilbert-Minier
attack [15] which has also been discovered during the AES competition. During
almost 10 years, there was no new cryptanalytic result and the first successful
direction to analyze the AES encryption function comes from differential attacks
in the related-key setting in 2009. This is a very powerful adversarial model in
theory and it has recently been studied due to its applications in the analysis of
hash functions. In this model, many other interesting results have been obtained
by carefully studying the key schedule algorithms of AES-192 and AES-256 [2–5].

Despite important work on side-channel analysis on the AES, no real the-
oretical improvement on the first analysis performed during the AES compe-
tition [1,9,14,15] has been made. In this paper we turn our attention to the
standard single-key model using meet-in-the-middle attack since these attacks
are very efficient and are now the most efficient on all version of AES [11]. The
first new theoretical result has been shown by Demirci and Selçuk at FSE 2008
using the old Meet-in-the-Middle cryptanalysis technique [10]. They improve the

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 541–560, 2014.
DOI: 10.1007/978-3-662-43933-3 28, c© Springer-Verlag Berlin Heidelberg 2014



542 P. Derbez and P.-A. Fouque

Gilbert and Minier attack using meet-in-the-middle technique instead of colli-
sion ideas. These results at that time use a very small data complexity 234 but
require high precomputation and memory in 2216. They need a hash table para-
meterized by 24 byte values. These attacks only work for the 256-bit and 192-bit
versions thanks to a time/memory tradeoff which significantly increases the data
and time complexity. They have been improved by Dunkelman et al. in [13] and
more recently by Derbez et al. in [11]. Finally, recent biclique attacks [6] have
been able to attack the full number of rounds of the AES at the price of using
an exhaustive loop on all the key bits.

Meet-in-the-Middle Attacks on AES. At Asiacrypt 2010, Dunkelman,
Keller and Shamir improve Demirci and Selçuk attacks on AES-192 and AES-256
using many interesting new ideas in [13]. They introduce the idea of multisets,
a clever differential enumeration technique and a remark on the AES-192 key
schedule to present attacks whose complexity is better than [10]. The main tech-
nique is the differential enumeration which allows to reduce the high memory
complexity. This is mainly the bottleneck of the previous attacks with the pre-
computation phase. The attack can be seen as a new time/memory tradeoff,
while Demirci and Selçuk one was very simple. Indeed, in this latter basic attack
the memory is greater than the time. Consequently, they reduce the data in
memory by repeating the attack as many times as the inverse of the probability
of being in the table. Dunkelman et al. tradeoff uses a specific differential path
to reduce the memory. This saving allows to consider a new attack on 7 rounds
of AES-128 with basically the same complexity as the impossible differential
attack, which is the best attack on this version. They also improve the attacks
on the two other versions. However, since these attacks rely on a differential
technique, they require a huge amount of data. Basically, they show that the
number of parameters can be reduced from 24 to 16 while the time complexity
is constant. These attacks have been recently improved by Derbez et al. in [11]
by showing that the table can be reduced since many sequences in the table are
never reached. They exactly compute the size of the memory needed and show
that the table can be described by 10 parameters. This leads to the best attack
for 7 rounds of AES-128 and also to the other versions.

Finally, Bouillaguet et al. in [7] study low data complexity attacks in reduce-
round AES and in [8], some the authors build a computer-aided tool to look for the
best meet-in-the-middle attacks in this model. A software has been developed
allowing to solve linear systems of equations in F256 in the variables x, S(x)
where S is the AES S-box. This algorithm has been able to find attacks up to
5 rounds, but its complexity is exponential in the number of S-boxes. It is very
versatile and has been used to solve systems for other cryptosystems such as the
LEX stream cipher, the Pelican-MAC or fault attacks on AES [8,12].

Our Results. In this paper, we consider another direction to improve on
Demirci and Selçuk (DS) attack using only meet-in-the-middle techniques. Here,
we generalize DS attack using DS or DKS time/memory tradeoffs and we
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automatize the search of these attacks to find the best ones. We discover many
efficient attacks and we also rediscovered the recent improved attacks on all the
versions of AES presented in [11]. To perform this search, we use the tool of
Bouillaguet, Derbez and Fouque, but only on the keyschedule equations instead
of the system of equations describing the AES. These equations are sparse in
the number of Sbox and consequently, the complexity of the search is very low.
In particular, we have been able to improve the complexity on AES-192 and
AES-256 by a factor 232 and 240 respectively as it is summarized in Table 1.
Finally, some of the attacks we discovered have a small data complexity such as
the basic DS attack. This leads us to increase the number of rounds attacked
using small data complexity as in [7,8]. For instance, we present on AES-128
an attack on up to 6 rounds using 256 data complexity and 2106 in time and
memory whereas Bouillaguet et al. were able to find attack on 5 rounds with
complexity 2120. It is possible to extend this last attack to 7 rounds with a mar-
ginal improvement over exhaustive search. We refer the reader to Table 1 for all
the attacks.

Organization of the Paper. In Sect. 2, we describe the AES cipher and some
properties useful to analyze its security for meet-in-the-middle techniques. Then,
we present the previous attacks and ideas in Sect. 3 before showing our ideas
in Sect. 4. In Sect. 5, we discuss on the results and describe some of our new
attacks requiring at most 232 chosen plaintexts. The Sect. 6 is dedicated to the
differential enumeration technique introduced by Dunkelman et al. and contains
the description of new attacks on AES-192 requiring 2104 data, 2138 in memory
and 2140 in time and on AES-256 requiring 2103 in data, 2140 in memory and
2156 in time.

2 AES and Observations

2.1 Description of the AES

The Advanced Encryption Standard [18] is a Substitution-Permutation Network
that can be instantiated using three different key sizes: 128, 192, and 256. The
128-bit plaintext initializes the internal state viewed as a 4×4 matrix of bytes as
values in the finite field F256, which is defined using the irreducible polynomial
x8 +x4 +x3 +x+1 over F2. Depending on the version of the AES, Nr rounds are
applied to that state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. Each of the Nr AES round (Fig. 1) applies four operations to the
state matrix (except in the last round where the MixColumns operation is
missing):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times in

parallel on each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
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Fig. 1. Description of one AES round and the ordering of bytes in an internal state.

– MixColumns (MC) replaces each of the four column C of the state by M ×C
where M is a constant 4 × 4 maximum distance separable matrix over F256,

After the Nr-th round has been applied, a final subkey is added to the internal
state to produce the ciphertext. We refer to the original publication [18] for the
key expansion algorithms.

Notations. In this paper, we count the AES rounds from 0 and we refer to a
particular byte of an internal state x by x[i], as depicted in Fig. 1. Moreover, in
the ith round, we denote the internal state after AddRoundKey by xi, after
SubBytes by yi, after ShiftRows by zi and after MixColumns by wi. To
refer to the difference in a state x, we use the notation Δx. The first added
subkey is the master key k−1, and the one added after round i is denoted ki.

In some cases, we are interested in swapping the order of the MixColumns
and AddRoundKey operations. As these operations are linear they can be
interchanged, by first XORing the data with an equivalent key and only then
applying the MixColumns operation. We denote the equivalent subkey for the
altered version by:

ui = MC−1(ki) =

⎛
⎜⎜⎝

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎞
⎟⎟⎠ × ki

2.2 Observations on the Structure of AES

In this section we recall two well-known observations on the structure of AES, that
will be used later in our attacks. We first consider the propagation of differences
through SubBytes layer.

Property 1. (the SubBytes property) Consider pairs (α �= 0, β) of input/output
differences for a single S-box in the SubBytes operation. For 129/256 of such
pairs, the differential transition is impossible, i.e., there is no pair (x, y) such
that x ⊕ y = α and S(x) ⊕ S(y) = β. For 126/256 of the pairs (α, β), there
exist two ordered pairs (x, y) such that x ⊕ y = α and S(x) ⊕ S(y) = β, and for
the remaining 1/256 of the pairs (α, β) there exist four ordered pairs (x, y) that
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Table 1. Current cryptanalysis of AES variants in the single-key model

Version Rounds Data (CP) Memory Time Technique Reference

128 6 28 2106.17 2106.17 MITM Sect. 5.2
7 232 2126.47 2126.47 MITM Full ver.
7 290.4 2106 2117.2 MA ID [17]
7 297 298 299 MITM [11]
8 288 28 2125.3 Bicliques [6]
10 (full) 288 28 2126.2 Bicliques [6]

192 6 28 2109.67 2109.67 MITM Full ver.
7 28 2153.34 2163 MITM Full ver.
7 232 2129.67 2129.67 MITM Sect. 5.4
7 19 · 232 19 · 232 2155 Square [14]
7 291.2 2139.2 2101 ID [16]
7 295 2143 2143 MITM [10]
7 297 298 299 MITM [11]
8 232 2182.17 2182.17 MITM Full ver.
8 241 2186 2187.63 MITM [19]
8 2104.83 2138.17 2140 MITM Sect. 6.1
8 2107 296 2172 MITM [11]
8 2113 2130 2140 MITM Sect. 6.1
8 2113 282 2172 MITM [11]
9 280 28 2188.8 Bicliques [6]
12 (full) 280 28 2189.4 Bicliques [6]

256 6 28 2114.34 2122 MITM Full ver.
7 28 2186 2170.34 MITM Full ver.
7 216 2153.34 2178 MITM Sect. 5.3
7 232 2133.67 2133.67 MITM Full ver.
7 21 · 232 21 · 232 2172 Square [14]
7 295 2143 2143 MITM [10]
7 297 298 299 MITM [11]
8 28 2234.17 2234.17 MITM Full ver.
8 232 2193.34 2195 MITM Full ver.
8 234.2 2205.8 2205.8 MITM [10]
8 2102.83 2140.17 2156 MITM Sect. 6.1
8 2107 296 2196 MITM [11]
8 2113 2130 2156 MITM Sect. 6.1
8 2113 282 2196 MITM [11]
9 232 2254.17 2254.17 MITM Full ver.
9 2120 2203 2203 MITM [11]
9 2120 28 2251.9 Bicliques [6]
14 (full) 240 28 2254.4 Bicliques [6]

CP: Chosen-plaintext. ID: Impossible Differential. MITM: Meet-in-the-Middle.
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satisfy the input/output differences. Moreover, the pairs (x, y) of input values
corresponding to a given difference pattern (α, β) can be found instantly from
the difference distribution table of the Sbox.

Property 1 means that given the input and output difference of an S-box, we
can find in constant time the possible absolute values of the input, and there is
only a single one on average.

The second observation is a necessary and sufficient condition for a matrix
to be MDS applied to the matrix MC used in the MixColumns operation.

Property 2. (MixColumns property) Consider a pair (a, b) of 4-byte vectors,
such that a = MC(b), i.e. the input and the output of a MixColumns opera-
tion applied to one column. Denote a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3)
where ai and bj are elements of F256. Then there is no equation involving
less than five bytes and for each choice of five bytes among the eight bytes
(a0, a1, a2, a3, b0, b1, b2, b3) there is a linear equation between them.

Finally, in our attacks we consider the encryption of structured sets of 256
plaintexts in which one active byte takes each one of the 256 possible values
exactly once, and each one of the other 15 bytes is a (possibly different) constant.
Such a structure is called a δ-set.

3 Related Results from Previous Work

In this section, we remind Demirci and Selçuk attack together with its improve-
ments which are the main results used in our attack. We refer the reader to [10]
and [13] for details.

3.1 The Demirci and Selçuk Attack

At FSE 2008, Demirci and Selçuk described the following 4-round property
for AES.

Property 3. Consider the encryption of a δ-set through four full AES rounds. For
each of the 16 bytes of the state, the ordered sequence of 256 values of that byte
in the corresponding ciphertexts is fully determined by just 25 byte parameters.
Consequently, for any fixed byte position, there are at most (28)25 = 2200 possible
sequences when we consider all the possible choices of keys and δ-sets (out of
the (28)256 = 22048 theoretically possible 256-byte sequences).

The 25 parameters are intermediate state bytes for any message of the δ-set
and their positions depend on the active byte of the δ-set and on which byte
we want to build values. As depicted on Fig. 2, if there are both at position
0 then the 25 parameters are the first column of xi+1, the full state xi+2, the
first column of zi+3 and xi+4[0]. Indeed, if those bytes are known for one of the
messages, we can compute the value of xi+4[0] for each message of the δ-set as
follows:
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Fig. 2. 4 AES-rounds. The 25 black bytes are the parameters of Property 3. Hatched
bytes play no role. The differences are null in white squares

1. Knowing the 256 differences in the full state zi we can compute the 256
differences in the full state xi+1 because Δxj+1 = MC.Δzj for any round
number j, where MC is the matrix used in the MixColumns operation.

2. Knowing the value of the first column of xi+1 for one message we can now
compute the value of this column for all messages.

3. Then we apply the Sbox on those bytes and get the value of zi+1[0], zi+1[7],
zi+1[10] and zi+1[13] for each message of the δ-set.

4. The differences are null in all the other bytes of zi+1 so we know the 256
differences in the full state zi+1.

5. In the same way we obtain the 256 differences in the full state zi+2 and then
in the first column of zi+3 to finally compute the 256 values of xi+4[0]

They first use this property to mount a basic meet-in-the-middle attack on
7 rounds AES-256 depicted on Fig. 3 and its procedure is roughly as follows:

• Preprocessing phase: Compute all the 2200 possible sequences according
to Property 3, and store them in a hash table.

• Online phase:
1. Ask for a structure of 232 chosen plaintexts such that the main diagonal

can take the 232 possible values and the remaining bytes are constant.
2. Choose one plaintext and guess the first column of its intermediate state

z0 and byte z1[0].
3. For each of the 255 non-zero values of Δz1 compute the corresponding

difference in the plaintext using the guessed bytes.
4. Order the obtained δ-set according to the value of the state byte z1[0].
5. Guess the first column of x6 and the byte x5[0] for one of the message

and deduce those state bytes for the 256 ciphertexts.
6. Build the sequence and check whether it exists in the hash table. If not,

discard the guess.

Note that the parameters of both the online and offline phases are state bytes
which we shall refer in the sequel as respectively Bon and Boff . The complexity
of the attack depends directly on how many values can assume those state bytes
and how fast can we enumerate them. Indeed, bytes of Boff (resp. Bon ∪ P ∪
C) are related by the AES equations and thus lead to the knowledge of some
linear combinations of the (sub)keys bytes. Then it may exist some relations
derived from the key-schedule between them, allowing to reduce the number of
assumed values. In the sequel, we will denote by Koff (resp. Kon) the vector
space generated from these linear combinations. For instance, in the case of the
described attack and if the last MixColumns is omitted,
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Fig. 3. Online phase of Demirci and Selçuk attack. Bon is composed by gray and black
bytes. Gray bytes are used to identify a δ-set and to order it. Black bytes are used to
build the sequence from ciphertexts. Hatched bytes play no role. The differences are
null in white squares.

• {k−1[0, 5, 10, 15], k0[0], u5[0], k6[0, 7, 10, 13]} is a basis of Kon,
• {u1[0], u2[0, 7, 10, 13], k3[0, 5, 10, 15], k4[0]} is a basis of Koff .

All in all, this attack has a data complexity of 232 chosen plaintexts, a time
complexity of 280 × 28 partial encryptions/decryptions, and a memory require-
ment of 2200 256-byte sequences. The memory complexity of this attack is too
high to apply it on the 128 and 192-bit versions. But its time complexity is low
enough to mount an attack from it on 8 rounds AES-256. This is done by fully
guessing the last subkey, decrypting the last round and applying the 7-round
attack, which increases the time complexity by a factor 2128.

3.2 Previous Improvements of the Original Attack

We summarize the main improvements to the original attack of Demirci and
Selçuk.

Difference Instead of Value. Demirci and Selçuk showed that the number of
parameters can be reduced to 24 in Property 3 by considering the sequence of
the differences instead of values because in that case xi+4[0] is not needed.

Data/Time/Memory Trade-Off. They also showed that one can do a classi-
cal trade-off by storing in the hash table only a fraction of the possible sequences.
Then the attacker has to repeat the online phase many times to compensate the
probability of failure if the sequence is not present in the table which will increase
the data and time complexities. In other word, if the attack has a complexity
(D,T,M) (D for the data, T for the time complexity of the online phase and M
for the memory) then it is possible to modify it to reach a complexity equal to
(D × N,T × N,M/N) for any positive N such that D × N is smaller than the
size of the codebook. This trade-off allows to adapt the attack on 7 rounds of
AES-256 to attack the 192-bit version.

Data Recycling. The structure of 232 plaintexts used in the attack contains
224 δ-sets. Thus the data may be reused 224 times in the Data/Time/Memory
Trade-Off.

Time/Memory Trade-Off. Kara observed that considering the sequence of
the differences instead of values allows to remove x5[0] from Boff (as Demirci
and Selçuk did) or from Bon.
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Multiset. A multiset is an unordered set in which elements can occur many
times. Dunkelman et al. introduce them to replace the functional concept used in
the DS attack and propose to store in the hash table unordered sequences of 256
bytes instead of ordered sequences. Moreover, they claim that a multiset still con-
tains enough information to make the attack possible. Indeed they showed that
given two random functions f, g : F256 −→ F256, the multisets [f(0), . . . , f(255)]
and [g(0), . . . , g(255)] are equal with a probability smaller than 2−467,6. Com-
bined to the fact that the Sbox is a bijection, the main gain is to remove z1[0]
from Bon since it was used only to ordered the δ-set, and thus the time complex-
ity is decreased by a factor 28. Finally, we note that a multiset contains about
512 bits of information and its representation can be easily compressed into 512
bits of space while an ordered sequence needs 256 × 8 = 2048 bits.

Differential Enumeration. In [13], Dunkelman et al. introduce a more sophis-
ticated trade-off which reduces the memory without increasing the time com-
plexity. The main idea is to add restrictions on the parameters used to build
the table such that those restrictions can be checked (at least partially) during
the online phase. More precisely, they impose that sequences stored come from
a δ-set containing a message m which belongs to a pair (m,m′) that follows a
well-chosen differential path. Then the attacker first focus on finding such pair
before to identify a δ-set and build the sequence. Sect. 6 is dedicated to this
technique.

4 Generalization of the Demirci and Selçuk Attack

The basic attack of Demirci and Selçuk requires a huge memory and a relatively
small time complexity. The classical data/time/memory trade-off allows to bal-
ance these complexities by increasing the data complexity and randomizing the
attack. In this section we present new improvements to reduce the data com-
plexity increase which leads to almost 216 variants of the Demirci and Selçuk
attack and we explain how to find the best ones between them.

4.1 New Improvements of the Original Attack

In this section we summarized our new improvements that allow us to reduce
the increase of the data complexity and, sometimes, to keep the deterministic
nature of the original attack.

Difference Instead of Value. The sequences stored in the table have the form
[f(0) + f(0), . . . , f(0) + f(255)] where f is a function that maps the value of
zi[0] to the value of xi+4[0]+ki+3[0]. But, as shown Sect. 3.1, the procedure used
to build the table produces functions that map the value of Δzi[0] to the value
of Δxi+4[0] and then the only effect of mapping the value of zi[0] is to set the
value of the subkey byte ui[0] (i.e. ui[0] ∈ Koff ). In another hand, if we store
in the table sequences of the form [f(0), . . . , f(255)] where f is a function that
maps the value of Δzi[0] to the value of Δxi+4[0], then each δ-set can be ordered
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in 256 ways, saving data in the classical data/time/memory trade-off described
Sect. 3.2. Furthermore, in the case of a δ-set encryption, each byte of the first
columns of xi+1 assumes the 256 values. As a consequence, to set one of those
bytes to 0 when building the hash table can be compensated by trying the 256
orders of a δ-set without randomizing the attack.

Multiset. Note that, given a sequence of 256 bytes b0, . . . , b255, bi = bj implies
that the multisets [bi + b0, . . . , bi + b255] and [bj + b0, . . . , bj + b255] are equal too.
But Dunkelman et al. shown that given a random function f : F256 −→ F256, the
multiset [f(0)+ f(1), . . . , f(0)+ f(255)] contains on average 162 different values
out of 256. Thus we conclude that a δ-set can be reused 162 ≈ 27,34 times on
average. This remark holds on for the multisets stored in the hash table during
the precomputation phase and so the memory requirement must be corrected by
a factor 2−0,66.

Time/Memory Trade-Off. To improve the attack of Demirci and Selçuk our
idea is to store in the sequences the 256 differences in a linear combinations of
bytes of x5 instead of the 256 differences in a byte of x5. Thanks to Property 2,
minimal equations involving Δzi and Δxi+1 contains exactly 5 variables such
that k are on a column c of Δzi and 5 − k are on the column c of Δxi+1, with
1 ≤ k ≤ 4 for any round number i. We emphase that Demirci and Selçuk only
consider cases k = 1 and k = 4. The size of the set Bon (resp. Boff ) is deter-
mined by k and it decreases (resp. increases) when k is increased. Thus we can
trade time by memory and vice-versa without affecting the data complexity. Fur-
thermore, contrary to the other data/time/memory trade-offs, the attack need
not to be randomized. Attacks taking advantage of this trade-off are described
Sects. 5.2 and 5.4.

New Data/Time/Memory Trade-Off. The idea of the previous trade-off can
be applied to the δ-set. Instead of considering sets of 256 plaintexts such that
one byte assumes the 256 values and the others are constant, we consider set of
256 plaintexts such that exactly 5 bytes of zi and xi+1 are active. We still call
such a set a δ-set. The consequences on the attack are the same as the previous
trade-off but it now affects the size of the structure needed and bytes of zi must
be guessed in the online phase despite the use of unordered sequences. An attack
taking advantage of this trade-off is described Sect. 5.3.

4.2 Finding the Best Attack

Once the round-reduced AES is split into three parts, the new improvements
allow to mount (4× (

8
5

)
)2 ≈ 215.6 different attacks but there are only (4× (

(
4
1

)
+(

4
2

)
+

(
4
3

)
+

(
4
4

)
))2 ≈ 211.8 possible sets Bon (resp. Boff ) to study. To exhaust all

of them and find the best attacks we decide to automatize the search. Thus for
each set we need to answer to the two following questions:

• How many values can assume those state bytes?
• How fast can we enumerate them?
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A priori, this is not an easy task because S-boxes are involved in the keyschedule.
To perform it we used the tool developed in [8], originally designed to find the
best solver for an AES-like system of equations among a particular class of solvers
based on the meet-in-the-middle technique.

Algorithm 1. OriginalTool
Data: System of equations E in variables X involving some S-boxes.
Result: An optimal algorithm to enumerate all the solutions of E with

predictable time and memory complexities.

The problem we seek to solve is very close to the problem solved by this tool
but is still different and so we have slightly tweaked it.

Algorithm 2. TweakedTool (naive implementation)
Data: System of equations E in variables X involving some S-boxes and

a subset Y ⊆ X.
Result: A list of optimal algorithms to enumerate all the possible values

of Y according to the system of equations E with predictable
time and memory complexities.

L ← ∅;
foreach Y ⊆ Z ⊆ X do

F ← the biggest subspace of E in variables Z;
A ← OriginalTool(F );
L ← best algorithms from L ∪ {A};

end
return L

The output of our tweaked tool is a list because the number of possible values
of Y enumerated by considered algorithms is not necessary constant and if an
algorithm is slower than an other but finds less possible values for Y than it
then both of them must be studied. Note that the tweaked tool can be applied
directly to the set Boff (resp. Bon) and the system of equations describing the
AES but it is faster to apply it on a basis of Koff (resp. Kon) and the keyschedule
equations since the complexity of the original tool is exponential in the number
of S-box.

Finally we were able to perform an exhaustive search over all the parameters
for all round-reduced versions of AES for the three key lengths in less than an
hour on a personal computer.

5 Results

In this section we present the results obtained by exhausting the variants of the
attack of Demirci and Selçuk. We give an overview of the complexities reached
and describe three new attacks requiring at most 232 chosen plaintexts and min-
imizing the maximum between the time complexity (counted in AES encryption)
and the memory complexity (counted in 128-bit block).
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Fig. 4. Best variants on 7 rounds AES-192.

Fig. 5. Best variants on 8 rounds.

5.1 Overview of the Results

Some of our best results on 7 and 8 rounds are summarized on Figs. 4 and 5.
They give the (log256 of) data complexity reached as a function of the number
of guess to perform in the online phase and in the offline phase. A gray cell
means that the corresponding attack is deterministic while the other attacks are
obtained by applying the classical data/time/memory trade-off.

We observe that almost all the best attacks work with only 232 chosen-
plaintexts. For comparison, to reach balanced complexities on seven rounds
from the original attack by using the classical data/time/memory trade-off, the
amount of data needed will be approximately 271 chosen plaintexts. Further-
more, we have been able to increase by one the number of rounds attacked
with 232 chosen-plaintexts for the three key length but with time and memory
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Fig. 6. Attack on 6 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

complexities very close to the natural bound of the exhaustive search. We also
obtained competitive results in the very low data complexity league with, for
instance, attacks on 8 rounds of AES-256 requiring only 28 chosen plaintexts.

5.2 Attack on Six Rounds AES-128 with 28 Chosen-Plaintexts

If the data available is limited to 28 chosen-plaintexts, the best attack found is
based on the attack depicted on Fig. 6 and the meet-in-the-middle is performed
on the equation

03.Δz3[8] + Δz3[9] = 07.Δx4[8] + 07.Δx4[9] + 02.Δx4[11].

Let be ein = 03.z3[8] + z3[9] and eout = 07.x4[8] + 07.x4[9] + 02.x4[11].
The bytes of Boff are the first column of x1, the two last columns of z2, and

bytes 8 and 9 of z3. They can assume 28×14 different values and so the memory
requirement is 2112−0,66 = 2111,34 multisets on average according to the remark
made in Sect. 4.1.

As the S-box is a bijection and as we consider a δ-set in which only one byte
is active, we do not need to guess x0[0] in order to identify the corresponding
set of 256 plaintexts to build the multiset. As a consequence, the bytes of Bon

are the entire state x5 except the first column, and the third column of x4

except byte 10. Thanks to the keyschedule equations, they can take only 28×12

values instead of 28×15 since we have the three equations u4[5] = u5[1] + u5[5],
u4[8] = u5[4] + u5[8] and u4[15] = u5[11] + u5[15].

All in all this leads to the following attack:

• Preprocessing phase:
1. Set Δiz0[0] to i for 0 ≤ i ≤ 255. Then Δiz0 is known since the other

differences are null.
2. Guess x1[0..3] (for one of the 256 messages) and use Δiz0 to compute

Δiz1[0], Δiz1[7], Δiz1[10] and Δiz1[13]. Then Δiz1 is known since the
other differences are null.

3. Guess bytes 1, 2, 6, 7, 8, 11, 12 and 13 of x2. Use them with Δiz1 to
compute Δiz2[8..15].

4. Guess x3[8] then compute Δiz3[8] using Δiz2[8..11].
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5. Guess x3[13] then compute Δiz3[9] using Δiz2[12..15].
6. Compute the multiset [Δ0ein, . . . ,Δ255ein] and store it in a hash table (if

it was not already in it).
• Online phase:

1. Ask for a structure of 256 plaintexts such that byte 0 assume the 256
possible values and others bytes are constant.

2. Choose one of them to be the one from which difference will be computed.
3. Guess bytes 1, 2, 4, 5, 8, 11, 14 and 15 of u5. Compute u4[5] and u4[8]

and then partially decrypt the ciphertexts to obtain Δix4[8] and Δix4[9]
for 0 ≤ i ≤ 255.

4. Guess bytes 3, 6 and 9 of u5, and continue to partially decrypt the cipher-
texts.

5. Guess byte 12 of u5. Compute u4[15] and then partially decrypt the
ciphertexts to obtain Δix4[11].

6. Build the multiset [Δ0eout, . . . ,Δ255eout] and check whether the multiset
exists in the hash table. If not, discard the key guess.

Finally, the time complexity is equivalent to 2×2−6 ×28 ×296 = 299 encryp-
tions and the memory requirement is 2113,34 AES-blocks. The probability for a
wrong guess to succeed is approximatively 2111,34 × 2−467,6 = 2−356,26 and, as
we try 296 key guess, we expect that only the right value remains after the last
step.

Trade-Off. Since the memory is higher than the time complexity, the data/time/
memory trade-off presented Sect. 3.2 is possible. This leads to an attack using
28 chosen plaintexts (as the data is reused 27,17 times), with a time complexity
equivalent to 2106,17 encryptions and requiring 2106,17 128-bit blocks.

Key Recovery. This attack retrieves the right value of u5 except on bytes 0, 7,
10 and 13 and so can easily be turned into a key-recovery attack. The attacker
guesses the four missing bytes of u5 to retrieve the master key and try it. This
step has a negligible complexity compared to the previous one.

5.3 Attack on 7 Rounds AES-256 with 216 Chosen-Plaintexts

The best attack on seven rounds AES-256 with 216 chosen-plaintexts is depicted
on Fig. 7.

The bytes of Boff are bytes 0,2 and 3 of x1, the three first columns of x2 and
the third column of z3. The bytes of Bon are bytes 0 and 15 of x0, the entire state
x6, the second column of x5 and byte 9 of x4. The number of values assumed by
the bytes of Bon is reduced by a factor 28 using the equation u4[5] = u6[1]+u6[5].
The time complexity is equivalent to 2178 encryptions and the memory is 2153,34

AES-blocks.

Key Recovery. This attack can easily be turned into a key-recovery attack
without increasing the complexity since only 12 key bytes are sufficient to recover
the master key.
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Fig. 7. Attack on 7 AES rounds (key length: 128 bits). Bytes of Boff are in black. Bytes
of Bon are in gray. Hatched bytes play no role. The differences are null in white squares

Fig. 8. Attack on 7 AES rounds (key length: 192 bits). Bytes of Boff are in black. Bytes
of Bon are in gray. Hatched bytes play no role. The differences are null in white squares

5.4 Attack on 7 Rounds AES-192 with 232 Chosen-Plaintexts

The best attack on seven rounds AES-192 with 232 chosen-plaintexts is depicted
on Fig. 8.

The bytes of Boff are the first column of x2, the three first columns of z3, and
bytes 0, 1 and 2 of z4. The bytes of Bon are the first column of z0, the second
and third columns of x6 and bytes 2 and 3 of x5. Thanks to the keyschedule
equations, we can reduce the number of possible values assumed by them by a
factor 28 since u5[7] = u6[11]+u6[15]. The time complexity is equivalent to 2106

encryptions and the memory requirement is 2153,34 AES-blocks.

Trade-Off. Applying the classical data/time/memory trade-off leads to an
attack using 232 chosen plaintexts, with a time complexity equivalent to 2129,67

encryptions and a memory requirement of 2129,67 AES-blocks. Note that the data
complexity remains 232 because the structure may be divided into 224 δ-sets and
each of them may be reused 27,34 times on average.

Key Recovery. This attack can easily be turned into a key-recovery attack
without increasing the complexity since only 15 key bytes are sufficient to recover
the master key.

6 The Differential Enumeration Technique

We present here our results using the differential enumeration technique first
introduced by Dunkelman et al. in [13] and improved by Derbez et al. in [11].
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Fig. 9. Attack on 8 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

We explain how this technique works by describing a new attack on 8 rounds
and then we give an overview of our results.

6.1 Attack on 8 Rounds AES-192

Without restriction on data, the best attack on eight rounds AES-192 begins by
considering the attack depicted on Fig. 9.

The bytes of Boff are the first column of x2, the entire state x3, the two
last columns of z4 and bytes 2 and 3 of z5. The bytes of Bon are the second
column of z0, the three first columns of x7, and the first column of x6 excepted
byte 1. Thanks to the Keyschedule of AES-192 they take only 28×17 = 2136

values because u6[0] = u7[4] + u7[8] and u6[7] = u7[11] + u7[15]. Finally, the
time complexity is equivalent to 2138 encryptions and the memory requirement
is 2241,34 AES-blocks.

Differential Enumeration. The idea of Dunkelman et al. is to store in the hash
table only the multisets built from a δ-set containing a message m that belongs
to a pair (m,m′) following a well-chosen differential path. In our case this is the
truncated differential 4 → 1 → 4 → 16 → 8 → 2 → 3 → 12 depicted on Fig. 10.
Then the bytes of Boff can take only 216×8 values for such a pair. Indeed, if we
guess the differences in circled bytes then we obtain the difference before and
after the S-box for each bytes of Boff and thus we can derive their absolute value

P
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x4 z4 x5 z5 x6 z6 x7 z7

C

Fig. 10. Differential characteristic on 8 AES rounds. The differences are null in white
squares. The value of bytes of Boff can be derived from the differences in circled bytes.
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thanks to Property 1. As a consequence, the memory requirement is decreased
by a factor 2112. However, we now need to find a pair that follows this truncated
differential path and so the procedure of the online phase becomes:

1. Ask for a structure of 232 plaintexts such that the second diagonal assume
the 232 possible values and others bytes are constant.

2. Store the corresponding ciphertexts in a hash table to identify the pairs that
have a non-zero probability to follow the differential path.

3. For each of these pairs:
(a) Guess Δz6[0], Δz6[7] and Δz6[10] and compute the difference in the three

first columns of x7.
(b) Deduce the value of the three first columns of x7 using Δz7.
(c) Deduce u6[0] and u6[7] using u7[4], u7[8], u7[11] and u7[15].
(d) Deduce z6[0] and z6[7] and compute Δx6[0] and Δx6[3].
(e) Check if the equation between Δx6[0] and Δx6[3] is satisfied.
(f) Deduce Δx6[2] and then compute x6[2] using Δz6[10].
(g) Guess Δx1[5] and compute the difference in the second column of z0.
(h) Deduce the value of the second column of z0 using Δx0.
(i) Get the δ-set associated to one of the message of the pair and build the

multiset from the corresponding ciphertexts.
(j) Check whether the multiset exists in the hash table. If not, discard the

key guess.
4. Restart with a new structure if no check found.

As each structure contains 263 pairs and each of these pairs follows the differ-
ential with probability 2−144, we need 281 structures on average. Then, for each
structure we have to study only 263−32 = 231 pairs and for each of them we have
to perform 224 × 28 partial encryptions that is equivalent to 228 encryptions.
All in all, this leads to an attack with 2113 chosen plaintexts, a time complexity
equivalent to 2140 encryptions and a memory requirement of 2130 AES-blocks.

Reducing the data complexity. Note that for each possible choice of the
active diagonal in the plaintext we found 96 attacks with the same complexity.
As the corresponding differential paths are different it is possible to perform
many attacks in parallel to save data in exchange of memory. For instance, if we
use structure with three active diagonals, it is possible to reach a complexity of
2104,83 chosen plaintexts and 2138,17 AES-blocks, the time remaining unchanged.

Key Recovery. This attack can easily be turned into a key-recovery attack
without increasing the complexity since only 9 key bytes are sufficient to recover
the master key.

AES-256. This attack can be applied to the AES-256 excepted that the keysched-
ule does not allow us to reduce the time complexity anymore. This leads to an
attack with 2113 chosen plaintexts, a time complexity equivalent to 2156 encryp-
tions and a memory requirement of 2130 AES-blocks. For each possible choice of
the active diagonal in the plaintext we found 384 attacks with the same com-
plexity so it is possible to save more data than previously. For instance, if we
use structure with three active diagonals, it is possible to reach a complexity of
2102,83 chosen plaintexts and 2140,17 AES-blocks, the time remaining unchanged.
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Fig. 11. Differential Enumeration: results on 8 rounds AES-192. All attacks have a data
complexity of 2113 chosen plaintexts. Numbers in cells are the log2 of the numbers of
attacks found with the same complexity.

6.2 Results

As in the previous section, we have exhausted the almost 216 variants to find
the best attacks. For instance our results on the AES-192 reduced to 8 rounds
are summarized on Fig. 11. As expected we have automatically rediscovered the
attacks found by Dunkelman et al. and the ones found by Derbez et al., but
we have also obtained many new attacks including the best known attacks on 8
rounds for both AES-192 and AES-256 described Sect. 6.1.

Limitations. To save more data, Dunkelman et al. propose to consider differ-
ential paths with a bigger probability. We have exhausted the simple case where
the new differential paths do not have active new bytes in the middle rounds.
However, we did not try interesting cases where the active bytes of the pair and
bytes of Bon and Boff are desynchronized since, besides the number of cases to
handle, the complexity of our tweaked tool tends to explode as we cannot apply
it to the keyschedule only.

7 Conclusion

We have presented new attacks on AES by generalizing Demirci and Selçuk
meet-in-the-middle attacks. We took into account various time/memory tradeoffs
including more advanced techniques introduced by Dunkelman et al. in [13]. We
automatized the search of the best attacks of this kind using the tool developed
by Bouillaguet et al. in [8] solving linear systems of equations involving S-boxes.
As a result, we recovered all best attacks on AES-128, including the recent one
of Derbez et al. in [11] and found new more efficient attacks for AES-192 and
AES-256.
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