A Framework for Automated
Independent-Biclique Cryptanalysis

Farzanch Abed, Christian Forler, Eik List(®),
Stefan Lucks, and Jakob Wenzel

Bauhaus-Universitdt Weimar, Weimar, Germany
{f arzaneh.abed,christian.forler,eik.list,
stefan.lucks, jakob.wenzel }Quni-weimar.de

Abstract. In this paper we introduce Janus, a software framework —
written in Java — which is built to provide assistance in finding indepen-
dent-biclique attacks for a user-chosen set of parameters, e.g., the number
of rounds and dimension of the biclique. Given a certain cipher, Janus
not only finds an optimal bipartite graph (biclique), but also provides
an all-round carefree package of finding an optimal matching-with-pre-
computation step, rendering the found biclique, and determining the
computational complexity of the attack.

We have used the Janus framework to verify existing results on ARTA
and the AES. Additionally, by using this framework, we could find the
first full-round biclique attacks on all versions of the AES-like cipher
BKSQ.

Keywords: Automated cryptanalysis - Biclique - BKSQ

1 Introduction

Overview. Biclique cryptanalysis was first introduced by Khovratovich et al.
in 2011 [17] and presented at the FSE 2012 [18]. The authors used this approach
to find preimages for reduced-round versions of the block cipher based hash
functions Skein [12] and SHA-2 [21]. Bicliques represent an improvement of the
splice-and-cut approach [4,22,23], which itself is a variant of meet-in-the-middle
attacks. More detailed, biclique cryptanalysis uses a complete bipartite graph
(biclique), which can be constructed over a part of a primitive, to extend an
existing meet-in-the-middle or similar attack. While the splice-and-cut approach
was intentionally designed to target hash functions, Wei et al. presented the
first splice-and-cut attacks on the block cipher KTANTAN [28]. Bogdanov et
al. then adapted biclique-based attacks on the AES [5]. Their work obtained a
high level of attention, since they demonstrated the first single-key attacks on
all full versions of the AES with a significant advantage over exhaustive search.
Since then, biclique attacks have become a well-known technique and attacks on
several further ciphers have been published in [1-3,7,8,13-15,20,24,26,27].

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 561-581, 2014.
DOI: 10.1007/978-3-662-43933-3_29, (© Springer-Verlag Berlin Heidelberg 2014

562 F. Abed et al.

Finding good (independent) bicliques over a given number of rounds is a time-
consuming task which requires in-depth knowledge of the investigated cipher to
find well-suited differentials. Thus, it is adequate to think about using a computer
to find such bicliques. Usually, implementations of common block cipher APIs
are not designed to provide a sufficiently fine granularity, e.g., access to single
steps and the basic operations of the cipher is not supported, but required to
find good bicliques.

Our Contribution. A unified API is needed to reduce the effort of modifying
a block-cipher implementation for the biclique search. In addition, such an API
would allow applying one single biclique-searching framework that fits all. In this
paper, we present such a framework, called Janus, which is open source and free
to use!. The main feature of Janus is to find a complete and independent bipar-
tite graph for a certain number of given rounds. In addition, it computes the
corresponding step of matching with precomputations, and the overall complex-
ity. Finally, it supports rendering a graphical illustration of the found biclique
and the matching part.

Janus provides a highly modular and flexible API, i.e., it allows the user to
determine parameters like the used cryptographic primitive, the starting/ending
round, the dimension of the biclique, the starting difference, etc.

First, we used our framework to verify and validate published attacks on
variants of the AES and ARTA (see Sect.4). Thereby, we detected a flaw in the
complexity computation of the attack on AES-192. Thus, we were not able to
verify the claim made for this attack. But secondly, further analysis revealed
that the authors just forgot to include one round during the matching-with-
precomputation phase. This example points out the importance of an automated
framework to validate claims for existing attacks.

Additionally, we used Janus to find the first full-round attacks on variants
of the AES-like cipher BKSQ [10]. Results of our work can be found in Sect.4
in Table 1.

Related Work. There are several published tools and frameworks which sup-
port certain cryptanalytic techniques. Though, these frameworks are mostly lim-
ited to a very specific area of application. For example, the work of Daemen
and Van Assche? concentrates only on analyzing their SHA-3 winner Keccak [9].
They provide, among other things, a computation of linear and differential trails.
Another framework was introduced by Leurent [19] to analyze ARX-based hash
functions (like Skein or Blake) with the goal to assist in finding good differen-
tial trails. Further, Stankovski implemented an automated algebraic cryptanaly-
sis framework [25], which uses the Maximum-Degree-Monomial (MDM) test to
launch algebraic attacks against stream and block ciphers. Currently, it supports
more than 20 stream and block ciphers, and provides a possibility to produce
TeX code for graphs.

! https://github.com/janus-framework /janus
2 http://keccak.noekeon.org/KeccakTools-doc/ [April 2013]

https://github.com/janus-framework/janus
http://keccak.noekeon.org/KeccakTools-doc/

A Framework for Automated Independent-Biclique Cryptanalysis 563

Outline. In Sect. 2 we will provide a brief introduction of biclique cryptanalysis.
In Sect.3 we introduce Janus — containing the search for bicliques, the match-
ing phase, and the rendering option. We used our framework to verify existing
attacks on the AES and ARIA, as well as to mount new attacks on BKSQ. Our
results are shown in Sect. 4. Section 5 concludes the paper.

2 Independent-Biclique Cryptanalysis

In this section we review the basics of independent-biclique cryptanalysis follow-
ing the work of [17]. A biclique is a complete bipartite graph which covers some
steps of a given cipher. It connects every element in a set of starting states S with
every element in a set of ending states C. We enumerate the elements in S by .S;
and the elements in C by C};, where a path from S; to C; represents the encryp-
tion under a key K7i, j]. More formally, the 3-tuple of sets [{S;}, {C:}, {K[i, j]}]
is called a d-dimensional biclique, if

Vi,j e {0,...,2¢ — 1} : ij[_l:’lhci,

where B denotes the steps of the cipher covered by the biclique. The basic idea
is to divide the key space into 2¥=2¢ groups of 22¢ keys, where k denotes the
length of the secret key and d is the dimension of the biclique. A biclique can
then be defined for one such group of keys KJi, j], where the individual keys
are represented relative to a so-called base key of the group, K[0,0], and two
differences AKX and Vﬁ(:

Kli, j] = K[0,0] & A; & V.

An adversary can construct a biclique over one part of a cipher and apply then
a meet-in-the-middle or similar attack over the remaining parts.

2.1 Independent Bicliques

In [5,16,17], Khovratovich et al. proposed two different paradigms for biclique
attacks: bicliques from independent differential trails (or independent bicliques)
and bicliques from interleaving differential trails (or long bicliques). Independent
bicliques allow the construction of bicliques from two sets of differentials:

1. In the beginning, the adversary chooses a so-called base computation, i.e., a
3-tupel {Spy, Co, K[0,0]}, where the key K[0,0] maps the internal state Sy to
the state Cy over B:

K[0,0
So 22 G,

2. Then, it chooses 2¢ differences AKX derives new keys K[i,0] = K[0,0] © AX,
perfoms 2¢ computations from the state Sy in forward direction and arrives
at 27 states C;:

K[0,0]@AK
_—

So Cod A, =C; VZ'G{O,...,Qd*l}.

These are called the A;-differentials.

564 F. Abed et al.

3. Similarly, it chooses 2% further differences V]K , again derives new keys K0, j]
= K[0,0] ® VI, computes 2¢ times from the state Cy in backward direction,
and arrives at 2% states S;:

K[0,0]@Vi

SJ‘ZSO@VJ‘ Co VjE{O,...,2d—1}.

B-1
These are called the V ;-differentials.

If all A;-differentials do not share any active non-linear operations with the
V j-differentials, then every state S; can be connected with every state C; by
encrypting S; under the key K[i,j] = K[0,0] & AK @ VJK. Thus, one obtains a
set of 224 independent (A;,V;)-differential trails:

K[0,0)@AF @V

So@v]‘ Co® A; Vi,jE{O,...,Qd—l}.

The length of the biclique differentials is limited by two full diffusions of the
cipher. An adversary can potentially create bicliques over more rounds by using
the long-biclique approach. Though, the construction of long bicliques is quite
sophisticated and requires a significantly higher computational effort. More
importantly, the requirement for independent differentials is a very clear and
well-understood criterion that allows us to test it by using an automated app-
roach. Therefore, we focus on the independent-biclique approach in this work.

2.2 Matching-with-Precomputations

If a constructed biclique is quite short and the matching part needs to cover
too many rounds, then a meet-in-the-middle attack may no longer be applica-
ble. In such cases, [5] proposed an alternative procedure called matching-with-
precomputations.

Assume an adversary is given a cipher E which can be split into three parts
E = BoFEyoFE,, where F is the subcipher that maps a plaintext P to an internal
state V', E5 maps V' to another internal state S, and B maps the state S to the
ciphertext C":

Ey

E
P — 2

V———>B

S — C.

After constructing a biclique over B, the adversary is given 2¢ states C;, and
obtains the corresponding plaintexts P; from a decryption oracle. Then, it per-
—
forms 2% forward computations from the plaintexts P; to Vio,
K[i,0] —

Py —— Vi,
Ey

—
and stores the 2% values Vio. Similarly, it performs 2¢ backward computations

—
from the states S; to 1} ;,

A Framework for Automated Independent-Biclique Cryptanalysis 565

Vo] 7]] L0 g
Es

2

P
and stores the 2¢ values V;, j- These two steps are called the precomputations. In
the following, the adversary re-uses the stored values for the remaining 22¢ — 2¢
computations
Klij] —— — Klij
P % Vij, and Vi <[—Zf] S,
[

E 2

where it recomputes only those parts of the key schedule and the round transfor-
mation that differ from the stored values. By using this method, one can reduce
the computational effort significantly even if no attacks are known to cover the
remaining parts of the cipher. The recomputation costs can be further reduced
by only matching in a part of V' (partial matching).

2.3 Complexity Calculation

For every biclique, the adversary tests 22¢ keys. Hence, it needs to construct
2F=24 bjcliques to cover the full key space. For the time complexity, [5] proposed
the equation:

Cfull = 2k72d (Cbiclique + Cdecrypt + Cprecomp + C’r‘ecomp + Cfalsepos)) (1)

where

— Chicligue denotes the costs for computing 2 - 2¢ trails over B,
— Clecrypt is the complexity of the oracle to decrypt 2¢ ciphertexts,
-
— Chrecomp represents the effort for 2d conﬁutations of E; to determine V4 ; and
2¢ computations of £y ! to determine Vio,
— Checomp describes the costs of recomputing 224 values V and VZ j» and
— Clalsepos 1s the complexity to eliminate false positives.

The full computational effort of the attack is dominated by the recomputa-
tions. The memory requirements are upper bounded by storing 2¢ intermediate
states V; ;.

3 Framework Design
Our current implementation consists of four components:

1. The biclique search subsystem is responsible for searching for independent
differential trails over some sub-cipher B of a given primitive E.

2. Given a found biclique, the matching subsystem analyzes the remaining parts
of the cipher to find a matching which leads to an attack with a minimal
computational effort.

566 F. Abed et al.

3. The rendering subsystem can visualize bicliques as well as matching phase
differentials in PDF format, using the community version 5.3.0 of the open-
source library iText [6].

4. Moreover, the framework contains a number of common components, such
as cipher implementations, serialization and utility classes, as well as cipher-
dependent helper classes which generate and compare differentials.

In this work we concentrate on describing the two major components in detail.

3.1 Biclique Search

The task of finding independent bicliques can be transformed into the task of
finding pairs of independent differentials (A, V?). In advance, the user needs to
specify:

— a target cipher F,

— the round range of the sub-cipher B,

— the dimension of bicliques d,

— a strategy to test the independency of differentials,

— and a strategy to define and generate round key differences.

The general biclique search follows the steps from Sect. 2.1. Assume that B covers
the rounds [r, s] with 1 <r < s < N, of a given cipher E, where N, is the total
number of rounds in E. We denote

~ by NB = s —r+ 1 the number of rounds covered by B,

— by T; the state after Round i,

— by U; the intermediate state after the non-linear operation in Round ¢,
— and by K; the round key of Round i.

We further call the state of the cipher’s key register, which contains the key for
Round r, the starting key, and the state which contains the key for Round s the
ending key.

First, we fix K[0,0] and Sy to and derive Cy. This base computation is
computed only once for a given cipher and round interval. We then create a trail
AT which will store all state values T}, all intermediate state values U;, as well
as all round keys K; which are used in B. At the beginning, we initialize them
with all-zero values. Then, we choose a starting key difference AX ” with d bits
set. In the following, we iterate over all 2¢ possible values for the d set bits in
AK f, and compute 2% — 1 differential trails

So

KT .
%qf’ vie{l,...,2? -1},

A Framework for Automated Independent-Biclique Cryptanalysis 567

We denote by Alf the resulting differences between the corresponding states,
intermediate states and round keys of the trail Af and the base computation:

xf
Af = <50 %c@ @ (50 %q}”) .

Bits which are active in any of the 24! differential trails Azf should remain active
in the differential Af. Thus, the A{ -trails are accumulated to Af by applying
the logical OR pair-wise to all corresponding state and round key differences of
all differentials Alf :

291
Al —\/ Al
i=1

This procedure is repeated for in total Ny unique starting key differences AX f,
Vfe{l,...,Ng}. All Ny accumulated forward trails Af are stored in a list. The
N, backward trails V? are computed similarly afterwards.

For every pair of differentials (A, V?), we check if any of their corresponding
states or round keys share active parts in non-linear operations. If not, the
current pair yields an independent biclique. Since any identified biclique can be
used to mount an attack, we provide an option for the early abort as soon as
the first such pair has been found. The time complexity of the biclique search
process is given by

Ctime = Cforward + Cbackward + Ctesting;
where

— Cforward is given by constructing Nq A-differentials,
— Chackward denotes the effort of constructing Ny V-differentials,
— and Clesting represents the costs for comparing IV, d2 pairs of differentials (A, V).

The complexity is dominated by the effort for testing N3 pairs of differentials.
We have to store the states and round keys of Ny forward differentials, where
every differential holds NB +1 (from r — 1 to s) state differences, N2 (from r to
s) intermediate state differences, and a cipher-dependent number of Ny round
key differences, since E may employ pre- and post-whitening keys. Hence, we

need to store
Crmemory = N+ 2NE 4+1) -n+ Ny, - k

bits, where n and k£ denote the state and round-key size, respectively. In the case
when the available memory is not sufficient to store all forward differentials, the
biclique search is performed in iterations.

568 F. Abed et al.

Ciphers. Throughout the framework we employ a unified interface for cipher
implementations. Standard implementations allow the client to specify only the
plaintext, the used key and, in some cases, a tweak. The implementations in our
framework have to provide access also to internal values, such as intermediate
states to allow the comparison of state differences.

In addition, they have to provide access to the values of round keys as well
as to their internal key register. To obtain the longest possible independent
bicliques, one should not minimize the number of active bits with respect to the
secret key. Since the key schedule of most ciphers provides a significant diffusion,
it would increase the number of affected bits in the round-key differences AX or
VJK and hence, would increase the number of active bits in the differential trails.
Instead, one should choose key differences which have a minimum number of
active bits in the round keys at the beginning (for A-differentials) or at the end
(for V-differentials) of B, respectively. This minimizes the number of active bits
in non-linear operations of the differential trails through B. Thus, the starting
point for choosing key differences should be an intermediate state of the cipher’s
key register, from where one can derive the differences for all further round
keys. The ciphers we are interested in utilize a key register which is updated in
an iterated reversible procedure, with the consequence that the secret key can
be reconstructed from any given register state. Our implementations specify if
the key schedule of a cipher is reversible. In this case — which applies to most
AES-like primitives and modern lightweight ciphers — they provide a method
which allows to invert the key schedule given an arbitrary k-bit state of the key
register at a certain number of iterations. In the opposite case, the starting key
differences are injected in the secret key as a fallback solution.

Starting Key Differences. The number of tested differentials, N4, depends
on the dimension of the biclique d and the size of the key register k. Given k
and d, one could potentially generate Ny = (S) forward and backward differen-
tials, which becomes infeasible for k£ > 64. Though, this effort can be reduced
significantly for byte- and nibble-wise operating ciphers. In the following, we
consider three strategies to generate key differences for such primitives, which
are illustrated in Fig. 1.

1. Firstly, one can set only a minimum number of d active bits in the starting
key difference. Then, for byte-wise operating primitives, there are only ﬁ

Fig. 1. Approaches to iterate over key differences for byte-wise/nibble-wise operating
ciphers: iterate over a minimum number of active bytes/nibbles (left), over multiple
bytes/nibbles with equal value (middle), or choose user-defined differences over a part
of the key to cancel out results of the round transformation (right).

A Framework for Automated Independent-Biclique Cryptanalysis 569

active bytes in the difference. As a consequence, for byte- and nibble-wise

primitives the number of possible differences which can be tested reduces to
Na = ((Z?S}) and Ng = ([Zﬁ})

differentials, respectively. For bit-wise operating primitives, one can limit the

number of generated key differences to a user-definable number.

2. Secondly, one can set the same difference for multiple nibbles/bytes in the
starting key difference. At the first sight, these will produce additional active
bytes in the state after a key injection, making it harder for the differential
to be independent in a pair. At second sight, the additional active bytes may
cancel out byte differences in the key schedule and/or the round transforma-
tion of AES-like ciphers, as we can learn from the attack on SQUARE by Mala
[20]. Though, this strategy increases the number of tested keys to Ny = ok/8
for byte-wise and Ny = 2¥/4 for nibble-wise primitives, respectively.

3. Alternatively, one can employ custom rules to generate round-key differences.
In their attack on AES-192, Bogdanov et al. employed the inverse result of
a MixColumns operation as a part of the round key difference [5]. And in
their attack on ARIA-256 [8], the authors used dedicated differences in which
the right half of the 256-bit key canceled the difference injected by the left
half. One can learn from those examples that cipher-specific key differences
can result in longer bicliques for AES-like ciphers. Since testing all custom
differences in the key space is infeasible, the task of choosing “good” custom
starting key differentials can be left to the user.

3.2 Matching

A matching-with-precomputations step is supposed to be applied to the sub-
ciphers not covered by a given biclique (here Es o Ey). Our framework can help
to identify a well-suited matching by investigating two aspects: first, it tests all
possible rounds which can be used to locate V:

P—V——F§
E1 E;l

and second, it tests all possible nibbles or bytes in V' which can be used for a
partial matching. For every round r that can be used to locate V', we perform
four steps:

1. First, we compute differentials from the start and the end of the matching
part to the middle:

K[0,0]@V N fepat
Py oV ad Vel JEIA g
1 E;

Note that these differential trails result from injecting differences in the round
keys.

570 F. Abed et al.

2. Then, for every nibble/byte in V, we create a new difference 6V in which the
bits that are used for a partial matching are set. We compute the differentials
from V to start and end:

Pos” SV, 06" and Voo 2 s,
E 2

These active bits in these trails represent the parts of the states and round
keys that have to be known in order to apply the partial matching.

3. For the recomputation effort of an attack, one has to consider only those
parts of the states and round keys that are active in both differential trails:
0— V;-/ and §7 « §V. Therefore, we apply the logical AND (A) between
the active bits/nibbles/bytes (depending on the cipher) of all corresponding
states and round keys and obtain the accumulated differential Af by

AP =(0—6V)A (67 V).
Similarly, we compute the accumulated differential Vf
V7 = (0V, — 0) A (6) — 6S).

4. As the final step, the number of active bits/nibbles/bytes in keys, states, and
intermediate states is counted in both Af and V¥ to have a single number
which refers to the recomputational effort.

4 Applications

We used our implementation to validate existing biclique attacks on the AES
and ARIA from [5,8], and to mount new attacks on the three versions of the
cipher BKSQ. Table 1 summarizes our results and compares them with previous
attacks.

4.1 Verifications

AES. In our experiments on the AES we could construct bicliques on up to
three rounds for the 128-bit, and on up to four rounds for the 192-bit and 256-
bit versions. Hence, our results confirm to the findings of Bogdanov et al. in terms
of maximal biclique lengths. In their independent-biclique attacks, Bogdanov et
al. pointed out that the round key differences are a linear function of the indices
i and j. Thus, the authors could neglect the effort for recomputing the S-boxes
in the key schedule. We did not employ this optimization, since we searched
for a more general approach in our implementation. Additionally, we detected a
minor flaw in the complexity calculation for the independent-biclique attack on
the 192-bit version. There, the authors forgot to consider either the round 6 or 7
with 16 active S-boxes which increases the number of SubByte operations from
2.8125 to 3.8125, and the total complexity from 21874 to 2190-16,

A Framework for Automated Independent-Biclique Cryptanalysis 571

Table 1. Independent-biclique attacks constructed by automated search in compar-
sion with previously published attacks. CP: chosen plaintexts, (x): the computational
complexity should be 2916 (cf. Sect. 4.1).

Primitive Rounds Comp. Data Memory Ref.
complexity complexity (CP) complexity

AES

AES-128 10 (full) 212672 272 28 This work

AES-128 10 (full) 212618 288 28 5]

AES-192 12 (full) 219028 248 28 This work

AES-192 12 (full) 2'8974(%) 280 28 5]

AES-256 14 (full) 225453 264 28 This work

AES-256 14 (full) 225442 240 28 5]

ARIA

ARIA-256 16 (full) 225520 280 28 8]

BKSQ

BKSQ-96 10 (full) 29447 280 28 This work

BKSQ-144 14 (full) 214263 296 28 This work

BKSQ-192 18 (full) 219078 296 28 This work

ARIA. ARIA is a Korean variant of the AES. Its round transformation provides
a significant diffusion, where every input byte is involved in the computation
of seven output bytes. In the key schedule of ARIA, the input key is trans-
formed in a four-round Feistel structure to create four intermediate key words
Wo, Wi, Wy, W3. All round keys are then extracted from these words using rota-
tions and XORs. Chen and Xu [8] injected one-byte differences for the A;- and
V j-differentials in the leftmost 128 bits of the key, and used the rightmost 128
bits to cancel the resulting seven-byte difference. We have implemented and
verified the attack on ARIA-256. However, the Feistel preparation in the key
schedule refused more efficient attacks.

4.2 Independent-Biclique Attack on the Full AES-128 and AES-192

While the time complexities of the previous works on the AES are better than
our results for them, we could decrease the data complexity for the 128-bit and
192-bit versions. In the biclique for the 128-bit version, the ciphertexts C; differ
in only 11 out of 16 bytes, as can be seen on the left side of Fig. 2 in Appendix A.
The bytes 0,8,12 (from left: the first, third and fourth byte in the uppermost
row) are active in the ciphertexts only after the key injection in the final round.
Due to the key schedule of the AES, these bytes in the final round key always
have an equal difference. As a consequence, since the ciphertexts can only take
(28)? values, the data complexity is upper bounded by 272.

Similarly, in the biclique for the 192-bit version, the ciphertexts C; differ in
only five out of 16 bytes before the final key addition, as illustrated on the right
side of Fig.2 in Appendix A.

572 F. Abed et al.

Due to the key schedule, the bytes 1,5,9 (from left: the first, third and fourth
byte in the second row) in the round key for the final round always have an equal
difference. The ciphertexts for this biclique can take only (28)% values. Thus, the
data complexity of an attack using this biclique is upper bounded by 2%8.

4.3 Specification of BKSQ

BKSQ is a substitution-permutation network that was proposed by Daemen
and Rijmen in [10]. The cipher represents a generalization of Rijndael, in which
the state has a rectangular m X n-structure (cf. [11]). There are three different
versions of BKSQ which all have a state size of 96 and individual key lengths
of 96, 144, or 192 bits. The internal state is represented by a 3 x 4- and the
secret key is represented as a 3 X 4-, 6 X 4-, or 9 x 4-byte matrix. The plaintext
is transformed in 10/14/18 rounds using the four operations:

— MizColumns/0: The internal state is multiplied column-wise by a circulant
MDS-matrix in the Galois-Field GF(2%).

— SubBytes/vy: Each byte in the internal state is replaced using an 8 x 8-bit
S-box.

— ShiftRows/m: The i-th row of the internal state for ¢ € {0, 1,2} is rotated by
i bytes to the left.

— AddRoundKey/o[k;]: The internal state is XORed byte-wise with the subkey
k; for round 3.

Before the first round, an inverse #-operation is applied to the plaintext and an
additional key ko is XORed with the state.

4.4 Independent-Biclique Attack on Full BKSQ-96

This subsection explains our independent-biclique attack on full BKSQ-96. The
attack includes three steps: partitioning the key space, constructing a biclique,
and matching over the remaining parts of the cipher. The complexity of the
attack is described at the end.

Key Space Partitioning. We partition the key space in 289 sets with respect

to the round key for Round 8, kg. The base keys K0, 0] of the sets are the 280
12-byte values with two bytes fixed to zero, where the ten remaining bytes run
over all possible values. The 216 keys K[i, j] in a set are defined by applying the
key differences AiK and Vg(to the base key, where ¢,j € {0,...,255}.

K[0,0) =8 A (k) = [VA (ke) = LLI0

Note that the key schedule of BKSQ-96 performs a bijective mapping where
every value for the secret key is mapped uniquely to one value of each round
key. Thus, our splitting of the key space covers the full secret key space.

A Framework for Automated Independent-Biclique Cryptanalysis 573

3-Round Biclique of Dimension 8. We construct a biclique of dimension
eight over the rounds 8-10. Fig. 3 in Appendix B shows the base computation as
well as the A;- and Vj-differentials. It can be seen from there that all A;- and
V j-differentials are independent, i.e., their keys and states do not share active
bytes which are used as inputs to the non-linear S-box. From Fig. 3 in Appendix
B one can see that the A;-differentials affect the ciphertexts C; in only 10 bytes.
By fixing Cy for all bicliques, we can upper bound the data complexity of this
attack by 2%° ciphertexts.

Matching Over 7 Rounds. The matching part covers the first seven rounds
of the cipher, as illustrated in Fig.4 in Appendix B. We choose the first byte of
the state after Round 3 for the partial matching. The bytes which have to be
recomputed are darkened in Fig. 4.

Similar to the attacks on the AES in [5], we have to be accurate concerning
the recompution effort. In all attacks on BKSQ we follow the argumentation of
[5] and focus on the number of S-boxes which require recomputation in order to
have a single value which refers best to the total effort, since the number of S-box
lookups is the dominant summand compared to the number of recomputed 6-
and o- operations.

As we can see from Fig.4 in Appendix B, we need to consider nine S-boxes
in the first, three S-boxes in the second, and one additional S-box in the third
round. Hence, we have 9 + 3 + 1 = 13 S-boxes in the forward part of the
round transformation. In backward direction (covering rounds 4 to 7) we need
to consider 3 + 9 + 7 + 3 = 22 S-boxes in the round transformation. Additionally,
we have to take into account the S-boxes that require recompution in the key
schedule. BKSQ uses the S-box for the rightmost column of each of its round
keys. Thereare 3 + 3 +3+ 34+ 14+ 1+ 0+ 1 = 15 such active S-boxes in the
last column of the round keys. These sum up to 13 + 22 4+ 15 = 50 S-boxes for
one group of keys.

Complexity of the Attack. In the full BKSQ-96, there are 10 - 12 = 120
S-boxes in all y-operations of the full cipher and 30 S-boxes in the key schedule.
Thus, for 2'6 keys in one key group, Cyecomp is equivalent to 2'6 . 20 = 21442
full encryptions. In all of our attacks on BKSQ we use bicliques of dimension
eight. Therefore, the decryption oracle needs 2% decryptions per biclique. Since
we match in eight bits in the state v, we can expect to have 21678 false positive
key candidates per key group in average, which have to be tested in a brute-force
stage.

For BKSQ-96, the effort to construct a biclique, Chiciique, is given by com-
puting 2-28 times three out of 10 rounds, which is equal to 2726 full encryptions.
The precomputations costs are given by computing 2% times three rounds in for-
ward direction from P to V and 28 times four rounds in backward direction from
S to V. Hence, Cphrecomp is equal to 2749 encryptions. The full computational
complexity is given by

280 . (27.26 + 28 + 27.49 + 214.42 + 28) — 294.48

574 F. Abed et al.

280

encryptions. This attack requires chosen plaintexts, and memory to store 28

96-bit states at a time.

4.5 Independent-Biclique Attack on Full BKSQ-144

Key Space Partitioning. In the attack on the 144-bit version of BKSQ we
partition the key space in 2!2% sets with respect to the block (k12||k%3), which
contains the full round key k12 and the leftmost two columns of ki3. The base
keys of the sets, K[0,0], are the 2128 18-byte values, where two bytes are fixed
to zero and the remaining 16 bytes run over all possible values. The 2'¢ keys
Kli,j] in a set are defined by applying the key differences AX and V]K to the
base key, where i,j € {0,...,255}.

0 il
K[0,0] =[To A (kia||kf3) = Vi (k| |kfs) = [0

Note that the key schedule of BKSQ-144 maps every value of the secret key
uniquely to one value of each 18-byte block of the key register. Thus, our splitting
of the key space with respect to (kia|/kf3) covers the full secret-key space.

4-Round Biclique of Dimension 8. We construct a four-round biclique which
covers the rounds 11 to 14, as shown in Fig.5 in Appendix C. This time, the
ciphertexts C; are affected in all bytes. Thus, the attack can potentially include
the full codebook.

Matching Over 9 Rounds. We match in the first byte of the state after
Round 3. Figure 6 in Appendix C shows the active bytes in the matching phase.
We consider 9 + 3 + 1 = 13 S-boxes in forward and 3 + 9 4+ 12 + 12 + 12 + 6
+ 2 = 56 active S-boxes in the backward part of the matching. Moreover, in the
key schedule, we have to recompute one active S-box in each of the round keys
k1, k4, k7, and k19. Hence, there are in total 13 + 56 + 4 = 73 active S-boxes in
the matching phase.

Complexity of the Attack. In the full cipher, there are 14 -12 = 168 S-boxes
in the y-operations and 27 S-boxes in the key schedule. Thus, for 2'¢ keys in one
key group, Crecomp is equivalent to 216 . % = 21458 f]] encryptions. Chiclique
is given by computing 2 - 2% times four out of 14 rounds, which is equivalent to
2719 fyll encryptions. Considering Cprecomp, one has to compute 28 times ten
out of 14 rounds, which is equivalent to 27-°! full computations. The total time

complexity is given by
2128 . (27.19 + 28 + 27‘51 + 214.58 + 28) _ 2142.63

full encryptions. The data complexity of this attack is 2°¢, and we need memory
to store 28 states.

A Framework for Automated Independent-Biclique Cryptanalysis 575

4.6 New Independent-Biclique Attack on Full BKSQ-192

Key Space Partitioning. For this attack we divide the key space into 2!76

sets with respect to the block (k16| k17), which contains the keys for rounds 16
and 17. The base keys K|0,0] are the 2176 24-byte values with two bytes fixed
to zero, where all other bytes run over all possible values. The 216 keys K[i, j]
in a set are defined by applying the key differences AX and VJK to the base key,
where i,5 € {0,...,255}.

|~

0
K0,0] = T80 AF (kuolfar) = (0D VX (haglnr) =

Note, that the key schedule of BKSQ-192 maps every value of the secret key
uniquely to one value of each 24-byte block of the key register. Thus, our splitting
of the key space with respect to (kig||k17) covers the full secret-key space.

5-Round Biclique of Dimension 8. We construct a 5-round biclique which
covers the rounds 14 to 18, as shown in Fig. 7 in Appendix D. For this attack,
the A;-differentials affect all bytes in the ciphertexts C;. Hence, this attack may
require the full codebook.

Matching Over 13 Rounds. We match in the first byte of the state after
Round 5, as shown in Fig. 8, Appendix D. There, an adversary should recompute
12+ 12 + 9 + 3 + 1 = 37 S-boxes in the forward direction, 3 + 9 + 4-12 +
6 + 2 = 68 S-boxes in backward direction and six S-boxes in the key schedule.
Hence, 37 + 68 + 6 = 111 S-boxes need to be recomputed in total.

Complexity of the Attack. In BKSQ-192, there are 18 - 12 = 216 S-boxes
in the y-operations and 51 bytes in the key schedule. Thus, for 2'¢ keys in one
key group, Crecomp results in 216. % = 21473 fyll encryptions. Chiclique 1s given
by computing 2 - 28 times five out of 18 rounds, which is equivalent to 27-° full
encryptions. Chprecomp 1S given by computing 28 times 13 out of 18 rounds or

2793 computations. The full time complexity is given by

2176 . (27.15 4 28 4 27.53 4 214.73 4 28) — 2190.78

296

full encryptions. Again, the data complexity is and the memory complexity

is 28,
5 Conclusion and Outlook

With Janus, we have introduced a user-friendly, highly flexible, and expandable
framework for cryptanalysts which supports automated biclique cryptanalysis
of a user-specified cryptographic algorithm. With this framework, we found the
first full-round attacks on BKSQ-96, BKSQ-144, and BKSQ-192. It is planned to
increase the number of supported primitives, e.g., the AES and SHA-3 finalists
to analyze the resistance against biclique attacks.

576 F. Abed et al.

A Bicliques from the Attack on Full AES-128 and

AES-192

Forward differential

Backward differential

So Sj
Round 8 Round 8
AF v
Round 9 Round 9
E:H \
[
Round 10 Round 1;
H
(L
G o G

Forward differential

Backward differential

S;
Round 9 Round 9
AKX .
[T
[
Round 10 Round 10
[; ;
[
Round 11 Round 11
H
I } } H::
]
- g
Round 12 Round 12
[
[
1] O
1 —
L] G,

Fig. 2. A;- and V;-differentials of the bicliques for the AES-128 (left) over the rounds

8 - 10 and the AES-192 (right) over the rounds 9 - 12.

A Framework for Automated Independent-Biclique Cryptanalysis 577

B Independent-Biclique Attack on Full BKSQ-96

Base computation Forward differential Backward differential

Backward matching

Round 4 Round 5 Round 6 Round 7

PEE- P pHH
o B BE B Bl

Fig. 4. Recomputations for BKSQ-96 in forward and backward direction.

578 F. Abed et al.

C Independent-Biclique Attack on Full BKSQ-144

Forward differential Backward differential

@
e

b HH B E B E B TH B E

o

m
8
[¢]
FFHO
9

Round 11

o

Round 12

e

Round 13

e

H

;
il

Round 14

L

Backward matching

Round 4 Round 5 Round 9 Round 10

P o o -~ 7l 7t
o T W B

Fig. 6. Recomputations for BKSQ-144 in forward and backward direction.

A Framework for Automated Independent-Biclique Cryptanalysis 579

D Independent-Biclique Attack on Full BKSQ-192

Fig. 7. Biclique for BKSQ-192 over the rounds 14 - 18 with A;- and V;-differentials.

Backward matching

Round 6

BiiE |
of

Fig. 8. Recomputations for BKSQ-192 in forward and backward direction.

580

F. Abed et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Biclique Cryptanalysis of

the PRESENT and LED lightweight ciphers. Cryptology ePrint Archive, report
2012/591 (2012). http://eprint.iacr.org/

. Abed, F., List, E., Lucks, S.: On the security of the core of prince against biclique

and differential cryptanalysis. Cryptology ePrint Archive, report 2012/712 (2012).
http://eprint.iacr.org/

Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Biclique Cryptanalysis of the Full-
Round KLEIN block cipher. Cryptology ePrint Archive, report 2013/097 (2013).
http://eprint.iacr.org/

Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103-119. Springer, Heidelberg (2009)

Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol. 7073, pp.
344-371. Springer, Heidelberg (2011)

1T3XT BVBA. iText, a Free Java-PDF Library (2012). http://www.itextpdf.com/
Coban, M., Karakog, F., Boztag, O.: Biclique cryptanalysis of TWINE. Cryptology
ePrint Archive, report 2012/422 (2012). http://eprint.iacr.org/

Chen, S., Tianmin, X.: Biclique attack of the full ARIA-256. TACR Cryptology
ePrint Archive, 2012:11 (2012)

Daemen, J., Van Assche, G.: Differential propagation analysis of keccak. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422-441. Springer, Heidelberg
(2012)

Daemen, J., Rijmen, V.: The block cipher BKSQ. In: Schneier, B., Quisquater, J.-J.
(eds.) CARDIS 1998. LNCS, vol. 1820, pp. 236-245. Springer, Heidelberg (2000)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The skein hash function family. Submission to NIST (Round 3)
(2010)

Hong, D., Koo, B., Kwon, D.: Biclique attack on the full HIGHT. In: Kim, H. (ed.)
ICISC 2011. LNCS, vol. 7259, pp. 365-374. Springer, Heidelberg (2012)

Jeong, K., Kang, H., Lee, C., Sung, J., Hong, S.: Biclique cryptanalysis of light-
weight block ciphers PRESENT, piccolo and LED. Cryptology ePrint Archive,
report 2012/621 (2012). http://eprint.iacr.org/

Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: cryptanalysis of
full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 392-410. Springer, Heidelberg (2012)

Khovratovich, D., Rechberger, C.: A splice-and-cut cryptanalysis of the AES. TACR
Cryptology ePrint Archive, 2011:274 (2011). http://eprint.iacr.org/2011/274
Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on skein-512 and the SHA-2 family. Cryptology ePrint Archive, report 2011/286
(2011). http://eprint.iacr.org/

Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244-263. Springer, Heidelberg (2012)

Leurent, G.: ARXtools: a toolkit for ARX analysis. University of Luxembourg,
Technical report (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.itextpdf.com/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/274
http://eprint.iacr.org/

20.

21.

22.

23.

24.

25.

26.

27.

28.

A Framework for Automated Independent-Biclique Cryptanalysis 581

Mala, H.: Biclique cryptanalysis of the block cipher SQUARE. Cryptology ePrint
Archive, report 2011/500 (2011). http://eprint.iacr.org/

NIST National Institute of Standards and Technology. FIPS 180—-2: Secure Hash
Standard. April 1995. http://csrc.nist.gov

Sasaki, Y., Aoki, K.: Preimage attacks on step-reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282-296. Springer, Hei-
delberg (2008)

Sasaki, Y., Wang, L., Aoki, K.: Preimage attacks on 41-step SHA-256 and 46-step
SHA-512. Cryptology ePrint Archive, report 2009/479 (2009). http://eprint.iacr.
org/

Shakiba, M., Dakhilalian, M., Mala, H.: Non-isomorphic biclique cryptanalysis
and its application to full-round mCrypton. Cryptology ePrint Archive, report
2013/141 (2013). http://eprint.iacr.org/

Stankovski, P.: Automated algebraic cryptanalysis. Department of Electrical and
Information Technology. Technical report, Department of Electrical and Informa-
tion Technology, Lund University (2010)

Wang, Y., Wu, W., Yu, X.: Biclique cryptanalysis of reduced-round piccolo block
cipher. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 337-352. Springer, Heidelberg (2012)

Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique crypt-
analysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1-14.
Springer, Heidelberg (2012)

Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-
the-middle cryptanalysis of KTANTAN (poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433-438. Springer, Heidelberg (2011)

http://eprint.iacr.org/
http://csrc.nist.gov
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	A Framework for Automated Independent-Biclique Cryptanalysis
	1 Introduction
	2 Independent-Biclique Cryptanalysis
	2.1 Independent Bicliques
	2.2 Matching-with-Precomputations
	2.3 Complexity Calculation

	3 Framework Design
	3.1 Biclique Search
	3.2 Matching

	4 Applications
	4.1 Verifications
	4.2 Independent-Biclique Attack on the Full AES-128 and AES-192
	4.3 Specification of BKSQ
	4.4 Independent-Biclique Attack on Full BKSQ-96
	4.5 Independent-Biclique Attack on Full BKSQ-144
	4.6 New Independent-Biclique Attack on Full BKSQ-192

	5 Conclusion and Outlook
	A Bicliques from the Attack on Full AES-128 and AES-192
	B Independent-Biclique Attack on Full BKSQ-96
	C Independent-Biclique Attack on Full BKSQ-144
	D Independent-Biclique Attack on Full BKSQ-192
	References

