Morphing Planar Graph Drawings Optimally

Patrizio Angelini ${ }^{1}$, Giordano Da Lozzo ${ }^{1}$, Giuseppe Di Battista ${ }^{1}$, Fabrizio Frati ${ }^{2}$, Maurizio Patrignani ${ }^{1}$, Vincenzo Roselli ${ }^{1}$
1 Dipartimento di Ingegneria, Roma Tre University, Italy
\{angelini, dalozzo, gdb, patrigna, roselli\}@dia.uniroma3.it
2 School of Information Technologies, The University of Sydney, Australia
fabrizio.frati@sydney.edu.au

Abstract

We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any n-vertex plane graph in $O(n)$ morphing steps, thus improving upon the previously best known $O\left(n^{2}\right)$ upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γ_{s} and Γ_{t} of an n-vertex plane graph G such that any planar morph between Γ_{s} and Γ_{t} requires $\Omega(n)$ morphing steps.

1 Introduction

A morph is a continuous transformation between two topologically equivalent geometric objects. The study of morphs is relevant for several areas of computer science, including computer graphics, animation, and modeling. Many of the geometric shapes that are of interest in these contexts can be effectively described by two-dimensional planar graph drawings. Hence, designing algorithms and establishing bounds for morphing planar graph drawings is an important research challenge. We refer the reader to $678 \mid 11$ 12] for extensive descriptions of the applications of graph drawing morphs.

It has long been known that there always exists a planar morph (that is, a morph that preserves the planar topology of the graph at any time instant) transforming any planar straight-line drawing Γ_{s} of a plane graph G into any other planar straight-line drawing Γ_{t} of G. However, the first proof of such a result, published by Cairns in 1944 [4], was "existential", meaning that no guarantee was provided on the complexity of the trajectories followed by the vertices during the morph. Almost 40 years later, Thomassen proved in [13] that a morph between Γ_{s} and Γ_{t} always exists in which vertices follow trajectories of exponential complexity (in the number of vertices of G). In other words, adopting a setting defined by Grünbaum and Shepard [9] which is also the one we consider in this paper, Thomassen proved that there exists a sequence $\Gamma_{s}=$ $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}=\Gamma_{t}$ of planar straight-line drawings of G such that, for every $1 \leq i \leq$ $k-1$, the linear morph transforming Γ_{i} into Γ_{i+1} is planar, where a linear morph moves each vertex at constant speed along a straight-line trajectory.

A breakthrough was recently obtained by Alamdari et al. by proving that a planar morph between any two planar straight-line drawings of the same n-vertex connected plane graph exists in which each vertex follows a trajectory of polynomial complexity [1]. That is, Alamdari et al. showed an algorithm to perform the morph in $O\left(n^{4}\right)$
morphing steps, where a morphing step is a linear morph. The $O\left(n^{4}\right)$ bound was shortly afterwards improved to $O\left(n^{2}\right)$ by Angelini et al. [2].

In this paper, we provide an algorithm to compute a planar morph with $O(n)$ morphing steps between any two planar straight-line drawings Γ_{s} and Γ_{t} of any n-vertex connected plane graph G. Further, we prove that our algorithm is optimal. That is, for every n, there exist two drawings Γ_{s} and Γ_{t} of the same n-vertex plane graph (in fact a path) such that any planar morph between Γ_{s} and Γ_{t} consists of $\Omega(n)$ morphing steps. To the best of our knowledge, no super-constant lower bound was previously known.

The schema of our algorithm is the same as in [1|2]. Namely, we morph Γ_{s} and Γ_{t} into two drawings Γ_{s}^{x} and Γ_{t}^{x} in which a certain vertex v can be contracted onto a neighbor x. Such contractions generate two straight-line planar drawings Γ_{s}^{\prime} and Γ_{t}^{\prime} of a smaller plane graph G^{\prime}. A morph between Γ_{s}^{\prime} and Γ_{t}^{\prime} is recursively computed and suitably modified to produce a morph between Γ_{s} and Γ_{t}. The main ingredient for our new bound is a drastically improved algorithm to morph Γ_{s} and Γ_{t} into Γ_{s}^{x} and Γ_{t}^{x}. In fact, while the task of making v contractible onto x is accomplished with $O(n)$ morphing steps in [1|2], we devise and use properties of monotone drawings, level planar drawings, and hierarchical graphs to perform it with $O(1)$ morphing steps.

The idea behind the lower bound is that linear morphs can poorly simulate rotations, that is, a morphing step rotates an edge of an angle whose size is $O(1)$. We then consider two drawings Γ_{s} and Γ_{t} of an n-vertex path P, where Γ_{s} lies on a straight-line, whereas Γ_{t} has a spiral-like shape, and we prove that in any planar morph between Γ_{s} and Γ_{t} there is one edge of P whose total rotation describes an angle whose size is $\Omega(n)$.

The rest of the paper is organized as follows. In Section 2 we give some definitions and preliminaries; in Section 3 we present our algorithm; in Section 4 we discuss the lower bound; finally, in Section [5] we conclude and offer some open problems.

2 Preliminaries

In this section we give some definitions and preliminaries.

2.1 Drawings and Embeddings

A planar straight-line drawing of a graph maps each vertex to a distinct point in the plane and each edge to a straight-line segment between its endpoints so that no two edges cross. A planar drawing partitions the plane into topologically connected regions, called faces. The bounded faces are internal, while the unbounded face is the outer face. A planar straight-line drawing is convex if each face is delimited by a convex polygon. A planar drawing of a graph determines a circular ordering of the edges incident to each vertex, called rotation system. Two drawings of a graph are equivalent if they have the same rotation system and the same outer face. A plane embedding is an equivalence class of planar drawings. A graph with a plane embedding is called a plane graph. A plane graph is maximal if no edge can be added to it while maintaining its planarity.

2.2 Subgraphs and Connectivity

A subgraph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ of a graph $G(V, E)$ is a graph such that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$; G^{\prime} is induced if, for every $u, v \in V^{\prime},(u, v) \in E^{\prime}$ if and only if $(u, v) \in E$. If G
is a plane graph, then a subgraph G^{\prime} of G is regarded as a plane graph whose plane embedding is the one obtained from G by removing all the vertices and edges not in G^{\prime}.

A graph G is connected if there is a path between every pair of vertices; it is k connected if removing any $k-1$ vertices leaves G connected; a separating k-set is a set of k vertices whose removal disconnects G. A separating 3 -cycle in a plane graph G is a cycle with three vertices containing vertices both in its interior and in its exterior. Every separating 3 -set in a maximal plane graph G induces a separating 3-cycle.

2.3 Monotonicity

An arc $\boldsymbol{x y}$ is a line segment having x and y as endpoints and directed from x to y. An arc $\boldsymbol{x} \boldsymbol{y}$ is monotone with respect to an oriented straight line \boldsymbol{d} if it has a positive projection on \boldsymbol{d}. That is, let p and q be any two distinct points in this order along $\boldsymbol{x y}$ when traversing $\boldsymbol{x} \boldsymbol{y}$ from x to y; then, the projection of p on \boldsymbol{d} precedes the projection of q on \boldsymbol{d} when traversing \boldsymbol{d} according to its orientation. A path $P=\left(u_{1}, \ldots, u_{n}\right)$ is \boldsymbol{d}-monotone if the straight-line arc $\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i + 1}}$ is monotone with respect to \boldsymbol{d}, for $i=$ $1, \ldots, n-1$; a path P is monotone if there exists an oriented straight line \boldsymbol{d} such that P is \boldsymbol{d}-monotone. A polygon Q is \boldsymbol{d}-monotone if there exist two vertices s and t in Q such that the two paths that start at s, that end at t, and that compose Q are both \boldsymbol{d}-monotone. Finally, a polygon Q is monotone if there exists an oriented straight line \boldsymbol{d} such that Q is \boldsymbol{d}-monotone. We show some lemmata about monotone paths and polygons.

Lemma 1. Let Q be any convex polygon and let \boldsymbol{d} be any oriented straight line not perpendicular to any straight line through two vertices of Q. Then Q is \boldsymbol{d}-monotone.

Proof: Refer to Fig. 1 Denote by u_{1}, \ldots, u_{k} the vertices of Q, in any order. Let \boldsymbol{d} be any oriented straight line not perpendicular to any straight line through two vertices of Q. For $1 \leq i \leq k$, let u_{i}^{\prime} be the projection of u_{i} on \boldsymbol{d}. Since Q is convex and \boldsymbol{d} is not perpendicular to any straight line through two vertices of Q, we have that u_{i}^{\prime} and u_{j}^{\prime} are distinct, for $1 \leq i \neq j \leq k$. Let σ be the total order of the projections u_{i}^{\prime} as they are encountered when traversing \boldsymbol{d} according to its orientation. Let u_{a}^{\prime} and u_{b}^{\prime} be the first and the last element in σ, respectively. We claim that the two paths P_{1} and P_{2} connecting u_{a} and u_{b} along Q are \boldsymbol{d}-monotone. The claim directly implies the lemma.

We prove the claim by induction on k. If $k=3$, then the claim is trivially proved. If $k \geq 4$, then let u_{c}^{\prime} be the second element in σ. Assume, w.l.o.g., that u_{c} is in P_{1}. Then, let Q^{\prime} be the convex polygon obtained from Q by inserting a segment connecting u_{c} with the second vertex of P_{2}, say u_{d}, and by removing u_{a} and its two incident segments. Let $\sigma^{\prime}=\sigma \backslash\left\{u_{a}^{\prime}\right\}$. By assumption, u_{c}^{\prime} and u_{b}^{\prime} are the first and the last element in σ^{\prime}, respectively. By induction, the two paths $P_{1}^{\prime}=P_{1} \backslash\left\{\left(u_{a}, u_{c}\right)\right\}$ and $P_{2}^{\prime}=P_{2} \backslash\left\{\left(u_{a}, u_{d}\right)\right\} \cup\left\{u_{c}, u_{d}\right\}$ are \boldsymbol{d}-monotone. Finally, arcs $\boldsymbol{u}_{\boldsymbol{a}} \boldsymbol{u}_{\boldsymbol{c}}$ and $\boldsymbol{u}_{\boldsymbol{a}} \boldsymbol{u}_{\boldsymbol{d}}$ have positive projections on \boldsymbol{d}, by the assumption that u_{a}^{\prime} is the first element in σ. Hence, paths P_{1} and P_{2} are \boldsymbol{d}-monotone and polygon Q is \boldsymbol{d}-monotone.

Lemma 2. Let $P=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ be a path drawn in the plane. Denote by α the angle spanned by segment $\overline{u_{1} u_{2}}$ while rotating such a segment clockwise around u_{2} until it overlaps segment $\overline{u_{2} u_{3}}$. Also, denote by β the angle spanned by segment $\overline{u_{2} u_{3}}$

Fig. 1. Illustration for the proof of Lemma 1
while rotating such a segment clockwise around u_{3} until it overlaps segment $\overline{u_{3} u_{4}}$. Then, P is monotone if and only if $\pi<\alpha+\beta<3 \pi$.

Proof: Let $\alpha^{\prime}=2 \pi-\alpha$ and $\beta^{\prime}=2 \pi-\beta$ be the two angles incident to u_{2} and to u_{3} different from α and from β, respectively. Observe that $\pi<\alpha^{\prime}+\beta^{\prime}<3 \pi$ if and only if $\pi<\alpha+\beta<3 \pi$.

First, suppose that P is monotone, that is, there exists an oriented straight line d such that P is \boldsymbol{d}-monotone. We prove that $\pi<\alpha+\beta<3 \pi$. Refer to Fig. 2(a). Denote by u_{1}^{\prime} and u_{4}^{\prime} the projections of u_{1} and u_{4} on \boldsymbol{d}, respectively. Consider polygon $Q=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{4}^{\prime}, u_{1}^{\prime}\right)$. Denote by $\delta_{1}, \delta_{4}, \delta_{1}^{\prime}$, and δ_{4}^{\prime} the angles incident to u_{1}, u_{4}, u_{1}^{\prime}, and u_{4}^{\prime} inside Q, respectively. We have $\alpha+\beta+\delta_{1}+\delta_{4}+\delta_{1}^{\prime}+\delta_{4}^{\prime}=4 \pi$. Further, $\delta_{1}^{\prime}=\delta_{4}^{\prime}=\pi / 2$. Since $0<\delta_{1}, \delta_{4}<\pi$, it follows that $\pi<\alpha+\beta<3 \pi$.

Second, suppose that $\pi<\alpha+\beta<3 \pi$. We prove that P is monotone. We assume that $\alpha+\beta \leq 2 \pi$. Indeed, if $\alpha+\beta>2 \pi$, then $\alpha^{\prime}+\beta^{\prime} \leq 2 \pi$ and a symmetric proof can be exhibited in which α^{\prime} and β^{\prime} replace α and β. Also, assume that $\alpha \leq \beta$, as the case $\beta \leq \alpha$ can be dealt with symmetrically.

If $\alpha>\pi / 2$, then $\pi / 2<\beta<3 \pi / 2$. Refer to Fig. 2(b). Let \boldsymbol{d} be the oriented straight line parallel to segment $\overline{u_{2} u_{3}}$ and oriented in such a way that arc $\boldsymbol{u}_{2} \boldsymbol{u}_{3}$ has a positive projection on \boldsymbol{d}. Since $\alpha, \beta>\pi / 2$ and since $\alpha, \beta<3 \pi / 2$, it follows that arcs $\boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{u}_{\mathbf{2}}$ and $\boldsymbol{u}_{3} \boldsymbol{u}_{\boldsymbol{4}}$ have a positive projection on \boldsymbol{d} as well, hence P is \boldsymbol{d}-monotone.

If $\alpha \leq \pi / 2$, then let ϵ be an arbitrarily small positive value such that $\beta>\pi-\alpha+\epsilon$. Such an ϵ always exist, given that $\beta>\pi-\alpha$. Refer to Fig. 2 (c). Let l_{3} be the line through u_{3} such that the angle spanned by $\overline{u_{2} u_{3}}$ while clockwise rotating such a segment around u_{3} until it overlaps l_{3} is equal to $\pi-\alpha+\epsilon$. Let \boldsymbol{d} be an oriented straight line orthogonal to l_{3} and directed so that arc $\boldsymbol{u}_{2} \boldsymbol{u}_{\mathbf{3}}$ has a positive projection on it. Observe that segment $\overline{u_{2} u_{3}}$ is not perpendicular to \boldsymbol{d}, given that $\overline{u_{2} u_{3}}$ and l_{3} form an angle of $\pi-\alpha+\epsilon<\pi$. We claim that P is \boldsymbol{d}-monotone. Arc $\boldsymbol{u}_{2} \boldsymbol{u}_{\boldsymbol{3}}$ has a positive projection on \boldsymbol{d} by construction. The angle spanned by a clockwise rotation of segment $\overline{u_{1} u_{2}}$ around u_{2} bringing $\overline{u_{1} u_{2}}$ to overlap with a line orthogonal to \boldsymbol{d} passing through u_{2} is ϵ by construction. Hence, $\operatorname{arc} \boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{u}_{\mathbf{2}}$ has a positive projection on \boldsymbol{d}, given that $0<\epsilon<\pi$. Finally, to prove that arc $\boldsymbol{u}_{\boldsymbol{3}} \boldsymbol{u}_{\boldsymbol{4}}$ has a positive projection on \boldsymbol{d}, it suffices to observe that u_{4} is in the half-

Fig. 2. (a) If P is monotone, then $\pi<\alpha+\beta<3 \pi$. (b) If $\pi<\alpha+\beta<3 \pi$ and $\alpha>\pi / 2$, then P is monotone. (c) If $\pi<\alpha+\beta<3 \pi$ and $\alpha \leq \pi / 2$, then P is monotone.
plane delimited by l_{3} and not containing u_{2}, as a consequence of $\beta>\pi-\alpha+\epsilon$ and $\alpha+\beta \leq 2 \pi$.

This concludes the proof of the lemma.

Lemma 3. Any planar polygon Q with at most 5 vertices is monotone.
Proof: The proof distinguishes three cases, depending on the number of vertices of Q.

- If Q has three vertices, then it is convex, hence the statement follows from Lemma 1
- If Q has four vertices, then it suffices to show that Q contains a monotone path with four vertices. Namely, assume that Q contains a path $P=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ which is monotone with respect to some oriented straight line \boldsymbol{d}. Then, paths $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ and $\left(u_{1}, u_{4}\right)$ are both \boldsymbol{d}-monotone, hence Q is \boldsymbol{d}-monotone.
Denote by α, β, γ, and δ the angles internal to Q in clockwise order around Q. Since $\alpha+\beta+\gamma+\delta=2 \pi$, it follows that $\alpha+\beta<3 \pi$, that $\beta+\gamma<3 \pi$, that $\gamma+\delta<3 \pi$, and that $\delta+\alpha<3 \pi$. Suppose that for two consecutive angles in Q, say α and β, it holds $\alpha+\beta<\pi$; then, $\pi<\gamma+\delta<3 \pi$, and hence Q contains a monotone path with four vertices by Lemma2. Thus, if Q does not contain any monotone path with four vertices, then every two consecutive angles in Q sum up to exactly π, hence Q is convex, and it is monotone with respect to every oriented straight line \boldsymbol{d} by Lemma 1
- If Q has five vertices, then again it suffices to show that Q contains a monotone path with four vertices. Namely, assume that Q contains a monotone path $P=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. By definition of monotone path, there exists an oriented straight line \boldsymbol{d} such that arcs $\boldsymbol{u}_{1} \boldsymbol{u}_{2}, \boldsymbol{u}_{2} \boldsymbol{u}_{3}$, and $\boldsymbol{u}_{\boldsymbol{3}} \boldsymbol{u}_{\boldsymbol{4}}$ have positive projections
on \boldsymbol{d}. Slightly perturb the slope of \boldsymbol{d}, if necessary, so that no line through two vertices of Q is orthogonal to d. If the perturbation is small enough, then P is still d-monotone. Denote by u_{5} the fifth vertex of Q and, for $1 \leq i \leq 5$, denote by u_{i}^{\prime} the projection of u_{i} on \boldsymbol{d}. If u_{5}^{\prime} precedes u_{1}^{\prime} on \boldsymbol{d}, then paths $\left(u_{5}, u_{1}, u_{2}, u_{3}, u_{4}\right)$ and (u_{5}, u_{4}) are both \boldsymbol{d}-monotone, hence Q is \boldsymbol{d}-monotone; if u_{5}^{\prime} follows u_{4}^{\prime} on \boldsymbol{d}, then paths $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ and $\left(u_{1}, u_{5}\right)$ are both \boldsymbol{d}-monotone, hence Q is \boldsymbol{d} monotone; finally, if u_{5}^{\prime} follows u_{1}^{\prime} and precedes u_{4}^{\prime} on \boldsymbol{d}, then paths $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ and (u_{1}, u_{5}, u_{4}) are both \boldsymbol{d}-monotone, hence Q is \boldsymbol{d}-monotone.
Denote by $\alpha, \beta, \gamma, \delta$, and ϵ the angles internal to Q in clockwise order around Q. Since $\alpha+\beta+\gamma+\delta+\epsilon=3 \pi$, it follows that $\alpha+\beta<3 \pi$, that $\beta+\gamma<3 \pi$, that $\gamma+\delta<3 \pi$, that $\delta+\epsilon<3 \pi$, and that $\epsilon+\alpha<3 \pi$. Suppose next that $\alpha+\beta \leq \pi$, that $\beta+\gamma \leq \pi$, that $\gamma+\delta \leq \pi$, that $\delta+\epsilon \leq \pi$, and that $\epsilon+\alpha \leq \pi$. Summing up the inequalities gives $2 \alpha+2 \beta+2 \gamma+2 \delta+2 \epsilon \leq 5 \pi$, hence $\alpha+\beta+\gamma+\delta+\epsilon \leq 5 \pi / 2$, a contradiction to the fact that $\alpha+\beta+\gamma+\delta+\epsilon=3 \pi$. Hence, for at least a pair of consecutive angles of Q, say α and β, it holds $\pi<\alpha+\beta<3 \pi$. Thus, by Lemma 2, Q contains a monotone path with four vertices.

This concludes the proof of the lemma.

2.4 Morphing

A linear morph $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ is a continuous transformation between two straight-line planar drawings Γ_{1} and Γ_{2} of a plane graph G such that each vertex moves at constant speed along a straight line from its position in Γ_{1} to the one in Γ_{2}. A linear morph is planar if no crossing or overlap occurs between any two edges or vertices during the transformation. A planar linear morph is also called a morphing step. In the remainder of the paper, we will construct unidirectional linear morphs, that were defined in [3] as linear morphs in which the straight-line trajectories of the vertices are parallel.

A morph $\left\langle\Gamma_{s}, \ldots, \Gamma_{t}\right\rangle$ between two straight-line planar drawings Γ_{s} and Γ_{t} of a plane graph G is a finite sequence of morphing steps that transforms Γ_{s} into Γ_{t}. A unidirectional morph is such that each of its morphing steps is unidirectional.

Let Γ be a planar straight-line drawing of a plane graph G. The kernel of a vertex v of G in Γ is the open convex region R such that placing v at any point of R while maintaining unchanged the position of every other vertex of G yields a planar straightline drawing of G. If a neighbor x of v lies on the boundary of the kernel of v in Γ, we say that v is x-contractible. The contraction of v onto x in Γ is the operation resulting in: (i) a simple graph $G^{\prime}=G /(v, x)$ obtained from G by removing v and by replacing each edge (v, w), where $w \neq x$, with an edge (x, w) (if it does not already belong to G); and (ii) a planar straight-line drawing Γ^{\prime} of G^{\prime} such that each vertex different from v is mapped to the same point as in Γ. Also, the uncontraction of v from x into Γ is the reverse operation of the contraction of v onto x in Γ, i.e., the operation that produces a planar straight-line drawing Γ of G from a planar straight-line drawing Γ^{\prime} of G^{\prime}.

A vertex v in a plane graph G is a quasi-contractible vertex if (i) $\operatorname{deg}(v) \leq 5$ and, (ii) for any two neighbors u and w of v, if u and w are adjacent, then (u, v, w) is a face of G. We have the following.

Lemma 4. (Angelini et al. [2]) Every plane graph contains a quasi-contractible vertex.
In the remainder of the paper, even when not explicitly specified, we will only consider and perform contractions of quasi-contractible vertices.

Let Γ_{1} and Γ_{2} be two straight-line planar drawings of the same plane graph G. We define a pseudo-morph of Γ_{1} into Γ_{2} as follows: (A) a unidirectional morph with m morphing steps of Γ_{1} into Γ_{2} is a pseudo-morph with m steps of Γ_{1} into Γ_{2}; (B) a unidirectional morph with m_{1} morphing steps of Γ_{1} into a straight-line planar drawing Γ_{1}^{x} of G, followed by a pseudo-morph with m_{2} steps of Γ_{1}^{x} into a straight-line planar drawing Γ_{2}^{x} of G, followed by a unidirectional morph with m_{3} morphing steps of Γ_{2}^{x} into Γ_{2} is a pseudo-morph of Γ_{1} into Γ_{2} with $m_{1}+m_{2}+m_{3}$ steps; and (C) denote by Γ_{1}^{\prime} and Γ_{2}^{\prime} the straight-line planar drawings of the plane graph G^{\prime} obtained by contracting a quasi-contractible vertex v of G onto x in Γ_{1} and in Γ_{2}, respectively; then, the contraction of v onto x, followed by a pseudo-morph with x steps of Γ_{1}^{\prime} into Γ_{2}^{\prime}, followed by the uncontraction of v from x into Γ_{2} is a pseudo-morph with $m+2$ steps of Γ_{1} into Γ_{2}.

Pseudo-morphs have two useful and powerful features.
First, it is easy to design an inductive algorithm for constructing a pseudo-morph between any two planar straight-line drawings Γ_{1} and Γ_{2} of the same n-vertex plane graph G. Namely, consider any quasi-contractible vertex v of G and let x be any neighbor of v. Morph unidirectionally Γ_{1} and Γ_{2} into two planar straight-line drawings Γ_{1}^{x} and Γ_{2}^{x}, respectively, in which v is x-contractible. Now contract v onto x in Γ_{1}^{x} and in Γ_{2}^{x} obtaining two planar straight-line drawings Γ_{1}^{\prime} and Γ_{2}^{\prime}, respectively, of the same ($n-1$)-vertex plane graph G^{\prime}. Then, the algorithm is completed by inductively computing a pseudo-morph of Γ_{1}^{\prime} into Γ_{2}^{\prime}.

Second, computing a pseudo-morph between Γ_{1} and Γ_{2} leads to computing a planar unidirectional morph between Γ_{1} and Γ_{2}, as formalized in Lemma 5 . We remark that, although Lemma 5 has never been stated as below, its proof can be directly derived from the results of Alamdari et al. [1|2] and, mainly, of Barrera-Cruz et al. [3].

Lemma 5. Let Γ_{s} and Γ_{t} be two straight-line planar drawings of a plane graph G. Let \mathcal{P} be a pseudo-morph with m steps transforming Γ_{s} into Γ_{t}. It is possible to construct a planar unidirectional morph M with m morphing steps transforming Γ_{s} into Γ_{t}.

Proof: The proof is by induction primarily on the number k of contractions in \mathcal{P} and secondarily on the number x of steps of \mathcal{P}.

If $k=0$, then we are in Case (A) of the definition of a pseudo-morph; hence, \mathcal{P} is a planar unidirectional morph with x morphing steps transforming Γ_{s} into Γ_{t}.

If $k>0$ and the first step of \mathcal{P} is a unidirectional morphing step transforming Γ_{s} into a straight-line planar drawing Γ_{s}^{\prime} of G, then we are in Case (B) of the definition of a pseudo-morph; denote by \mathcal{P}^{\prime} the pseudo-morph composed of the last $m-1$ steps of \mathcal{P}. By induction, there exists a planar unidirectional morph M^{\prime} with $m-1$ morphing steps transforming Γ_{s}^{\prime} into Γ_{t}. Hence the first morphing step of \mathcal{P} followed by M^{\prime} is a planar unidirectional morph with x morphing steps transforming Γ_{s} into Γ_{t}.

The case in which $k>0$ and the last step of \mathcal{P} is a unidirectional morphing step can be discussed analogously.

If $k>0$ and neither the first nor the last step of \mathcal{P} is a unidirectional morphing step, then we are in Case (C) of the definition of a pseudo-morph. Hence, the first step of \mathcal{P} is a contraction of a quasi-contractible vertex v on a neighbor x, resulting in a planar straight-line drawing Γ_{s}^{\prime} of an $(n-1)$-vertex plane graph G^{\prime}. Also, the last step of \mathcal{P} starts from a drawing Γ_{t}^{\prime} of G^{\prime} and uncontracts v from x into Γ_{t}.

Denote by \mathcal{P}^{\prime} the pseudo-morph with $m-2$ steps that is the part of \mathcal{P} transforming Γ_{s}^{\prime} into Γ_{t}^{\prime}. By induction, there exists a planar unidirectional morph $M^{\prime}=\left\langle\Gamma_{s}^{\prime}=\right.$ $\left.\Gamma_{1}^{\prime}, \ldots, \Gamma_{m-2}^{\prime}=\Gamma_{t}^{\prime}\right\rangle$ with $m-2$ morphing steps transforming Γ_{s}^{\prime} into Γ_{t}^{\prime}. For each $i=$ $1, \ldots, x-2$, we are going to construct a drawing Γ_{i} of G by placing vertex v in a suitable position in Γ_{i}^{\prime} in such a way that the morph M with m morphing steps composed of a morphing step $\left\langle\Gamma_{s}, \Gamma_{1}\right\rangle$, followed by the morph $\left\langle\Gamma_{1}, \ldots, \Gamma_{m-2}\right\rangle$, followed by a morphing step $\left\langle\Gamma_{m-2}, \Gamma_{t}\right\rangle$ is planar and unidirectional.

This strategy of constructing M starting from M^{\prime} by suitably placing v in each drawing of M^{\prime} is the same that was applied in [1|2[3]. It should be noted that the algorithm for placing v in $\Gamma_{1}^{\prime}, \ldots, \Gamma_{x-2}^{\prime}$ differs slightly in those three papers. We opt here for an algorithm almost identical to the one in [3], as it ensures that M is a unidirectional morph. However, since in [3] G is assumed to be a maximal plane graph, vertex v can always be chosen to be an internal vertex of G with degree at least 3 . In our case, instead, v might be incident to the outer face of G and might have degree 1 or 2 .

We now describe the algorithm in [3] for placing v when v is internal and $\operatorname{deg}(v)=$ 5 ; then, we will argue that an analogous technique can be applied even if v is incident to the outer face of G and has degree 1 or 2 .

Observe that, at any time instant t during M^{\prime}, there exists a disk of radius $\epsilon_{t}>0$ that is centered at m and that does not contain any vertex or edge other than x and its incident edges. Let $\epsilon=\min _{t}\left\{\epsilon_{t}\right\}$ be the minimum ϵ_{t} among all time instants t of M^{\prime}.

Fig. 3. Circular sector S_{i} if (a) the internal angle of Q_{v} incident to x is smaller than or equal to π or (b) the internal angle of Q_{v} incident to x is larger than π.

For each $i=1, \ldots, m-2$, let S_{i} be the circular sector resulting from the intersection between a disk D_{ϵ} centered at x with radius ϵ and the kernel of the polygon Q_{v} induced by the neighbors of v in Γ_{i}. In particular (see Fig. 3), if the internal angle of Q_{v} incident to x is smaller than or equal to π, then S_{i} is delimited by the two radii of D_{ϵ} that overlap with the two edges of Q_{v} incident to x, while if such an angle is larger than π then S_{i} is delimited by the two radii of D_{ϵ} that overlap with the elongations emanating from x
of the two edges of Q_{v} incident to x. Barrera-Cruz et al. prove in [3] that each circular sector S_{i} contains at least one nice point, defined as follows. All the points of S_{m-2} are nice. For $i=1, \ldots, m-3$, a point p_{i} of S_{i} is nice if there exists a nice point p_{i+1} in S_{i+1} such that the line passing through p_{i} and p_{i+1} is parallel to the trajectory followed by each vertex during the unidirectional morphing step transforming Γ_{i}^{\prime} into Γ_{i+1}^{\prime}. The proof in [3] is completed by showing that placing v on the nice point p_{i} in Γ_{i}^{\prime} and on the corresponding nice point p_{i+1} in Γ_{i+1}^{\prime} yields two drawings Γ_{i} and Γ_{i+1} of G such that $\left\langle\Gamma_{i}, \Gamma_{i+1}\right\rangle$ is planar and, by construction, unidirectional.

In order to adapt this algorithm to our setting, it is sufficient to describe how to compute each circular sector S_{i}, since the rest of the proof works exactly as described in [3] for the case in which $\operatorname{deg}(v)=5$. The complication here is that the neighbors of v might not create a polygon Q_{v} enclosing v in its interior, hence it is not possible to use the concept of "kernel of a polygon" in order to define S_{i}. To overcome this problem, we use the concept of "kernel of a vertex" v, defined as the region of the plane such that each of its points has direct visibility to all the neighbors of v. Observe that this is the same property satisfied by the kernel of Q_{v}, however the kernel of v is well-defined even if the neighbors of v do not induce a polygon enclosing v in its interior, e.g., if v is incident to the outer face or $\operatorname{deg}(v) \leq 2$.

More in detail, if $\operatorname{deg}(v)=1$, then S_{i} is the intersection of D_{ϵ} with the region of Γ_{i}^{\prime} representing the face of G^{\prime} that contains v in G. If $\operatorname{deg}(v)=2$, then S_{i} is the intersection of: (i) D_{ϵ}, (ii) the region of Γ_{i}^{\prime} representing the face of G^{\prime} that contains v in G, and (iii) the half-plane that is to the left (right) of the oriented straight line from a neighbor w of v to the other neighbor z of v if w, z, and v appear in this counter-clockwise (resp. clockwise) order along cycle (w, z, v) in G. Finally, if $3 \leq \operatorname{deg}(v) \leq 5$, then let w and z be the two neighbors of x in G such that edges $(x, w),(x, v)$, and (x, z) appear consecutively around x in this clockwise order; then, if the angle spanned when rotating (x, w) clockwise till coinciding with (x, z) is smaller than or equal to π, then S_{i} is delimited by the two radii of D_{ϵ} that overlap with edges (x, w) and (x, z), otherwise S_{i} is delimited by the two radii of D_{ϵ} that overlap with the elongations of edges (x, w) and (x, z) emanating from x. We observe that an analogous definition of circular sectors S_{i} was provided in [2] (although the morphs constructed in [2] are not unidirectional).

We conclude the proof by observing that the first and the last morphing steps $\left\langle\Gamma_{s}, \Gamma_{1}\right\rangle$ and $\left\langle\Gamma_{m-2}, \Gamma_{t}\right\rangle$ of M are planar, since v has been placed on a nice point in Γ_{1} and in Γ_{m-2}, and unidirectional, since v is the only vertex moving during these two steps.

2.5 Hierarchical Graphs and Level Planarity

A hierarchical graph is a tuple $(G, \boldsymbol{d}, L, \gamma)$ where: (i) G is a graph; (ii) \boldsymbol{d} is an oriented straight line in the plane; (iii) L is a set of parallel lines (sometimes called layers) that are orthogonal to \boldsymbol{d}; the lines in L are assumed to be ordered in the same order as they are intersected by \boldsymbol{d} when traversing such a line according to its orientation; and (iv) γ is a function that maps each vertex of G to a line in L in such a way that, if an edge (u, v) belongs to G, then $\gamma(u) \neq \gamma(v)$. A level drawing of $(G, \boldsymbol{d}, L, \gamma)$ (sometimes also called hierarchical drawing) maps each vertex v of G to a point on the line $\gamma(v)$ and each edge (u, v) of G such that line $\gamma(u)$ precedes line $\gamma(v)$ in L
to an arc $\boldsymbol{u v}$ monotone with respect to \boldsymbol{d}. A hierarchical plane graph is a hierarchical graph $(G, \boldsymbol{d}, L, \gamma)$ such that G is a plane graph and such that a level planar drawing Γ of $(G, \boldsymbol{d}, L, \gamma)$ exists that "respects" the embedding of G (that is, the rotation system and the outer face of G in Γ are the same as in the plane embedding of G). Given a hierarchical plane graph $(G, \boldsymbol{d}, L, \gamma)$, an st-face of G is a face delimited by two paths $\left(s=u_{1}, u_{2}, \ldots, u_{k}=t\right)$ and $\left(s=v_{1}, v_{2}, \ldots, v_{l}=t\right)$ such that $\gamma\left(u_{i}\right)$ precedes $\gamma\left(u_{i+1}\right)$ in L, for every $1 \leq i \leq k-1$, and such that $\gamma\left(v_{i}\right)$ precedes $\gamma\left(v_{i+1}\right)$ in L, for every $1 \leq i \leq l-1$. We say that $(G, \boldsymbol{d}, L, \gamma)$ is a hierarchical plane st-graph if every face of G is an st-face. Let Γ be any straight-line level planar drawing of a hierarchical plane graph $(G, \boldsymbol{d}, L, \gamma)$ and let f be a face of G; then, it is easy to argue that f is an st-face if and only if the polygon delimiting f in Γ is \boldsymbol{d}-monotone.

In this paper we will use a result of Hong and Nagamochi on the existence of convex straight-line level planar drawings of hierarchical plane st-graphs [10]. Here we explicitly formulate a weaker version of their main theorem ${ }^{1}$
Theorem 1. (Hong and Nagamochi [10]) Let (G, d, L, γ) be a triconnected hierarchical plane st-graph. There exists a convex straight-line level planar drawing of (G, d, L, γ).

Let Γ be a straight-line level planar drawing of a hierarchical plane graph $(G, \boldsymbol{d}, L, \gamma)$. Since each edge (u, v) of G is represented in Γ by a \boldsymbol{d}-monotone arc, the fact that (u, v) intersects a line $l_{i} \in L$ does not depend on the actual drawing Γ, but only on the fact that l_{i} lies between lines $\gamma(u)$ and $\gamma(v)$ in L. Assume that each line $l_{i} \in L$ is oriented so that \boldsymbol{d} cuts l_{i} from the right to the left of l_{i}. We say that an edge e precedes (follows) a vertex v on a line l_{i} in Γ if $\gamma(v)=l_{i}, e$ intersects l_{i} in a point $p_{i}(e)$, and $p_{i}(e)$ precedes (resp. follows) v on l_{i} when traversing such a line according to its orientation. Also, we say that an edge e precedes (follows) an edge e^{\prime} on a line l_{i} in Γ if e and e^{\prime} both intersect l_{i} at points $p_{i}(e)$ and $p_{i}\left(e^{\prime}\right)$, and $p_{i}(e)$ precedes (resp. follows) $p_{i}\left(e^{\prime}\right)$ on l_{i} when traversing such a line according to its orientation.

Now consider two straight-line level planar drawings Γ_{1} and Γ_{2} of a hierarchical plane graph $(G, \boldsymbol{d}, L, \gamma)$. We say that Γ_{1} and Γ_{2} are left-to-right equivalent if, for any line $l_{i} \in L$, for any vertex or edge x of G, and for any vertex or edge y of G, we have that x precedes (follows) y on l_{i} in Γ_{1} if and only if x precedes (resp. follows) y on l_{i} in Γ_{2}. We are going to make use of the following lemma.

Lemma 6. Let Γ_{1} and Γ_{2} be two left-to-right equivalent straight-line level planar drawings of the same hierarchical plane graph (G, d, L, γ). Then the linear morph $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ transforming Γ_{1} into Γ_{2} is planar and unidirectional.

In order to prove Lemma6, we first recall an auxiliary lemma appeared in [3] stating that if two points x and y move at constant speed on the same line l and x precedes

[^0](follows) y on l both at the beginning and at the end of the movement, then x precedes (follows) y on l during the whole movement.

Lemma 7. (Barrera-Cruz et al. [3]) Let l be an oriented straight line and let x_{0}, x_{1}, y_{0}, and y_{1} be points on l. Assume that x_{i} precedes y_{i} on l, for $i=0,1$. Consider a point x that moves in one unit of time from x_{0} to x_{1}, and a point y that moves in one unit of time from y_{0} to y_{1}. Then, x precedes y on l during the entire movement.

We now exhibit a proof of Lemma6.
Proof of Lemma6: Morph $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ is clearly unidirectional. We prove that it is planar.
Lemma 7 and the fact that Γ_{1} and Γ_{2} are left-to-right equivalent directly imply that, if two vertices lie on the same line $l \in L$, then they never overlap during $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$.

We prove that there exists no overlap between a vertex u and an edge e of G during $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$. Such a proof also implies that there is no crossing between two edges at any time t during $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$; in fact, such a crossing can only happen if an end-vertex of one of the two edges overlaps the other edge at a time instant $t^{\prime} \leq t$.

In order to prove that there exists no overlap between u and e, it suffices to prove that the point $p_{i}(e)$ in which e intersects line $l_{i}=\gamma(u)$ moves at constant speed during $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$, since in this case Lemma 7 and the fact that Γ_{1} and Γ_{2} are left-to-right equivalent imply that u and $p_{i}(e)$ never overlap.

The fact that $p_{i}(e)$ moves at constant speed during $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ directly follows from: (i) the two end-vertices v and w of e move at constant speed on two lines $\gamma(v)$ and $\gamma(w)$ that are parallel to l_{i}; and (ii) for any time instant t of $\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$, the coefficients that express $p_{i}(e)$ as a convex combination of the positions of v and w are the same.

This concludes the proof of the lemma.

3 A Morphing Algorithm

In this section we describe an algorithm to construct a planar unidirectional morph with $O(n)$ steps between any two straight-line planar drawings Γ_{s} and Γ_{t} of the same n vertex plane graph G. The algorithm relies on two subroutines, called FAST CONVEXIFIER and CONTRACTIBILITY CREATOR, which are described in Sections 3.1 and 3.2, respectively. The algorithm is described in Section 3.3

3.1 Fast Convexifier

Consider a straight-line planar drawing Γ of an n-vertex maximal plane graph G, for some $n \geq 4$. Let v be a quasi-contractible internal vertex of G and let C_{v} be the cycle of G induced by the neighbors of v. See Fig. 4(a). In this section we show an algorithm, that we call FAST CONVEXIFIER, morphing Γ into a straight-line planar drawing Γ_{M} of G in which C_{v} is convex. Algorithm FAST CONVEXIFIER consists of a single unidirectional morphing step.

Let G^{\prime} be the $(n-1)$-vertex plane graph obtained by removing v and its incident edges from G. Also, let Γ^{\prime} be the straight-line planar drawing of G^{\prime} obtained by removing v and its incident edges from Γ. We have the following lemma.

Fig. 4. (a) Straight-line planar drawing Γ of G. (b) Straight-line level planar drawing Γ^{\prime} of $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$. (c) Convex straight-line level planar drawing Γ_{M}^{\prime} of $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$.

Lemma 8. Graph G^{\prime} is 3-connected.

Proof: Suppose, for a contradiction, that G^{\prime} contains a set S^{\prime} of vertices with $\left|S^{\prime}\right| \leq 2$ whose removal disconnects G^{\prime}. It follows that removing the vertices in $S=S^{\prime} \cup\{v\}$ from G disconnects G. If $|S|=1$ or $|S|=2$, then G contains a separation 1-set or 2set, respectively, in both cases contradicting the fact that G is a maximal plane graph. If $|S|=3$, then S is a separating 3 -set. However, any separating 3 -set in a maximal plane graph induces a separating 3 -cycle C. Hence, C contains at least one neighbor of v in its interior and at least one neighbor of v in its exterior. This contradicts the assumption that v is a quasi-contractible vertex of G.

Consider the polygon Q_{v} representing C_{v} in Γ and in Γ^{\prime}. By Lemma 3, Q_{v} is \boldsymbol{d} monotone, for some oriented straight line \boldsymbol{d}. Slightly perturb the slope of \boldsymbol{d} so that no line through two vertices of G in Γ is perpendicular to d. If the perturbation is small enough, then Q_{v} is still \boldsymbol{d}-monotone. Denote by u_{1}, \ldots, u_{n-1} the vertices of G^{\prime} ordered according to their projection on \boldsymbol{d}. For $1 \leq i \leq n-1$, denote by l_{i} the line through u_{i} orthogonal to \boldsymbol{d}. Let $L^{\prime}=\left\{l_{1}, \ldots, l_{n-1}\right\}$; note that the lines in L^{\prime} are parallel and distinct. Let γ^{\prime} be the function that maps u_{i} to l_{i}, for $1 \leq i \leq n-1$. See Fig. [4(b).

Lemma 9. $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$ is a hierarchical plane st-graph.
Proof: By construction, Γ^{\prime} is a straight-line level planar drawing of $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$, hence $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$ is a hierarchical plane graph. Further, every polygon delimiting a face of G^{\prime} in Γ^{\prime} is \boldsymbol{d}-monotone. This is true for Q_{v} by construction and for every other polygon Q_{i} delimiting a face of G^{\prime} in Γ^{\prime} by Lemma given that Q_{i} is a triangle and hence it is convex. Since every polygon delimiting a face of G^{\prime} in Γ^{\prime} is \boldsymbol{d}-monotone, every face of G^{\prime} is an st-face, hence $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$ is a hierarchical plane st-graph.

By Lemmata 8 and $9\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$ is a triconnected hierarchical plane st-graph. By Theorem a convex straight-line level planar drawing Γ_{M}^{\prime} of $\left(G^{\prime}, \boldsymbol{d}, L^{\prime}, \gamma^{\prime}\right)$ exists. Denote by Q_{v}^{M} the convex polygon representing C_{v} in Γ_{M}^{\prime}. See Fig. [4(c).

Denote by r and s the minimum and the maximum index such that u_{r} and u_{s} belong to C_{v}, respectively. Denote by $l(v)$ the line through v orthogonal to \boldsymbol{d} in Γ. If $l(v)$ were contained in the half-plane delimited by l_{r} and not containing l_{s}, then v would not lie
inside Q_{v} in Γ, as the projection of every vertex of Q_{v} on \boldsymbol{d} would follow the projection of v on \boldsymbol{d}. Analogously, $l(v)$ is not contained in the half-plane delimited by l_{s} and not containing l_{r}. It follows that $l(v)$ is "in-between" l_{r} and l_{s}, that is, $l(v)$ lies in the strip defined by l_{r} and l_{s}.

Construct a straight-line planar drawing Γ_{M} of G from Γ_{M}^{\prime} by placing v on any point at the intersection of $l(v)$ and the interior of Q_{v}^{M}. Observe that such an intersection is always non-empty, given that l_{r} and l_{s} have non-empty intersection with Q_{v}^{M}, given that $l(v)$ is in-between l_{r} and l_{s}, and given that Q_{v}^{M} is a convex polygon.

Fig. 5. Morphing Γ into a straight-line planar drawing Γ_{M} of G in which the polygon Q_{v}^{M} representing C_{v} is convex. The thick green line is $l(v)$.

Let γ be the function that maps v to $l(v)$ and u_{i} to l_{i}, for $1 \leq i \leq n-1$. We have that Γ and Γ_{M} are left-to-right equivalent straight-line level planar drawings of ($\left.G, \boldsymbol{d}, L^{\prime} \cup\{l(v)\}, \gamma\right)$. By Lemma6, the linear morph transforming Γ into Γ_{M} is planar and unidirectional. Further, the polygon Q_{v}^{M} representing C_{v} in Γ_{M} is convex. Thus, algorithm FAST CONVEXIFIER consists of a single unidirectional morphing step transforming Γ into Γ_{M}. See Fig. 5]

3.2 Contractibility Creator

In this section we describe an algorithm, called CONTRACTIBILITY CREATOR, that receives a straight-line planar drawing Γ of a plane graph G, a quasi-contractible vertex v of G, and a neighbor x of v, and returns a planar unidirectional morph with $O(1)$ morphing steps transforming Γ into a straight-line planar drawing Γ^{\prime} of G in which v is x-contractible.

Denote by u_{1}, \ldots, u_{k} the clockwise order of the neighbors of v. If $k=1$, then v is x-contractible in Γ, hence algorithm CONTRACTIBILITY CREATOR returns $\Gamma^{\prime}=\Gamma$.

If $k \geq 2$, consider any pair of consecutive neighbors of v, say u_{i} and u_{i+1} (where $u_{k+1}=u_{1}$). See Fig. 6(a). If edge $\left(u_{i}, u_{i+1}\right)$ belongs to G, then cycle $\left(u_{i}, v, u_{i+1}\right)$ delimits a face of G, given that v is quasi-contractible. Otherwise, we aim at morphing
Γ into a straight-line planar drawing of G where a dummy edge $\left(u_{i}, u_{i+1}\right)$ can be introduced while maintaining planarity and while ensuring that cycle $\left(u_{i}, v, u_{i+1}\right)$ delimits a face of the augmented graph $G \cup\left\{\left(u_{i}, u_{i+1}\right)\right\}$. This is accomplished as follows:

Fig. 6. (a) Drawing Γ of G. (b) Drawing Γ^{+}of G^{+}. (c) Drawing Γ^{*} of G^{*}. (d) Drawing Γ_{M}^{*} of G^{*}. (e) Drawing Γ_{M} of $G \cup\left\{\left(u_{i}, u_{i+1}\right)\right\}$.

1. We add two dummy vertices r and r^{\prime}, and six dummy edges $(r, v),\left(r, u_{i}\right),\left(r, u_{i+1}\right)$, $\left(r^{\prime}, u_{i}\right),\left(r^{\prime}, u_{i+1}\right)$, and $\left(r, r^{\prime}\right)$ to Γ and G, obtaining a straight-line planar drawing Γ^{+}of a plane graph G^{+}, in such a way that Γ^{+}is planar and cycles $\left(v, r, u_{i}\right)$, $\left(v, r, u_{i+1}\right),\left(r^{\prime}, r, u_{i}\right)$, and $\left(r^{\prime}, r, u_{i+1}\right)$ delimit faces of G^{+}. See Fig. 6(b).
2. We add dummy vertices and edges to Γ^{+}and G^{+}, obtaining a straight-line planar drawing Γ^{*} of a graph G^{*}, in such a way that Γ^{*} is planar, that G^{*} is a maximal planar graph, and that edges $\left(u_{i}, u_{i+1}\right)$ and $\left(r^{\prime}, v\right)$ do not belong to G^{*}. Observe that r is a quasi-contractible vertex of G^{*}. See Fig. 6(c).
3. We apply algorithm FAST CONVEXIFIER to morph Γ^{*} with one unidirectional morphing step into a straight-line planar drawing Γ_{M}^{*} of G^{*} such that the polygon of the neighbors of r is convex. See Fig. 6(d).
4. We remove from Γ_{M}^{*} all the dummy vertices and edges that belong to G^{*} and do not belong to G, and we add edge $\left(u_{i}, u_{i+1}\right)$ to Γ_{M}^{*} and G, obtaining a straight-line planar drawing Γ_{M} of graph $G \cup\left\{\left(u_{i}, u_{i+1}\right)\right\}$. See Fig. (6) e).

If $k=2$, then after the above described algorithm is performed, we have that v is x-contractible in $\Gamma^{\prime}=\Gamma_{M}$, both if $x=u_{1}$ or if $x=u_{2}$, given that $\left(v, u_{1}, u_{2}\right)$ delimits a face of $G \cup\left\{\left(u_{1}, u_{2}\right)\right\}$. If $3 \leq k \leq 5$, then the above described algorithm is repeated at most k times (namely once for each pair of consecutive neighbors of v that are not adjacent in G), at each time inserting an edge between a distinct pair of
consecutive neighbors of v. Eventually, we obtain a straight-line planar drawing Φ of plane graph $G \cup\left\{\left(u_{1}, u_{2}\right),\left(u_{2}, u_{3}\right),\left(u_{3}, u_{4}\right),\left(u_{4}, u_{5}\right),\left(u_{5}, u_{1}\right)\right\}$ in which v is quasicontractible. Then we add dummy vertices and edges to Φ, obtaining a straight-line planar drawing Σ of a graph H, in such a way that H is a maximal planar graph and that v is quasi-contractible in Σ. We apply algorithm FAST CONVEXIFIER to morph Σ with one unidirectional morphing step into a straight-line planar drawing Ψ of H such that the polygon of the neighbors of v is convex. Hence, v is contractible onto any of its neighbors in Ψ. Then, we remove the edges of H not in G, obtaining a straight-line planar drawing Γ^{\prime} of G in which v is contractible onto any of its neighbors; hence, v is x-contractible in Γ^{\prime}. Finally, observe that Γ^{\prime} is obtained from Γ in at most $k+1 \leq 6$ unidirectional morphing steps.

3.3 The Algorithm

We now describe an algorithm to construct a pseudo-morph \mathcal{P} with $O(n)$ steps between any two straight-line planar drawings Γ_{s} and Γ_{t} of the same n-vertex plane graph G.

The algorithm works by induction on n. If $n=1$, then \mathcal{P} consists of a single unidirectional morphing step transforming Γ_{s} into Γ_{t}. If $n \geq 2$, then let v be a quasicontractible vertex of G, which exists by Lemma 4 , and let x be any neighbor of v. Let M_{s} and M_{t} be the planar unidirectional morphs with $O(1)$ morphing steps produced by algorithm CONTRACTIBILITY CREATOR transforming Γ_{s} and Γ_{t} into straight-line planar drawings Γ_{s}^{x} and Γ_{t}^{x} of G, respectively, such that v is x-contractible both in Γ_{s}^{x} and in Γ_{t}^{x}. Let G^{\prime} be the $(n-1)$-vertex plane graph obtained by contracting v onto x in G, and let Γ_{s}^{\prime} and Γ_{t}^{\prime} be the straight-line planar drawings of G^{\prime} obtained from Γ_{s}^{x} and Γ_{t}^{x}, respectively, by contracting v onto x. Further, let \mathcal{P}^{\prime} be the inductively constructed pseudo-morph between Γ_{s}^{\prime} and Γ_{t}^{\prime}. Then, pseudo-morph \mathcal{P} is defined as the unidirectional morph M_{s} transforming Γ_{s} into Γ_{s}^{x}, followed by the contraction of v onto x in Γ_{s}^{x}, followed by the pseudo-morph \mathcal{P}^{\prime} between Γ_{s}^{\prime} and Γ_{t}^{\prime}, followed by the uncontraction of v from x into Γ_{t}^{x}, followed by the unidirectional morph M_{t}^{-1} transforming Γ_{t}^{x} into Γ_{t}. Observe that \mathcal{P} has a number of steps which is a constant plus the number of steps of \mathcal{P}^{\prime}. Hence, \mathcal{P} consists of $O(n)$ steps.

A unidirectional planar morph M between Γ_{s} and Γ_{t} can be constructed with a number of morphing steps equal to the number of steps of \mathcal{P}, by Lemma 5 . This proves the following:

Theorem 2. Let Γ_{s} and Γ_{t} be any two straight-line planar drawings of the same n vertex plane graph G. There exists an algorithm to construct a planar unidirectional morph with $O(n)$ morphing steps transforming Γ_{s} into Γ_{t}.

4 A Lower Bound

In this section we show two straight-line planar drawings Γ_{s} and Γ_{t} of an n-vertex path $P=\left(v_{1}, \ldots, v_{n}\right)$, and we prove that any planar morph M between Γ_{s} and Γ_{t} requires $\Omega(n)$ morphing steps. In order to simplify the description, we consider each edge $e_{i}=\left(v_{i}, v_{i+1}\right)$ as oriented from v_{i} to v_{i+1}, for $i=1, \ldots, n-1$.

Drawing Γ_{s} (see Fig. 7(a) is such that all the vertices of P lie on a horizontal straight-line with v_{i} to the left of v_{i+1}, for each $i=1, \ldots, n-1$.

Drawing Γ_{t} (see Fig. 7(b) is such that:

- for each $i=1, \ldots, n-1$ with $i \bmod 3 \equiv 1$, the (green) segment representing e_{i} is horizontal with v_{i} to the left of v_{i+1};
- for each $i=1, \ldots, n-1$ with $i \bmod 3 \equiv 2$, the (blue) segment representing e_{i} is parallel to line $y=\tan \left(\frac{2 \pi}{3}\right) x$ with v_{i} to the right of v_{i+1}; and
- for each $i=1, \ldots, n-1$ with $i \bmod 3 \equiv 0$, the (red) segment representing e_{i} is parallel to line $y=\tan \left(-\frac{2 \pi}{3}\right) x$ with v_{i} to the right of v_{i+1}.

(a)

(b)

Fig. 7. Drawings Γ_{s} (a) and Γ_{t} (b).

Let $M=\left\langle\Gamma_{s}=\Gamma_{1}, \ldots, \Gamma_{m}=\Gamma_{t}\right\rangle$ be any planar morph transforming Γ_{s} into Γ_{t}.
For $i=1, \ldots, n$ and $j=1, \ldots, m$, we denote by v_{i}^{j} the point where vertex v_{i} is placed in Γ_{j}; also, for $i=1, \ldots, n-1$ and $j=1, \ldots, m$ we denote by e_{i}^{j} the directed straight-line segment representing edge e_{i} in Γ_{j}.

For $1 \leq j \leq m-1$, we define the rotation ρ_{i}^{j} of e_{i} around v_{i} during the morphing step $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$ as follows (see Fig. (8). Translate e_{i} at any time instant of $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$ so that v_{i} stays fixed at a point a during the entire morphing step. After this translation, the morph between e_{i}^{j} and e_{i}^{j+1} is a rotation of e_{i} around a (where e_{i} might vary its length during $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$) spanning an angle ρ_{i}^{j}, where we assume $\rho_{i}^{j}>0$ if the rotation is counter-clockwise, and $\rho_{i}^{j}<0$ if the rotation is clockwise. We have the following.

Lemma 10. For each $j=1, \ldots, m-1$ and $i=1, \ldots, n-1$, we have $\left|\rho_{i}^{j}\right|<\pi$.
Proof: Assume, for a contradiction, that $\left|\rho_{i}^{j}\right| \geq \pi$, for some $1 \leq j \leq x-1$ and $1 \leq i \leq$ $n-1$. Also assume, w.l.o.g., that the morphing step $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$ happens between time instants $t=0$ and $t=1$. For any $0 \leq t \leq 1$, denote by $v_{i}(t), v_{i+1}(t), e_{i}(t)$, and $\rho_{i}^{j}(t)$ the position of v_{i}, the position of v_{i+1}, the drawing of e_{i}, and the rotation of e_{i} around v_{i} at time instant t, respectively. Note that $v_{i}(0)=v_{i}^{j}, v_{i+1}(0)=v_{i+1}^{j}, e_{i}(0)=e_{i}^{j}$, $\rho_{i}^{j}(0)=0$, and $\rho_{i}^{j}(1)=\rho_{i}^{j}$. Since a morph is a continuous transformation and since $\left|\rho_{i}^{j}\right| \geq \pi$, there exists a time instant t_{π} with $0<t_{\pi} \leq 1$ such that $\left|\rho_{i}^{j}\left(t_{\pi}\right)\right|=\pi$.

(a)

(b)

Fig. 8. Rotation ρ_{i}^{j}. (a) Morph between e_{i}^{j} and e_{i}^{j+1}. (b) Translation of the positions of e_{i} during $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$, resulting in e_{i} spanning an angle ρ_{i}^{j} around v_{i}.

We prove that there exists a time instant t_{r} with $0<t_{r} \leq t_{\pi}$ in which $v_{i}(t)$ and $v_{i+1}(t)$ coincide, thus contradicting the assumption that morph $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$ is planar.

Fig. 9. Illustration for the proof of Lemma 10

Since $\left|\rho_{i}^{j}\left(t_{\pi}\right)\right|=\pi$, it follows that $e_{i}\left(t_{\pi}\right)$ is parallel to $e_{i}(0)$ and oriented in the opposite way. This easily leads to conclude that t_{r} exists if $e_{i}\left(t_{\pi}\right)$ and $e_{i}(0)$ are aligned. Otherwise, the straight-line segments $\overline{v_{i}(0) v_{i}\left(t_{\pi}\right)}$ and $\overline{v_{i+1}(0) v_{i+1}\left(t_{\pi}\right)}$ meet in a point p. Refer to Fig. 9. Let $x_{1}=\left|\overline{p v_{i}(0)}\right|, x_{2}=\left|\overline{p v_{i+1}(0)}\right|, y_{1}=\left|\overline{p v_{i}\left(t_{\pi}\right)}\right|$, and $y_{2}=$ $\left|\overline{p v_{i+1}\left(t_{\pi}\right)}\right|$. By the similarity of triangles $\left(v_{i}(0), p, v_{i+1}(0)\right)$ and $\left(v_{i}\left(t_{\pi}\right), p, v_{i+1}\left(t_{\pi}\right)\right)$, we have $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$ and hence $\frac{x_{1}}{x_{1}+y_{1}}=\frac{x_{2}}{x_{2}+y_{2}}$. Thus, $v_{i}\left(\frac{x_{1}}{x_{1}+y_{1}} t_{\pi}\right)$ and $v_{i+1}\left(\frac{x_{1}}{x_{1}+y_{1}} t_{\pi}\right)$ are coincident with p. This contradiction proves the lemma.

For $j=1, \ldots, m-1$, we denote by M_{j} the subsequence $\left\langle\Gamma_{1}, \ldots, \Gamma_{j+1}\right\rangle$ of M; also, for $i=1, \ldots, n-1$, we define the total rotation $\rho_{i}\left(M_{j}\right)$ of edge e_{i} around v_{i} during morph M_{j} as $\rho_{i}\left(M_{j}\right)=\sum_{m=1}^{j} \rho_{i}^{m}$.

We will show in Lemma 12 that there exists an edge e_{i}, for some $1 \leq i \leq n-1$, whose total rotation $\rho_{i}\left(M_{m-1}\right)=\rho_{i}(M)$ is $\Omega(n)$. In order to do that, we first analyze the relationship between the total rotation of two consecutive edges of P.

Lemma 11. For each $j=1, \ldots, m-1$ and for each $i=1, \ldots, n-2$, we have that $\left|\rho_{i+1}\left(M_{j}\right)-\rho_{i}\left(M_{j}\right)\right|<\pi$.

Proof: Suppose, for a contradiction, that $\left|\rho_{i+1}\left(M_{j}\right)-\rho_{i}\left(M_{j}\right)\right| \geq \pi$ for some $1 \leq j \leq$ $m-1$ and $1 \leq i \leq n-2$. Assume that j is minimal under this hypothesis. Since each vertex moves continuously during M_{j}, there exists an intermediate drawing Γ^{*} of
P, occurring during morphing step $\left\langle\Gamma_{j}, \Gamma_{j+1}\right\rangle$, such that $\left|\rho_{i+1}\left(M^{*}\right)-\rho_{i}\left(M^{*}\right)\right|=\pi$, where $M^{*}=\left\langle\Gamma_{1}, \ldots, \Gamma_{j}, \Gamma^{*}\right\rangle$ is the morph obtained by concatenating M_{j-1} with the morphing step transforming Γ_{j} into Γ^{*}. Recall that in Γ_{1} edges e_{i} and e_{i+1} lie on the same straight line and have the same orientation. Then, since $\left|\rho_{i+1}\left(M^{*}\right)-\rho_{i}\left(M^{*}\right)\right|=$ π, in Γ^{*} edges e_{i} and e_{i+1} are parallel and have opposite orientations. Also, since edges e_{i} and e_{i+1} share vertex v_{i+1}, they lie on the same line. This implies that such edges overlap, contradicting the hypothesis that M^{*}, M_{j}, and M are planar.

We are now ready to prove the key lemma for the lower bound.
Lemma 12. There exists an index i such that $\left|\rho_{i}(M)\right| \in \Omega(n)$.
Proof: Refer to Fig. 7 For every $1 \leq i \leq n-2$, edges e_{i} and e_{i+1} form an angle of π radiants in Γ_{s}, while they form an angle of $\frac{\pi}{3}$ radiants in Γ_{t}. Hence, $\rho_{i+1}(M)=$ $\rho_{i}(M)+\frac{2 \pi}{3}+2 z_{i} \pi$, for some $z_{i} \in \mathbb{Z}$.

In order to prove the lemma, it suffices to prove that $z_{i}=0$, for every $i=1, \ldots, n-$ 2. Namely, in this case $\rho_{i+1}(M)=\rho_{i}(M)+\frac{2 \pi}{3}$ for every $1 \leq i \leq n-2$, and hence $\rho_{n-1}(M)=\rho_{1}(M)+\frac{2 \pi}{3}(n-2)$. This implies $\left|\rho_{n-1}(M)-\rho_{1}(M)\right| \in \Omega(n)$, and thus $\left|\rho_{1}(M)\right| \in \Omega(n)$ or $\left|\rho_{n-1}(M)\right| \in \Omega(n)$.

Assume, for a contradiction, that $z_{i} \neq 0$, for some $1 \leq i \leq n-2$. If $z_{i}>0$, then $\rho_{i+1}(M) \geq \rho_{i}(M)+\frac{8 \pi}{3}$; further, if $z_{i}<0$, then $\rho_{i+1}(M) \leq \rho_{i}(M)-\frac{4 \pi}{3}$. Since each of these inequalities contradicts Lemma 11, the lemma follows.

We are now ready to state the main theorem of this section.
Theorem 3. There exists two straight-line planar drawings Γ_{s} and Γ_{t} of an n-vertex path P such that any planar morph between Γ_{s} and Γ_{t} requires $\Omega(n)$ morphing steps.

Proof: The two drawings Γ_{s} and Γ_{t} of path $P=\left(v_{1}, \ldots, v_{n}\right)$ are those illustrated in Fig. 7 By Lemma 12, there exists an edge e_{i} of P, for some $1 \leq i \leq n-1$, such that $\left|\sum_{j=1}^{x-1} \rho_{i}^{j}\right| \in \Omega(n)$. Since, by Lemma 10, we have that $\left|\rho_{i}^{j}\right|<\pi$ for each $j=1, \ldots, x-1$, it follows that $x \in \Omega(n)$. This concludes the proof of the theorem.

5 Conclusions

In this paper we presented an algorithm to construct a planar morph between two planar straight-line drawings of the same n-vertex plane graph in $O(n)$ morphing steps. We also proved that this bound is tight (note that our lower bound holds for any morphing algorithm in which the vertex trajectories are polynomial functions of constant degree).

In our opinion, the main challenge in this research area is the one of designing algorithms to construct planar morphs between straight-line planar drawings with good resolution and within polynomial area (or to prove that no such algorithm exists). In fact, the algorithm we presented, as well as other algorithms known at the state of the art [1|2|4|13], construct intermediate drawings in which the ratio between the lengths of the longest and of the shortest edge is exponential. Guaranteeing good resolution and small area seems to be vital for making a morphing algorithm of practical utility.

Finally, we would like to mention an original problem that generalizes the one we solved in this paper and that we repute very interesting. Let Γ_{s} and Γ_{t} be two straightline drawings of the same (possibly non-planar) topological graph G. Does a morphing algorithm exist that morphs Γ_{s} into Γ_{t} and that preserves the topology of the drawing at any time instant? A solution to this problem is not known even if we allow the trajectories followed by the vertices to be of arbitrary complexity.

References

1. S. Alamdari, P. Angelini, T. M. Chan, G. Di Battista, F. Frati, A. Lubiw, M. Patrignani, V. Roselli, S. Singla, and B. T. Wilkinson. Morphing planar graph drawings with a polynomial number of steps. In S. Khanna, editor, 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '13), pages 1656-1667. SIAM, 2013.
2. P. Angelini, F. Frati, M. Patrignani, and V. Roselli. Morphing planar graph drawings efficiently. In S. Wismath and A. Wolff, editors, 21st International Symposium on Graph Drawing (GD '13), volume 8242 of $L N C S$, pages 49-60. Springer, 2013.
3. F. Barrera-Cruz, P. Haxell, and A. Lubiw. Morphing planar graph drawings with unidirectional moves. Mexican Conference on Discr. Math. and Comput. Geom., 2013.
4. S. S. Cairns. Deformations of plane rectilinear complexes. American Math. Monthly, 51:247-252, 1944.
5. N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex drawings of planar graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in Graph Theory, pages 153173. Academic Press, New York, NY, 1984.
6. C. Erten, S. G. Kobourov, and C. Pitta. Intersection-free morphing of planar graphs. In 11th Symposium on Graph Drawing, pages 320-331, 2003.
7. C. Friedrich and P. Eades. Graph drawing in motion. J. Graph Algorithms Appl., 6(3):353370, 2002.
8. C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing. Computers \& Graphics, 25(1):67-75, 2001.
9. B. Grunbaum and G.C. Shephard. The geometry of planar graphs. Cambridge University Press, 1981.
10. S. H. Hong and H. Nagamochi. Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms, 8(3):282-295, 2010.
11. V. Surazhsky and C. Gotsman. Controllable morphing of compatible planar triangulations. ACM Trans. Graph, 20(4):203-231, 2001.
12. V. Surazhsky and C. Gotsman. Intrinsic morphing of compatible triangulations. Internat. J. of Shape Model., 9:191-201, 2003.
13. C. Thomassen. Deformations of plane graphs. Journal of Combinatorial Theory, Series B, 34(3):244-257, 1983.
14. C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in Graph Theory, pages 43-69. Academic Press, New York, NY, 1984.

[^0]: ${ }^{1}$ We make some remarks. First, the main result in [10] proves that a convex straight-line level planar drawing of $(G, \boldsymbol{d}, L, \gamma)$ exists even if a convex polygon representing the cycle delimiting the outer face of G is arbitrarily prescribed. Second, the result holds for a super-class of the triconnected planar graphs, namely for all the graphs that admit a convex straight-line drawing [5]14]. Third, the result assumes that the lines in L are horizontal; however, a suitable rotation of the coordinate axes shows how that assumption is not necessary. Fourth, looking at the figures in [10] one might get the impression that the lines in L need to be equidistant; however, this is nowhere used in their proof, hence the result holds for any set of parallel lines.

