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Abstract

In this paper, we analyze and study a hybrid model for testing and learning probability distributions.
Here, in addition to samples, the testing algorithm is provided with one of two different types of oracles
to the unknown distribution D over [n]. More precisely, we define both the dual and cumulative dual
access models, in which the algorithm A can both sample from D and respectively, for any i ∈ [n],

• query the probability mass D(i) (query access); or

• get the total mass of {1, . . . , i}, i.e.
∑i

j=1
D(j) (cumulative access)

These two models, by generalizing the previously studied sampling and query oracle models, allow us to
bypass the strong lower bounds established for a number of problems in these settings, while capturing
several interesting aspects of these problems – and providing new insight on the limitations of the models.
Finally, we show that while the testing algorithms can be in most cases strictly more efficient, some tasks
remain hard even with this additional power.

1 Introduction

1.1 Background

Given data sampled from a population or an experiment, understanding the distribution from which it has
been drawn is a fundamental problem in statistics, and one which has been extensively studied for decades.
However, it is only rather recently that these questions have been considered when the distribution is over a
very large domain (see for instance [4, 18, 21]). In this case, the usual techniques in statistics and learning
theory become impractical, motivating the search for better algorithms, in particular by relaxing the goals so
that learning is not required. This is useful in many real-world applications where only a particular aspect of
the distribution is investigated, such as estimating the entropy or the distance between two distributions. In
these examples, as well as many others, one can achieve sublinear sample complexity. However, strong lower
bounds show that the complexity of these tasks is still daunting, as it has polynomial, and often nearly linear,
dependence on the size of the support of the distribution. To address this difficulty, new lines of research
have emerged. One approach is to obtain more efficient algorithms for special classes of distributions.
For instance, improved algorithms whose sample complexity is polylogarithmic in the domain size can be
achieved by requiring it to satisfy specific smoothness assumptions, or to be of a convenient shape (monotone,
unimodal, or a “k-histogram” [6, 20, 14]). A different approach applies to general distributions, but gives the
algorithm more power in form of more flexible access to the distribution: as in many applications the data
has already been collected and aggregated, it may be reasonable to assume that the testing algorithm can
make other limited queries to the probability density function. For example, the algorithm may be provided
with query access to the probability density function of the distribution [24], or samples from conditional
distributions induced by the original distribution [12, 10, 11].
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1.2 Our model: dual and cumulative dual oracles

In this work, we consider the power of two natural oracles. The first is a dual oracle, which combines the
standard model for distributions and the familiar one commonly assumed for testing Boolean and real-valued
functions. In more detail, the testing algorithm is granted access to the unknown distribution D through two
independent oracles, one providing samples of the distribution, while the other, on query i in the domain of
the distribution, provides the value of the probability density function at i. 1

Definition 1 (Dual access model). Let D be a fixed distribution over [n]= {1, . . . , n}. A dual oracle for D
is a pair of oracles (SAMPD, EVALD) defined as follows: when queried, the sampling oracle SAMPD returns
an element i ∈ [n], where the probability that i is returned is D(i) independently of all previous calls to any
oracle; while the evaluation oracle EVALD takes as input a query element j ∈ [n], and returns the probability
weight D(j) that the distribution puts on j.

It is worth noting that this type of dual access to a distribution has been considered (under the name
combined oracle) in [7] and [19], where they address the task of estimating (multiplicatively) the entropy of
the distribution, or the f -divergence between two of them (see Sect. 4 for a discussion of their results).

The second oracle that we consider provides samples of the distribution as well as queries to the cumulative
distribution function (cdf) at any point in the domain2.

Definition 2 (Cumulative Dual access model). Let D be a fixed distribution over [n]. A cumulative dual
oracle for D is a pair of oracles (SAMPD, CEVALD) defined as follows: the sampling oracle SAMPD behaves
as before, while the evaluation oracle CEVALD takes as input a query element j ∈ [n], and returns the

probability weight that the distribution puts on [j], that is D([j]) =
∑j

i=1 D(i) .

1.3 Motivation and discussion

As a first motivation to this hybrid model, consider the following scenario: There is a huge and freely
available dataset, which a computationally-limited party – call it Arthur – needs to process. Albeit all
the data is public and Arthur can view any element of his choosing, extracting further information from
the dataset (such as the number of occurrences of a particular element) takes too much time. However, a
third-party, Merlin, has already spent resources in preprocessing this dataset and is willing to disclose such
information – yet at a price. This leaves Arthur with the following question: how can he get his work done
as quickly as possible, paying as little as possible? This type of question is captured by our new model, and
can be analyzed in this framework. For instance, if the samples are stored in sorted order, implementing
either of our oracles becomes possible with only a logarithmic overhead per query. It is worth noting that
Google has published their N -gram models, which describe their distribution model on 5-word sequences in
the English language. In addition, they have made available the texts on which their model was constructed.
Thus, samples of the distribution in addition to query access to probabilities of specific domain elements
may be extracted from the Google model.

A second and entirely theoretical motivation for studying distribution testing in these two dual oracle
settings arises from attempting to understand the limitations and underlying difficulties of the standard
sampling model. Indeed, by circumventing the lower bound, one may get a better grasp on the core issues
whence the hardness stemmed in the first place.

Another motivation arises from data privacy, when a curator administers a database of highly sensitive
records (e.g, healthcare information, or financial records). Differential privacy [15, 17, 16] studies mechanisms
which allow the curator to release relevant information about its database without without jeopardizing the
privacy of the individual records. In particular, mechanisms have been considered that enable the curator to
release a sanitized approximation D̃ of its database D, which “behaves” essentially the same for all queries

1Note that in both definitions, one can decide to disregard the corresponding evaluation oracle, which in effect amounts to
falling back to the standard sampling model; moreover, for our domain [n], any EVALD query can be simulated by (at most)
two queries to a CEVALD oracle – in other terms, the cumulative dual model is at least as powerful as the dual one.

2We observe that such a cumulative evaluation oracle CEVAL appears in [6] (Sect. 8).
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of a certain type – such as counting or interval queries3 [9]. Specifically, if the user needs to test a property
of a database, it is sufficient to test whether the sanitized database has the property, using now both samples
and interval (i.e., CEVAL) or counting (EVAL) queries. As long as the tester has some tolerance (in that
it accepts databases that are close to having the property), it is then possible to decide whether the true
database itself is close to having the property of interest.

Finally, a further motivation is the tight connection between the dual access model and the data-stream
model, as shown by Guha et al. ([19], Theorem 25): more precisely, they prove that any (multiplicative)
approximation algorithm for a large class of functions of the distribution (functions that are invariant by
relabeling of any two elements of the support) in the dual access model yields a space-efficient, O(1)-pass
approximation algorithm for the same function in the data-stream model.

1.4 Our results and techniques

We focus here on four fundamental and pervasive problems in distribution testing, which are testing uni-
formity, identity to a known distribution D∗, closeness between two (unknown) distributions D1, D2, and
finally entropy and support size. As usual in the distribution testing literature, the notion of distance we use
is the total variation distance (or statistical distance), which is essentially the ℓ1 distance between the prob-
ability distributions (see Sect. 2 for the formal definition). Testing closeness is thus the problem of deciding
if two distributions are equal or far from each other in total variation distance; while tolerant testing aims
at deciding whether they are sufficiently close versus far from each other.

As shown in Table 1, which summarizes our results and compares them to the corresponding bounds
for the standard sampling-only (SAMP), evaluation-only (EVAL) and conditional sampling (COND) models,
we indeed manage to bypass the aforementioned limitations of the sampling model, and give (often tight)
algorithms with sample complexity either constant (with relation to n) or logarithmic, where a polynomial
dependence was required in the standard setting.

Our main finding overall is that both dual models allow testing algorithms to significantly outperform both
SAMP and COND algorithms, either with relation to the dependence on n or, for the latter, in 1/ε; further,
these testing algorithms are significantly simpler, both conceptually and in their analysis, and can often be
made robust to some multiplicative noise in the evaluation oracle. Another key observation is that this new
flexibility not only allows us to tell whether two distributions are close or far, but also to efficiently estimate
their distance4.

In more detail, we show that for the problem of testing equivalence between distributions, both our models
allow to get rid of any dependence on n, with a (tight) sample complexity of Θ(1/ε). The upper bound is
achieved by adapting an EVAL-only algorithm of [24] (for identity testing) to our setting, while the lower
bound is obtained by designing a far-from-uniform instance which “defeats” simultaneously both oracles of
our models. Turning to tolerant testing of equivalence, we describe algorithms whose sample complexity is
again independent of n, in sharp contrast with the n1−o(1) lower bound of the standard sampling model.
Moreover, we are able to show that, at least in the Dual access model, our quadratic dependence on ε is
optimal. The same notable improvements apply to the query complexity of estimating the support size of the
distribution, which becomes constant (with relation to n) in both of our access models – versus quasilinear
if one only allows sampling.

As for the task of (additively) estimating the entropy of an arbitrary distribution, we give an algorithm
whose sample complexity is only polylogarithmic in n, and show that this is tight in the Dual access model,
up to the exponent of the logarithm. Once more, this is to be compared to the n1−o(1) lower bound for
sampling.

While it is not clear, looking at these problems, whether the additional flexibility that the Cumula-
tive Dual access grants over the Dual one can unconditionally yield strictly more sample-efficient testing
algorithms, we do provide a separation between the two models in Sect. 4.2 by showing an exponential
improvement in the query complexity for estimating the entropy of a distribution given the promise that

3A counting query is of the form “how many records in the database satisfy predicate χ?” – or, equivalently, “what is the
probability that a random record drawn from the database satisfies χ?”.

4For details on the equivalence between tolerant testing and distance estimation, the reader is referred to [23].
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Problem SAMP COND [10, 11] EVAL Dual Cumulative Dual

Testing uniformity Θ
( √

n

ε2

)
[18, 5, 22] Õ

(
1

ε2

)
, Ω

(
1

ε2

)
O

(
1
ε

)
[24], Ω

(
1
ε

)∗

Θ
(

1
ε

)
(†) Θ

(
1
ε

)
(†)Testing ≡ D∗ Θ̃

( √
n

ε2

)
[3, 22] Õ

(
1

ε4

)

Testing D1 ≡ D2 Θ

(
(max

(
N2/3

ε4/3
,

√
N

ε2

))
[5, 28, 13] Õ

(
log5 n

ε4

)
Ω

(
1
ε

)∗

Tolerant uniformity
O

(
1

(ε2−ε1)2
n

log n

)
[27, 26]

Ω
(

n
log n

)
[27, 25]

Õ
(

1
(ε2−ε1)20

)

Ω
(

1
(ε2−ε1)2

)∗
Θ

(
1

(ε2−ε1)2

)
(†) O

(
1

(ε2−ε1)2

)
(†)

Tolerant D∗

Ω
(

n
log n

)
[27, 25]

Tolerant D1, D2

Estimating entropy
to ±∆ Θ

(
n

log n

)
[27, 25] O

(
log2 n

∆
∆2

)
(†), Ω(log n) O

(
log2 n

∆
∆2

)
(†)

Estimating support
size to ±εn Θ

(
n

log n

)
[27, 25] Θ

(
1

ε2

)
O

(
1

ε2

)

Table 1: Summary of results. (†) stands for “robust to multiplicative noise”. The bounds with an asterisk are those
which, in spite of being for different models, derive from the results of the last two columns.

the latter is (close to) monotone. This leads us to suspect that for the task of testing monotonicity (for
which we have preliminary results), under a structural assumption on the distribution, or more generally for
properties intrinsically related to the underlying total order of the domain, such a speedup holds. Moreover,
we stress out the fact that our Ω

(
1/(ε2 − ε1)2

)
lower bound for tolerant identity testing does not apply to

the Cumulative Dual setting.
One of the main techniques we use for algorithms in the dual model is a general approach5 for estimating

very efficiently any quantity of the form Ei∼D [Φ(i, D(i))], for any bounded function Φ. In particular, in the
light of our lower bounds, this technique is both an intrinsic and defining feature of the Dual model, as it
gives essentially tight upper bounds for the problems we consider.

On the other hand, for the task of proving lower bounds, we no longer can take advantage of the
systematic characterizations known for the sampling model (see e.g. [2], Sect. 2.4.1). For this reason, we
have to rely on reductions from known-to-be-hard problems (such as estimating the bias of a coin), or prove
indistinguishability in a customized fashion.

1.5 Organization

After the relevant definitions and preliminaries in Sect. 2, we pursue by considering the first three problems
of testing equivalence of distributions in Sect. 3, where we describe our testing upper and lower bounds. We
then turn to the harder problem of tolerant testing. Finally, we tackle in Sect. 4 the task of performing
entropy and support size estimation, and give for the latter matching upper and lower bounds.

2 Preliminaries

We consider discrete probability distributions over the subset of integers [n] = {1, . . . , n}. As aforementioned,
the notion of distance we use between distributions D1, D2 is their total variation distance, defined as

dTV(D1, D2)
def
= max

S⊆[n]
(D1(S) − D2(S)) =

1

2

∑

i∈[n]

|D1(i) − D2(i)| .

Recall that any property P can equivalently be seen as the subset of distributions that satisfy it; in particular,
the distance dTV(D, P) from some D to P is the minimum distance to any distribution in this subset,
minD′∈P dTV(D, D′).

Testing algorithms for distributions over [n] are defined as follows6:

5We note that a similar method was utilized in [7], albeit in a less systematic way.

4



Definition 3. Fix any property P of distributions, and let ORACLED be an oracle providing some type
of access to D. A q-query testing algorithm for P is a randomized algorithm T which takes as input n,
ε ∈ (0, 1], as well as access to ORACLED. After making at most q(ε, n) calls to the oracle, T outputs either
ACCEPT or REJECT, such that the following holds:

• if D ∈ P , T outputs ACCEPT with probability at least 2/3;

• if dTV(D, P) ≥ ε, T outputs REJECT with probability at least 2/3.

We shall also be interested in tolerant testers – roughly, algorithms robust to a relaxation of the first
item above:

Definition 4. Fix property P and ORACLED as above. A q-query tolerant testing algorithm for P is a
randomized algorithm T which takes as input n, 0 ≤ ε1 < ε2 ≤ 1, as well as access to ORACLED. After
making at most q(ε1, ε2, n) calls to the oracle, T outputs either ACCEPT or REJECT, such that the following
holds:

• if dTV(D, P) ≤ ε1, T outputs ACCEPT with probability at least 2/3;

• if dTV(D, P) ≥ ε2, T outputs REJECT with probability at least 2/3.

Observe in particular that if dTV(D, P) ∈ (0, ε) (resp. dTV(D, P) ∈ (ε1, ε2)), the tester’s output can
be arbitrary. Furthermore, we stress that the two definitions above only deal with the query complexity,
and not the running time. However, it is worth noting that while our lower bounds hold even for such
computationally unbounded algorithms, all our upper bounds are achieved by testing algorithms whose
running time is polynomial in the number of queries they make.

Remark 1. We will sometimes refer as a multiplicatively noisy EVALD (or similarly for CEVALD) to an

evaluation oracle with takes an additional input parameter τ > 0 and returns a value d̂i within a multiplicative
factor (1+τ) of the true D(i). Note however that this notion of noisy oracle does not preserve the two-query
simulation of a dual oracle by a cumulative dual one.

Finally, recall the following well-known result on distinguishing biased coins (which can for instance be
derived from Eq. (2.15) and (2.16) of [1]), that shall come in handy in proving our lower bounds:

Fact 1. Let p ∈ [η, 1 − η] for some fixed η > 0, and suppose m ≤
cη

ε2 , with cη a sufficiently small constant
and ε < η. Then,

dTV(Bin(m, p) , Bin(m, p + ε)) <
1

3
.

We shall make extensive use of Chernoff bounds; for completeness, we state them in Appendix A.

3 Uniformity and identity of distributions

3.1 Testing

In this section, we consider the three following testing problems, each of them a generalization of the previous:

Uniformity testing: given oracle access to D, decide whether D = U (the uniform distribution on [n]) or
is far from it;

Identity testing: given oracle access to D and the full description of a fixed D∗, decide whether D = D∗

or is far from it;

Closeness testing: given independent oracle accesses to D1, D2 (both unknown), decide whether D1 = D2

or D1, D2 are far from each other.

6Note that, as standard in property testing, the threshold 2/3 is arbitrary: any 1 − δ confidence can be achieved at the cost
of a multiplicative factor log(1/δ) in the query complexity, by repeating the test and outputting the majority vote.
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We begin by stating here two results from the literature that transpose straighforwardly in our setting.
Observe that since the problem of testing closeness between two unknown distributions D1, D2 in particular
encompasses the identity to known D∗ testing (and a fortiori the uniformity testing) one, this upper bound
automatically applies to these as well.

Theorem 1 (Theorem 24 from [24]). In the query access model, there exists a tester for identity to a known
distribution D∗ with query complexity O

(
1
ε

)
.

Note that the tester given in [24] is neither tolerant nor robust; however, it only uses query access. [10]
later adapt this algorithm to give a tester for closeness between two unknown distributions, in a setting
which can be seen as “relaxed” dual access model7:

Theorem 2 (Theorem 12 from [10]). In the dual access model, there exists a tester for closeness between
two unknown distributions D1, D2 with sample complexity O

(
1
ε

)
.

It is worth noting that the algorithm in question is conceptually very simple – namely, it consists in
drawing samples from both distributions and then querying the respective probability mass both distributions
put on them, hoping to detect a violation.

Remark 2. As mentioned, the setting of the theorem is slightly more general than stated – indeed, it only
assumes “approximate” query access to D1, D2 (in their terminology, this refers to an evaluation oracle that
outputs, on query x ∈ [n], a good multiplicative estimate of Di(x), for most of the points x).

Lower bound Getting more efficient testing seems unlikely – the dependence on 1/ε being “as good as it
gets”. The following result formalizes this, showing that indeed both Theorems 1 and 2 are tight, even for
the least challenging task of testing uniformity:

Theorem 3 (Lower bound for dual oracle testers). In the dual access model, any tester for uniformity must
have query complexity Ω

(
1
ε

)
.

Albeit the lower bound above applies only to the dual model, one can slightly adapt the proof to get the
following improvement:

Theorem 4 (Lower bound for cumulative dual oracle testers). In the cumulative dual access model, any
tester for uniformity must have sample complexity Ω

(
1
ε

)
.

Albeit the lower bound above applies only to the dual model, one can slightly adapt the construction to
get the following improvement:

Theorem 5 (Lower bound for cumulative dual oracle testers). In the cumulative dual access model, any
tester for uniformity must have sample complexity Ω

(
1
ε

)
.

Sketch. Theorem 5 directly implies Theorem 3, so we focus on the former. The high-level idea is to trick the
algorithm by somehow “disabling” the additional flexibility coming from the oracles.

To do so, we start with a distribution that is far from uniform, but easy to recognize when given evaluation
queries. We then shuffle its support randomly in such a way that (a) sampling will not, with overwhelming
probability, reveal anything, while (b) evaluation queries essentially need to find a needle in a haystack. Note
that the choice of the shuffling must be done carefully, as the tester has access to the cumulative distribution
function of any no-instance D: in particular, using a random permutation will not work. Indeed, it is
crucial for the cumulative distribution function to be as close as the linear function x ∈ [n] 7→ x

n as possible;
meaning that the set of elements on which D differs from U had better be a consecutive “chunk” (otherwise,
looking at the value of the cdf at a uniformly random point would give away the difference with uniform
with non-negligible probability: such a point x is likely to have at least a “perturbed point” before and after
it, so that

∑
i≤x D(x) 6= x

n ).

7In the sense that the evaluation oracle, being simulated via another type of oracle, is not only noisy but also allowed to err
on a small set of points.
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Fix any ε ∈ (0, 1
2 ]; for n ≥ 1

ε , set m
def
= (1 − ε)n − 1, and consider testing a distribution D on [n] which

is either (a) the uniform distribution or (b) chosen uniformly at random amongst the family of distributions
(Dr)0≤r≤m, defined this way: for any offset 0 ≤ r < m, Dr is obtained as follows:

1. Set D(1) = ε + 1
n , D(2) = · · · = D(εn + 1) = 0, and D(k) = 1

n for the remaining m = (1 − ε)n − 1
points;

2. Shift the whole support (modulo n) by adding r.

At a high-level, what this does is keeping the “chunk” on which the cdf of the no-instance grouped together,
and just place it at a uniformly random position; outside this interval, the cdf’s are exactly the same, and
the only way to detect a difference with CEVAL is to make a query in the “chunk”. Furthermore, it is not
hard to see that any no-instance distribution will be exactly ε-far from uniform, so that any tester T must
distinguish between cases (a) and (b) with probability at least 2/3.

Suppose by contradiction that there exists a tester T making q = o
(

1
ε

)
queries (without loss of generality,

we can further assume T makes exactly q queries; and that for any SAMP query, the tester also gets “for
free” the result of an evaluation query on the sample). Given dual access to a D = Dr generated as in case
(b), observe first that, since the outputs of the sample queries are independent of the results of the evaluation
queries, one can assume that some evaluation queries are performed first, followed by some sample queries,
before further evaluation queries (where the evaluation points may depend arbitrarily on the sample query
results) are made. That is, we subdivide the queries in 3: first, q1 consecutive EVAL queries, then a sequence
of q2 SAMP queries, and finally q3 EVAL queries. Define the following “bad” events:

• E1: one of the first q1 evaluation queries falls outside the set G
def
= {εn + 2 + r, . . . , n + r} mod n;

• E2: one of the q2 sampling queries returns a sample outside G, conditioned on E1;

• E3: one of the q3 evaluation queries is on a point outside G, conditioned on E1 ∩ E2.

It is clear that, conditioned on E1 ∩ E2 ∩ E3, all the tester sees is exactly what its view would have been in
case (a) (probabilities equal to 1

n for any EVAL query, and uniform sample from G for any SAMP one). It is

thus sufficient to show that Pr
[

E1 ∩ E2 ∩ E3

]
= 1 − o(1).

• As r is chosen uniformly at random, Pr[ E1 ] ≤ q1
n−m

n = q1(ε + 1
n );

• since D(G) = m
n = 1 − ε − 1

n ≥ 1 − 2ε, Pr[ E2 ] ≤ 1 − (1 − 2ε)q2 ;

• finally, Pr[ E3 ] ≤ q3(ε + 1
n );

we therefore have Pr[ E1 ∪ E2 ∪ E3 ] ≤ (q1 + q3)(ε + 1
n ) + 1 − (1 − 2ε)q2 = O(qε) = o(1), as claimed.

3.2 Tolerant testing

In this section, we describe tolerant testing algorithms for the three problems of uniformity, identity and
closeness; note that by a standard reduction (see Parnas et al. ([23], Section 3.1), this is equivalent to
estimating the distance between the corresponding distributions. As hinted in the introduction, our algorithm
relies on a general estimation approach that will be illustrated further in Section 4, and which constitutes
a fundamental feature of the dual oracle: namely, the ability to estimate cheaply quantities of the form
Ei∼D [Φ(i, D(i))] for any bounded function Φ.

Theorem 6. In the dual access model, there exists a tolerant tester for uniformity with query complexity

O
(

1
(ε2−ε1)2

)
.

Proof. We describe such a tester T ; as it will start by estimating the quantity 2dTV(D, U) up to some

additive γ
def
= ε2 − ε1 (and then accept if and only if its estimate d̂ is at most 2ε1 + γ = ε1 + ε2).

7



In order to approximate this quantity, observe that8

dTV(D, U) =
1

2

∑

i∈[n]

∣∣∣∣D(i) −
1

n

∣∣∣∣ =
∑

i:D(i)> 1
n

(
D(i) −

1

n

)
=

∑

i:D(i)> 1
n

(
1 −

1

nD(i)

)
· D(i)

= Ei∼D

[(
1 −

1

nD(i)

)
1{D(i)> 1

n }

]
(1)

where 1E for the indicator function of set (or event) E; thus, T only has to do get an empirical estimate of
this expected value, which can be done by taking m = O

(
1/(ε2 − ε1)2

)
samples si from D, querying D(si)

and computing Xi =
(

1 − 1
nD(si)

)
1{D(si)> 1

n } (cf. Alg. 1).

Algorithm 1 Tester T : Estimate-L1

Require: SAMPD and EVALD oracle access, parameters 0 ≤ ε1 < ε2

Set m
def
= Θ

(
1

γ2

)
, where γ

def
= ε2−ε1

2 .

Draw s1, . . . , sm from D
for i = 1 to m do

With EVAL, get Xi
def
=

(
1 − 1

nD(si)

)
1{D(si)> 1

n }
end for

Compute d̂
def
= 1

m

∑m
i=1 Xi.

if d̂ ≤ ε1+ε2

2 then

return ACCEPT
else

return REJECT
end if

Analysis Define the random variable Xi as above; from Eq.(1), we can write its expectation as

E[Xi] =

n∑

k=1

D(k)

∣∣∣∣1 −
1

nD(k)

∣∣∣∣1{D(k)> 1
n } = dTV(D, U). (2)

Since the Xi’s are independent and take value in [0, 1], an additive Chernoff bound ensures that

Pr
[ ∣∣∣d̂ − dTV(D, U)

∣∣∣ ≥ γ
]

≤ 2e−2γ2m (3)

which is at most 1/3 by our choice of m. Conditioning from now on on the event
∣∣∣d̂ − dTV(D, U)

∣∣∣ < γ:

• if dTV(D, U) ≤ ε1, then d̂ ≤ ε1 + γ, and T outputs ACCEPT;

• if dTV(D, U) > ε2, then d̂ > ε2 − γ, and T outputs REJECT.

Furthermore, the algorithm makes m SAMP queries, and m EVAL queries.

Remark 3. Note that we can also do it with EVAL queries only (same query complexity), by internally
drawing uniform samples: indeed,

2dTV(D, U) =
∑

i∈[n]

∣∣∣∣D(i) −
1

n

∣∣∣∣ =
∑

i∈[n]

|nD(i) − 1| ·
1

n
= 2Ex∼U

[
|nD(x) − 1|1{ 1

n >D(x)}

]

This also applies to the first corollary below, as long as the known distribution is efficiently samplable by
the algorithm.

8Note that dividing by D(i) is “legal”, since if D(i) = 0 for some i ∈ [n], this point will never be sampled, and thus no
division by 0 will ever occur.
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Indeed, the proof above can be easily extended to other distributions than uniform, and even to the case
of two unknown distributions:

Corollary 1. In the dual access model, there exists a tolerant tester for identity to a known distribution

with query complexity O
(

1
(ε2−ε1)2

)
.

Corollary 2. In the dual access model, there exists a tolerant tester for closeness between two unknown

distributions with query complexity O
(

1
(ε2−ε1)2

)
. As noted in the next subsection, this is optimal (up to

constants).

Interestingly, this tester can be made robust to multiplicative noise, i.e. can be shown to work even when the
answers to the EVAL queries are only accurate up to a factor (1+γ) for γ > 0: it suffices to set γ = ε/2, getting

on each point D̂(i) ∈ [(1 + γ)−1, 1 + γ]D(i), and work with Xi =
(

1 − D∗(si)/D̂(si)
)
1{D̂(si)>D∗(si)} and

estimate the expectation up to ±γ (or, for closeness between two unknown distributions, setting γ = ε/4).

3.2.1 Lower bound

In this subsection, we show that the upper bounds of Lemma 6, Corollaries 1 and 2 are tight.

Theorem 7. In the dual access model, performing (ε1, ε2)-testing for uniformity requires sample complexity

Ω
(

1
(ε2−ε1)2

)
(the bound holds even when only asking ε1 to be Ω(1)).

Proof. The overall idea lies on a reduction from distinguishing between two types of biased coins to tolerant
testing for uniformity. In more detail, given access to samples from a fixed coin (promised to be of one of
these two types), we define a probability distribution as follows: the domain [n] is randomly partitioned into
K = 1/ε2 pairs of buckets, each bucket having same number of elements; the distribution is uniform within
each bucket, and the two buckets of each pair are balanced to have total weight 2/K. However, within each
pair of buckets (A, B), the probability mass is divided according to a coin toss (performed “on-the-fly” when
a query is made by the tolerant tester), so that either (a) D(A) = (1 + α)/K and D(B) = (1 − α)/K, or
(b) D(A) = D(B) = 1/K. Depending on whether the coin used for this choice is fair or (1

2 + ε))biased, the
resulting distribution will (with high probability) have different distance from uniformity – sufficiently for a
tolerant tester to distinguish between the two cases.

Construction We start by defining the instances of distributions we shall consider. Fix any ε ∈ (0, 1
100 );

without loss of generality, assume n is even, and n ≫ 1/ε. Define α = 2/(1 + ε), K = 1/ε2, p+ = (1 + ε)/2
and p− = (1 + 20ε)/2, and consider the family of distributions D+ (resp. D−) defined by the following
construction:

• pick uniformly at random a partition9 of [n] in 2K sets of size n/(2K) A1, . . . , AK , B1, . . . , BK ;

• for all k ∈ [K], draw independently at random Xk ∼ Bern(p+) (resp. Xk ∼ Bern(p−)), and set for all
x ∈ Ak, y ∈ Bk

D+(x) =

{
1+α

n if Xi = 1
1
n o.w.

and D+(y) =

{
1−α

n if Xi = 1
1
n o.w.

(the pairing between Ak and Bk ensures the final measure indeed sums to one). Regardless of the choice of
the initial partition, but with fluctuations over the random coin tosses X1, . . . , Xk, we have that the total
variation distance between a distribution D+ ∈ D+ (resp. D− ∈ D−) and uniform is on expectation what

9For convenience, it will be easier to think of the Ai’s and Bi’s as consecutive intervals, the first ones covering [ n
2

] while the
former cover [n] \ [ n

2
] (see Fig. 1).
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we aimed for:

E
[
dTV

(
D+, U

)]
=

1

2
· 2 ·

K∑

k=1

n

2K
·

α

n
p+ =

1

2
αp+ =

1

2

E
[
dTV

(
D−, U

)]
=

1

2
p−α =

1 + 20ε

1 + ε
·

1

2
>

1

2
+ 7ε

and with an additive Chernoff bound on the sum of 1/ε2 i.i.d. choices for the Xk’s, we have that for
(D+, D−): for any choice of the initial partition Π = (Ak, Bk)k∈[K], with probability at least 99/100,

dTV

(
D+

Π , U
)

<
1

2
+ 3ε

dTV

(
D−

Π , U
)

>
1

2
+ 4ε

where by D±
Π we denote the distribution defined as above, but fixing the partition for the initial step to

be Π. We will further implicitly condition on this event happening; any tester for uniformity called with
(ε′, ε′ + cε) must therefore distinguish between D+ and D−. Suppose we have such a tester T , with (without
loss of generality) exact sample complexity q = q(ε) = o

(
1
ε2

)
.

D+(i)

i

1+α
n

1−α
n

n
2

n1
A1 B1A2 B2A3 B3AK BK

Figure 1: The yes-instance D+ (for a fixed Π, taken to be consecutive intervals).

Reduction We will reduce the problem of distinguishing between (a) a p+α
2 and (b) a p−α

2 biased coin to
telling D+ and D− apart.

Given SAMPcoin access to i.i.d. coin tosses coming either from one of those two situations, define a
distinguisher A as follows:

• choose uniformly at random a partition Π = (A0
k, A1

k)k∈[K] of [n]; for convenience, for any i ∈ [n], we
shall write π(i) for the index k ∈ [K] such that i ∈ A0

k ∪ A1
k, and ς(i) ∈ {0, 1} for the part in which it

belongs – so that i ∈ A
ς(i)
π(i) for all i;

• run T , maintaining a set C of triples10 (k, D0
k, D1

k) (initially empty), containing the information about
the (A0

k, A1
k) for which the probabilities have already be decided;

• EVAL: whenever asked an evaluation query on some i ∈ [n]:

– if π(i) ∈ C, return D
ς(i)
π(i);

– otherwise, let k = π(i); ask a fresh sample bk from SAMPcoin and draw a uniform random bit b′
k;

set

(D0
k, D1

k) =





( 1
n , 1

n ) if bk = 0

(1+α
n , 1−α

n ) if bk = 1, b′
k = 1

(1−α
n , 1+α

n ) if bk = 1, b′
k = 0

(“Choosing the profile”)

10Abusing the notation, we will sometimes write “k ∈ C” for “there is a triple in C with first component k”.
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then add (k, D0
k, D1

k) to C; and return D
ς(i)
k .

• SAMP: whenever asked a sample: let γ = n
2K

∑
k∈C dk the current probability mass of the “committed

points”; observe that the distribution DC induced by the dk’s on { i ∈ [n] : π(i) ∈ C } is fully known
by A;

– with probability γ, A draws i ∼ DC and returns it;

– otherwise, A draws k ∼ U([K] \ C). As before, it gets bk from SAMPcoin and a uniform random
bit b′

k; gets (D0
k, D1

k) as in the EVAL case, commits to it as above by (k, D0
k, D1

k) to C. Finally,
it draws a random sample i from the piecewise constant distribution induced by (D0

k, D1
k) on

A0
k ∪ A1

k, where each j ∈ A0
k (resp. A1

k) has equal probability mass D0
k · n

2K (resp. D1
k · n

2K ), and
returns i.

Observe that A makes at most q queries to SAMPcoin; provided we can argue that A answers T ’s queries
consistently to what a corresponding D± (depending on whether we are in case (a) or (b)) would look like,
we can conclude.
This is the case, as (i) A is always consistent with what its previous answers induce on the distribution
(because of the maintaining of the set C); (ii) any EVAL query on a new point exactly simulates the “on-
the-fly” construction of a D±; and any SAMP query is either consistent with the part of D± already built,
or in case of a new point gets a sample exactly distributed according to the D± built “on-the-fly”; this is
because in any D±, every Ak ∪ Bk has same probability mass 1/(2K); therefore, in order to get one sample,
tossing K i.i.d. coins to decide the “profiles” of every Ak ∪ Bk before sampling from the overall support [n]
is equivalent to first choosing uniformly at random a particular S = Ak ∪ Bk, tossing one coin to decide only
its particular profile, and then drawing a point accordingly from S.

In other terms, A will distinguish, with only o
(
1/ε2

)
i.i.d. samples, between cases (a) (1

2 -biased coin)
and (b) (1

2 + Ω(ε))-biased coin with probability at least 6/10 – task which, for ε sufficiently small, is known
to require Ω

(
1/ε2

)
samples (cf. Fact 1), thus leading to a contradiction.

4 Entropy and support size

4.1 Additive and multiplicative estimations of entropy

In this section, we describe simple algorithms to perform additive and multiplicative estimation (which in
turns straightforwardly implies tolerant testing) of the entropy H(D) of the unknown distribution D, defined
as

H(D)
def
= −

∑

i∈[n]

D(i) log D(i) ∈ [0, log n]

We remark that Batu et al. ([7], Theorem 14) gives a similar algorithm, based on essentially the same
approach but relying on a Chebyshev bound, yielding a (1 + γ)-multiplicative approximation algorithm for
entropy with sample complexity O

(
(1 + γ)2 log2 n/γ2h2

)
, given a lower bound h > 0 on H(D).

Guha et al. ([19], Theorem 5.2) then refined their result, using as above a threshold for the estimation
along with a multiplicative Chernoff bound to get the sample complexity down to O

(
log n/γ2h

)
– thus

matching the Ω(log n/γ(2 + γ)h) lower bound of [7] (Theorem 18); we recall their results for multiplicative
estimation of the entropy below11.

Theorem 8 (Upper bound [[19], Theorem 5.2]). Fix γ > 0. In the dual access model, there exists an
algorithm that, given a parameter h > 0 and the promise that H(D) ≥ h, estimates the entropy within a

multiplicative (1 + γ) factor, with sample complexity Θ
(

log n
γ2h

)
.

11In particular, note that translating their lower bound for additive estimation implies that the dependence on n of our
algorithm is tight.
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Theorem 9 (Lower bound [[7], Theorem 18]). Fix γ > 0. In the dual access model, any algorithm that,
given a parameter h > 0 and the promise that H(D) = Ω(h), estimates the entropy within a multiplicative

(1 + γ) factor must have sample complexity Ω
(

log n
γ(2+γ)h

)
.

Observe that the additive bound we give (based on a different cutoff threshold), however, still performs
better in many cases, e.g. ∆ = γh > 1 and h > 1; and does not require any a priori knowledge on a
lower bound h > 0. Moreover, we believe that this constitutes a good illustration of the more general
technique used, and a good example of what the dual model allows: approximation of quantities of the form
Ei∼D [Φ(i, D(i))], where Φ is any bounded function of both an element of the domain and its probability
mass under the distribution D.

Additive estimate The overall idea is to observe that for a distribution D, the entropy H(D) can be
rewritten as

H(D) =
∑

x∈[n]

D(x) log
1

D(x)
= Ex∼D

[
log

1

D(x)

]
(4)

The quantity log 1
D(x) cannot be easily upperbounded, which we need for concentration results. However,

recalling that the function x 7→ x log(1/x) is increasing for x ∈ (0, 1
e ) (and has limit 0 when x → 0+), one

can refine the above identity as follows: for any cutoff threshold τ ∈ (0, 1
e ), write

H(D) =
∑

x:D(x)≥τ

D(x) log
1

D(x)
+

∑

x:D(x)<τ

D(x) log
1

D(x)
(5)

so that

H(D) ≥
∑

x:D(x)≥τ

D(x) log
1

D(x)
≥ H(D) −

∑

x:D(x)<τ

D(x) log
1

D(x)

≥ H(D) − n · τ log
1

τ

Without loss of generality, assume ∆
n < 1

2 . Fix τ
def
=

∆
n

10 log n
∆

, so that n · τ log 1
τ ≤ ∆

2 ; and set

ϕ : y 7→ log
1

y
1{y≥τ}

Then, the above discussion gives us

H(D) ≥ Ex∼D[ϕ(D(x))] ≥ H(D) −
∆

2
(6)

and getting an additive ∆/2-approximation of Ex∼D[ϕ(D(x))] is enough for estimating H(D) within ±∆;
further, we now have

0 ≤ ϕ(D(x)) ≤ log
1

τ
∼ log

n

∆
a.s. (7)

so using an additive Chernoff bound, taking m = Θ
(

log2 n
∆

∆2

)
samples x1, . . . , xm from SAMPD and computing

the quantities ϕ(D(xi)) using EVALD implies

Pr

[ ∣∣∣∣∣
1

m

m∑

i=1

ϕ(D(xi)) − Ex∼D[ϕ(D(x))

∣∣∣∣∣] ≥
∆

2

]
≤ 2e

− ∆2m

log2 1
τ ≤

1

3

This leads to the following theorem:
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Theorem 10. In the dual access model, there exists an algorithm estimating the entropy up to an additive

∆, with sample complexity Θ
(

log2 n
∆

∆2

)
.

or, in terms of tolerant testing:

Corollary 3. In the dual access model, there exists an (∆1, ∆2)-tolerant tester for entropy with sample

complexity Θ̃
(

log2 n
(∆1−∆2)2

)
.

Proof. We describe such a T in Algorithm 2; the claimed query complexity is straighforward.

Algorithm 2 Tester T : Estimate-Entropy

Require: SAMPD and EVALD oracle access, parameters 0 ≤ ∆ ≤ n
2

Ensure: Outputs Ĥ s.t. w.p. at least 2/3, Ĥ ∈ [H(D) − ∆, H(D) + ∆/2]

Set τ
def
=

∆
n

10 log n
∆

and m =
⌈

ln 6
∆2 log2 1

τ

⌉
.

Draw s1, . . . , sm from D
for i = 1 to m do

With EVAL, get Xi
def
= log 1

D(si)1{D(si)≥τ}
end for

return Ĥ
def
= 1

m

∑m
i=1 Xi

Remark 4. The tester above can easily be adapted to be made multiplicatively robust; indeed, it is enough
that the EVAL oracle only provides (1 + γ)-accurate estimates D̂(i) of the probabilities D(i), where γ is

chosen to be γ
def
= min(2∆/3 − 1, 1) so that the algorithm will output with high probability an additive

(∆/2)-estimate of a quantity

H(D) ≥ Ex∼D [ϕ̂(x)] ≥
∑

x:D(x)≥(1+γ)τ

D(x) log
1

D(x)
− log(1 + γ) ≥ H(D) + n ·(1 + γ)τ log(1 + γ)τ︸ ︷︷ ︸

≥−2τ log 1
2τ

−
∆

3

and taking for instance τ
def
=

∆
n

30 log n
∆

ensures the right-hand-side is at least H(D) − ∆
6 − ∆

3 = H(D) − ∆
2 .

4.2 Additive estimation of entropy for monotone distributions

In the previous section, we saw how to obtain an additive estimate of the entropy of the unknown distribution,
using essentially O

(
log2 n

)
sampling and evaluation queries; moreover, this dependence on n is optimal.

However, one may wonder if, by taking advantage of cumulative queries, it becomes possible to obtain a
better query complexity. We partially answer this question, focusing on a particular class of distributions
for which the cumulative dual query access seems particularly well-suited: namely the class of monotone
distributions12.

Before describing how this assumption can be leveraged to obtain an exponential improvement in the
sample complexity for cumulative dual query algorithms, we first show that given only dual access to a
distribution promised to be o(1)-close to monotone, no such speedup can hold. By establishing (see Remark 6)
that the savings obtained for (close to) monotone distributions are only possible with cumulative dual access,
this will yield a separation between the two oracles, proving the latter is strictly more powerful.

4.2.1 Lower bound for dual oracles

Theorem 11. In the dual access model, any algorithm that estimates the entropy of distributions O(1/ log n)-
close to monotone even to an additive constant must make Ω(log n) queries to the oracle.

12Recall that a distribution D over a totally ordered domain is said to be monotone if for all i ∈ [n − 1] D(i) ≥ D(i + 1)
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Proof. We will define two families of distributions, D1 and D2, such that for any two D1, D2 drawn uniformly
at random from D1 and D2:

1. D1 and D2 are (2/ log n)-close to monotone;

2. |H(D1) − H(D2)| = 1/4;

3. no algorithm making o(log n) queries to a dual oracle can distinguish between D1 and D2 with constant
probability.

In more detail, the families are defined by the following process: for Kn
def
= n1/4, ℓn

def
= log n and γn

def
=

1/ log n,

• Draw a subset S ⊂ {2, . . . , n} of size ℓn uniformly at random;

• Set D1(1) = 1 − γn, and D1(i) = γn/ℓn = 1/ log2 n for all i ∈ S.

(D2 is obtained similarly, but with a subset S of size Knℓn = n1/4 log n and D2(i) = γn/(ℓnKn)) Roughly,
both distributions have a very heavy first element (whose role is to “disable” sampling queries by hogging
them with high probability), and then a random subset of size respectively logarithmic or polynomial, on
which they are uniform. To determine whether a distribution is drawn from D1 or D2, intuitively a testing
algorithm has to find a point i > 1 with non-zero mass – and making a query on this point then gives away
the type of distribution. However, since sampling queries will almost always return the very first element,
finding such a i > 1 amounts to finding a needle in a haystack (without sampling) or to sampling many
times (to get a non-trivial element) – and thus requires many queries. Before formalizing this intuition, we
prove the first two items of the above claims:

Distance to monotonicity By moving all elements of S at the beginning of the support (points 2, . . . , |S|+
1), the distribution would be monotone; so in particular

dTV(Di, Monotone) ≤
1

2
· 2 |S| ·

γn

|S|
= 2γn =

2

log n
, i ∈ {1, 2}

Difference of entropy By their definition, for any two D1, D2, we have

|H(D1) − H(D2)| =

∣∣∣∣∣

n∑

i=2

D1(i) log D1(i) −

n∑

i=2

D2(i) log D2(i)

∣∣∣∣∣ = γn log Kn =
1

4
.

We now turn to the main item, the indistinguishability:

Telling D1 and D2 apart Assume we have an algorithm T , which can estimate entropy of distributions
that are O(1/ log n)-close to monotone up to an additive 1/3 making q(n) = o(log n) queries; we claim that
T cannot be correct with probability 2/3. As argued before, we can further assume without loss of generality
that T makes exactly 2q queries, q sampling queries and q evaluation ones; and that for any SAMP query, it
gets “for free” the result of an evaluation query on the sample. Finally, and as the sampling queries are by
definition non-adaptive, this also allows us to assume that T starts by making its q SAMP queries.

Let B1 be the event that one of the q first queries results in sampling an element i > 1 (that is, B1 is the
event that the “hogging element” fails its role). Clearly, B1 has same probability no matter with of the two
families the unknown distribution belongs to, and

Pr[ B1 ] = 1 − (1 − γn)q = 1 − 2q log(1−1/ log n) ≤ 1 − 2−2q/ log n = O(q/ log n) = o(1) (8)

so with probability 1 − o(1), B̄1 holds. We further condition on this: i.e., the testing algorithm only saw the
first element (which does not convey any information) after the sampling stage.

The situation is now as follows: unless one of its queries hits one of the relevant points in the uniform set S
(call this event B2), the algorithm will see in both case the same thing – a sequence of points with probability
zero. But by construction, in both cases, the probability over the (uniform) choice of the support S to hit a
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relevant point with one query is either ℓn/(n − 1) = log n/(n − 1) or Knℓn/(n − 1) = n1/4 log n/(n − 1); so
that the probability of finding such a point in n queries is at most

Pr[ B2 ] ≤ 1 −

(
1 −

Knℓn

n − 1

)q

= O

(
q log n

n3/4

)
= o(1) (9)

Conditioning on B̄1 ∪ B̄2, we get that T sees exactly the same transcript if the distribution is drawn from
D1 or D2; so overall, with probability 1 − o(1) it cannot distinguish between the two cases – contradicting
the assumption.

4.2.2 Upper bound: exponential speedup for cumulative dual oracles

We now establish the positive result in the case of algorithms given cumulative dual query access. Note that
Batu et al. [7] already consider the problem of getting a (multiplicative) estimate of the entropy of D, under
the assumption that the distribution is monotone; and describe (both in the evaluation-only and sample-
only models) polylog(n)-query algorithms for this task, which work by recursively splitting the domain in a
suitable fashion to get a partition into near uniform and negligible intervals.

The main insight here (in addition to the mere fact that we allow ourself a stronger type of access to D)
is to use, instead of an ad hoc partition of the domain, a specific one tailored for monotone distributions,
introduced by Birgé [8] – and which crucially does not depend on the distribution itself.

Definition 5 (Oblivious decomposition). Given a parameter ε > 0, the corresponding oblivious decompo-

sition of [n] is the partition Iε = (I1, . . . , Iℓ), where ℓ =
⌈

log(εn+1)
ε

⌉
= Θ

(
log n

ε

)
and |Ik+1| = (1 + ε) |Ik|,

1 ≤ k < ℓ.

For a distribution D and parameter ε, define D̄ε to be the flattened distribution with relation to the oblivious
decomposition Iε:

∀k ∈ [ℓ], ∀i ∈ Ik, D̄ε(i) =
D(Ik)

|Ik|

We insist that while D̄ε (obviously) depends on D, the partition Iε itself does not; in particular, it can be
computed prior to getting any sample or information about D.

Theorem 12 ([8]). If D is monotone non-increasing, then dTV

(
D, D̄ε

)
≤ ε.

Remark 5. A proof of this theorem, self-contained and phrased in terms of discrete distributions (whereas
the original paper by Birgé is primarily intended for continuous ones) can be found in [14] – Theorem 3.1.

Corollary 4. Suppose D is ε-close to monotone non-increasing. Then dTV

(
D, D̄ε

)
≤ 3ε; furthermore, D̄ε

is also ε-close to monotone non-increasing.

Finally, we shall also need the following well-known result relating total variation distance and difference
of entropies (see e.g. [29], Eq. (4)):

Fact 2 (Total variation and Entropy). Let D1, D2 be two distributions on [n] such that dTV(D1, D2) ≤ α,
for α ∈ [0, 1]. Then |H(D1) − H(D2)| ≤ α log(n − 1) + h2(α) ≤ α log n

α + (1 − α) log 1
1−α , where h2 is the

binary entropy function13.

High-level idea Suppose we use the oblivious decomposition from Definition 5, with small parameter α (to
be determined later), to reduce the domain into ℓ = o(n) intervals. Then, we can set out to approximate the
entropy of the induced flat distribution – that we can efficiently simulate from the cumulative dual oracles,
roughly reducing the complexity parameter from n to ℓ; it only remains to use the previous approach, slightly
adapted, on this flat distribution. Of course, we have to be careful not to incur too much a loss at each step,
where we first approximate H(D) by H(D̄), and then specify our cutoff threshold to only consider significant
contributions to H(D̄).

13That is, h2(p) = −p log p − (1 − p) log(1 − p) is the entropy of a Bernoulli random variable with parameter p.
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Details Consider the Birgé decomposition of [n] into ℓ = Θ(log(nα)/α) intervals (for α to be defined
shortly). Theorem 12 ensures the corresponding (unknown) flattened distribution D̄ is α-close to D; which,
by the fact above, implies that ∣∣H(D̄) − H(D)

∣∣ ≤ α
(

log
n

α
+ 2

)
(10)

Taking α
def
= Θ(∆/ log n), the right-hand-side is at most ∆/2; so that it is now sufficient to estimate H(D̄)

to ±∆/2, where both sampling and evaluation access to D̄ can easily be simulated from the CEVALD

and SAMPD oracles. But although D̄ is a distribution on [n], its “actual” support is morally only the
ℓ = Θ̃

(
log2 n/∆

)
. Indeed, we may write the entropy of D̄ as

H(D̄) =

ℓ∑

k=1

∑

x∈Ik

D̄(x) log
1

D̄(x)
=

ℓ∑

k=1

∑

x∈Ik

D(Ik)

|Ik|
log

|Ik|

D(Ik)
=

ℓ∑

k=1

D(Ik) log
|Ik|

D(Ik)
= Ek∼D̄

[
log

1

dk

]

where dk = D(Ik)
|Ik| ≈ (1 + α)−kD(Ik).

As in the previous section, we can then define a cutoff threshold τ (for dk) and only estimate Ek∼D̄

[
log 1

dk
1{dk≥τ}

]
,

for this purpose, we need ℓ · τ log 1/τ to be at most ∆/4, i.e.

τ
def
= Θ

(
∆/ℓ

log ∆/ℓ

)
= Θ̃

(
∆2

log2 n

)

and to get with high probability a ∆/4-approximation, it is as before sufficient to make m = O
(
∆2/ log2(1/τ)

)
=

Õ
(

log2 log n
∆

∆2

)
queries.

Theorem 13. In the cumulative dual access model, there exists an algorithm for monotone distributions

estimating the entropy up to an additive ∆, with sample complexity Õ
(

log2 log n
∆ /∆2

)
.

Remark 6. We remark that the above result and algorithm (after some minor changes in the constants) still
applies if D is only guaranteed to be O(1/ log n)-close to monotone; indeed, as stated in Corollary 4, the
oblivious decomposition is (crucially) robust, and D̄ will still be O(ε)-close to D.

4.3 Additive estimation of support size

We now turn to the task of estimating the effective support size of the distribution: given the promise that
D puts on every element of the domain either no weight or at least some minimum probability mass 1/n > 0,
the goal is to output a good estimate (up to ±εn) of the number of elements in the latter situation.

Theorem 14. In the dual access model, there exists an algorithm Estimate-Support that, on input a
threshold n ∈ N

∗ and a parameter ε > 0, and given access to a distribution D (over an arbitrary set)
satisfying

min
x∈supp(D)

D(x) ≥
1

n

estimates the support size |supp(D)| up to an additive εn, with query complexity O
(

1
ε2

)
.

Proof. Write k
def
= |supp(D)|. We describe Estimate-Support which outputs (w.p. at least 2/3) an estimate

as required:

If ε > 2√
n ln 3n

: The algorithm will draw m =
⌈

4
ε2

⌉
samples x1, . . . , xm from D, query their probability mass

D(xi), and output k̂ = ⌈Y ⌉, where

Y
def
=

1

m

m∑

i=1

1{D(xi)≥ 1
n }

D(xi)
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If ε ≤ 2√
n ln 3n

: in this case, Estimate-Support just draws m = n ln 3n = O
(

1
ε2

)
samples x1, . . . , xm from

D, and returns the number k̂ of distincts elements it got (no query access is needed in this case).

Analysis In the first (and interesting) case, let φ be the function defined over the coset of D by φ(x) =
1

D(x) · 1{D(x)≥ 1
n }, so that Ex∼D[φ(x)] =

∑
x:D(x)> 1

n
D(x) · 1

D(x) =
∣∣{ x : D(x) > 1

n

}∣∣ = k; and as the r.v.

φ(x1), . . . , φ(xm) are i.i.d and taking value in [0, n], an additive Chernoff bound yields

Pr
[

|Y − k| >
εn

2

]
≤ 2e− ε2m

2 <
1

3

Conditioned on this not happening, k + ε
2 n ≤ Y ≤ k̂ ≤ Y + 1 ≤ k + ε

2 n + 1 ≤ k + εn (as ε > 2
n ), and k̂ is as

stated.
Turning now to the second case, observe first that the promise on D implies that 1 ≤ k ≤ n. It is

sufficient to bound the probability that an element of the support is never seen during the m draws – let F
denote this event. By a union bound,

Pr[ F ] ≤ k ·

(
1 −

1

n

)m

≤ nen ln(3n) ln(1− 1
n ) ≤ ne− ln 3n =

1

3

so w.p. at least 2/3, every element of the support is drawn, and Estimate-Support returns (exactly) k.

4.3.1 Lower bound

In this subsection, we show that the upper bound of Theorem 14 is tight.

Theorem 15. In the dual access model, ε-additively estimating support size requires query complexity Ω
(

1
ε2

)
.

Proof. Without loss of generality, suppose n is even, and let k = n
2 . For any p ∈ [0, 1], consider the following

process Φp, which yields a random distribution Dp on [n] (See Fig.2):

• draw k i.i.d. random variables X1, . . . , Xk ∼ Bern(p);

• for i ∈ [k], set D(i) = 1
n (1 + Xi) and D(n − i) = 1

n (1 − Xi)

Note that by construction D(i) + D(n − i) = 2
n for all i ∈ [k].

Dp(i)

i

2
n

1
n

n
2

n1

Figure 2: An instance of distribution Dp with p = 4/10.

Define now, for any ε ∈ (0, 1/6), the families of distributions D+ and D− induced the above construction,

taking p to be respectively p+ def
= 1

2 and p− def
= 1

2 −6ε. Hereafter, by D+ (resp. D−), we refer to a distribution
from D+ (resp. D−) generated randomly as above (we assume further, without loss of generality, that

17



n ≫ 1/ε2):

E
[
supp

(
D+

)]
= n − kp+ = n

(
1 −

p+

2

)
=

3

4
n

E
[
supp

(
D−)]

= n − kp− = n

(
1 −

p−

2

)
=

(
3

4
+ 3ε

)
n

and, with an additive Chernoff bound,

Pr

[
supp

(
D+

)
≥

3

4
n +

ε

2
n

]
≤ e− ε2n

2 <
1

100

Pr

[
supp

(
D−)

≤
3

4
n +

5ε

2
n

]
≤ e− ε2n

2 <
1

100

We hereafter condition on these events E+ and E− every time we consider a given D+ or D−, and set for

convenience s+ def
= 3

4 (n + 2ε), s− def
= 3

4 (n + 10ε).

Reduction We shall once again reduce the problem of distinguishing between (a) a fair coin and (b) an
(1

2 − 6ε)-biased coin to the problem of approximating the support size: suppose by contradiction we have a
tester T for the latter problem, making q = o

(
1
ε2

)
queries on input ε.

Given parameter ε ∈ (0, 1/100) and SAMPcoin access to i.i.d. coin tosses coming from one of those two
situations ((p+ = 1

2 , or p− = 1
2 − 6ε), define a distinguisher A as follows:

• after picking an even integer n ≫ 1/ε2, A will maintain a set C ⊆ [n] × {0, 1
n , 2

n } (initially empty),
and run T as a subroutine with parameter ε;

• EVAL: when T makes an evaluation query on a point i ∈ [n]

– if i has already been committed to (there is a pair (i, di) in C), it returns di;

– otherwise, it asks for a sample b from SAMPcoin, and sets

di =





1
n if b = 0
2
n if b = 1 and i ∈ [k]

0 if b = 1 and i ∈ [n] \ [k]

before adding (i, di) and (n − i, 2
n − di) to C and returning di.

• SAMP: when T makes an sampling query, A draws u.a.r. i ∼ [k], and then proceeds as in the EVAL
case to get di and dn−i (that is, if they are not in C, it first generates them from a SAMPcoin query
and commits to them); and then, it returns i w.p. (ndi)/2, and n − i w.p. (ndn−i)/2.

It is easy to see that the process above exactly simulates dual access to a distribution D generated either
according to Φp+ or Φp− – in particular, this is true of the sampling queries because each pair (i, n − i)
has same total mass 2

n under any such distribution, so drawing from D is equivalent to drawing uniformly
i ∈ [k], and then returning at random i or n − i according to the conditional distribution of D on {i, n − i}.

Furthermore, the number of queries to SAMPcoin is at most the number of queries made by T to A, that
is o

(
1
ε2

)
. Conditioning on E+ (or E−, depending on whether we are in case (a) or (b)), the distribution D

has support size at most s+ (resp. at least s−). As the estimate ŝ that T will output will, with probability
at least 2/3, be εn-close to the real support size, and as s− − s+ = 2εn, A will distinguish between cases
(a) and (b) with probability at least 2/3 − 2/100 > 6/10 – contradicting the fact that Ω

(
1/ε2

)
samples are

required to distinguish between a fair and a (1
2 − 6ε)-biased coin with this probability.
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A Chernoff Bounds

Theorem 16. Let Y1, . . . , Ym be m independent random variables that take on values in [0, 1], where E[Yi] =
pi, and

∑m
i=1 pi = P . For any γ ∈ (0, 1] we have

(additive bound) Pr

[
m∑

i=1

Yi > P + γm

]
, Pr

[
m∑

i=1

Yi < P − γm

]
≤ exp(−2γ2m) (11)

(multiplicative bound) Pr

[
m∑

i=1

Yi > (1 + γ)P

]
< exp(−γ2P/3) (12)

and

(multiplicative bound) Pr

[
m∑

i=1

Yi < (1 − γ)P

]
< exp(−γ2P/2). (13)

The following extension of the multiplicative bound is useful when only upper and/or lower bounds on P
are known:
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Corollary 5. In the setting of Theorem 16 suppose that PL ≤ P ≤ PH . Then for any γ ∈ (0, 1], we have

Pr

[
m∑

i=1

Yi > (1 + γ)PH

]
< exp(−γ2PH/3) (14)

Pr

[
m∑

i=1

Yi < (1 − γ)PL

]
< exp(−γ2PL/2) (15)
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