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Abstract. In a two-player game, two cooperating but non communicating players, Alice and Bob,
receive inputs taken from a probability distribution. Each of them produces an output and they win
the game if they satisfy some predicate on their inputs/outputs. The entangled value w*(G) of a game
G is the maximum probability that Alice and Bob can win the game if they are allowed to share an
entangled state prior to receiving their inputs.

The n-fold parallel repetition G™ of GG consists of n instances of G where the players receive all the
inputs at the same time and produce all the outputs at the same time. They win G" if they win each
instance of G.

In this paper we show that for any game G such that w*(G) = 1 — ¢ < 1, w*(G"™) decreases ex-
ponentially in n. First, for any game G on the uniform distribution, we show that w*(G") = (1 —
52)9(105(\?\@” -l log(e)‘), where |I| and |O] are the sizes of the input and output sets. From this result,
we show that for any entangled game G, w*(G™) < (1 — Ez)Q(Qlog(ﬁHOU -
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as mingy {pzy} # 0 for general games. To prove this parallel repetition, we introduce the concept of

Superposed Information Cost for entangled games which is inspired from the information cost used in
communication complexity.
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1 Introduction

A two-player (nonlocal) game is played between two cooperating parties Alice and Bob which are not allowed
to communicate. This game G is characterized by an input set I, an output set O, a probability distribution
p on I? and a result function V : O? x I? — {0,1}. The game proceeds as follows: Alice receives x € I, Bob
receives y € I where (z,y) is taken according to p. Alice outputs a € O and Bob outputs b € O. They win
the game if V(a,blx,y) = 1. The value of the game w(G) is the maximum probability, over all strategies,
with which Alice and Bob can win the game.

The n-fold parallel repetition G™ of G consists of the following. Alice and Bob get inputs x1,...,z,
and y1, ..., Yn, respectively. Each (x;,y;) is taken independently according to p. They output ay,...,a, and
b1,...,bn, respectively. They win the game if and only if Vi, V' (a;, b;|2;,y;) = 1. In order to win the n-fold
repetition, Alice and Bob can just take the best strategy for G and use it n times. If they do so, they will
win G™ with probability (w(G))™ which shows that w(G™) > (w(G))™.

Parallel repetition of games studies how the quantity w(G™) behaves. For example, if w(G") = (w(G))"
for each n then we say that G admits perfect parallel repetition. However, there are some games for which
this does not hold, for example the CHSH game [7] repeated two times. It was a long-standing open question
to determine whether the value of w(G™) decreases exponentially in n. This was first shown by Raz [24].
Afterwards, a series of works showed improved results for specific types of games [I4123/T]. Parallel repetition
for games has many applications, from direct product theorems in communication complexity [22] to hardness
of approximation results [3IT0/T2].

In the quantum setting, it is natural to consider games where Alice and Bob are allowed to share some
entangled state at the beginning of the game. In this case we talk about entangled strategies. The maximum
probability that Alice and Bob can win a game G, over all the entangled strategies, is the entangled value
w*(@). Some entangled games are witnesses for the phenomenon of quantum non-locality, as they are special
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cases of the so-called Bell inequality violations. (We have a Bell inequality violation whenever w*(G) > w(G).)
The study of entangled games is also greatly related to our understanding of quantum entanglement.

Perfect parallel repetition has been shown for entangled XOR games []]. It was also shown that entangled
unique games [16] admit parallel repetition with exponential decay. Finally, it was shown that any entan-
gled game admits (a variant of) parallel repetition [I7]. However, this last parallel repetition only shows a
polynomial decay of w*(G™). It was unknown for a large class of games whether this decay is exponential or
not. Very recently two more works have been presented: a parallel repetition result with exponential decay
for entangled projection games [9] and an independent work [I5] similar to this one.

1.1 Contribution

The main contribution of this paper is the following theorem.

Theorem 1. For any game G on the uniform distribution with w*(G) <1 — e, we have:
WG = (1 — 82)Q(m—\log(s)\)'

where |I| and |O| are respectively the size of the input and the output sets.

The class of entangled games with a uniform distribution is a large class of entangled games for which
such parallel repetition was unknown. We can extend this result to any entangled game.

Corollary 1. For any game G such that w*(G) < 1 — e, we have that

w*(G™M < (1 - 52)9(62103(71\\0?)_“OZ(E”),
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where I and O are respectively the input and output sets and Q = —— -
zy Py

This corollary can be obtained directly from the previous theorem. It is not as strong as usual parallel
repetition theorems with exponential decay because of this dependency on (). Notice however that ) depends
only on the game G and not on n.

Remark: In a previous version of this paper, we had a different claim which had a flaw in the proof. We
replaced it by the above Corollary which is weaker in the sense that it gives non trivial bounds only for the
case where ming,{pz,} # 0.

1.2 Superposed Information cost

In order to prove the main theorem, we introduce the concept of Superposed Information Cost of a game,
an insightful concept and the cornerstone of our proof.

This concept is derived from the notion of information cost widely used in communication complexity
[612/4118]. In the setting of communication complexity, we consider a function f(x,y) and suppose that Alice
has some input 2 and Bob some input y. They want to determine the outcome of f(z,y) for a certain function
f with the minimal amount of communication. The interactive information cost IC of f describes the least
amount of information that Alice and Bob need to have about each other’s inputs in order to compute
[z, y).

We want to follow a similar approach for entangled games. In entangled games, the quantum state Alice
and Bob share is independent of the inputs x, y. We now give extra resources to Alice and Bob: advice states.
Alice and Bob are given an advice state |¢s,) that can depend on their inputs. This can greatly increase
their winning probability. For example, Alice could have perfect knowledge of Bob’s input y, and vice-versa.

We define (informally) the information cost of a game as follows:



Information Cost for entangled games

Alice and Bob are given advice states |¢,,) to share that can depend on their inputs. What is the
minimal amount of information that these states have to give Alice and Bob about each other’s
input, in order to allow them to win the game with probability 17

This is a natural extension of the information cost to entangled games. However, it is a limited notion
since we cannot relate it to the entangled value of the game. (A simple counterexample can be obtained
from the CHSH game.) Therefore, we extended this notion to the case where we allow the players to be in
a superposition of their inputs.

Superposed Information Cost (SIC) for entangled games

We extend the notion of information cost by allowing the players to have a superposition of their
inputs. We then consider the amount of information that advice states have to give Alice and Bob
about each other’s input, in order to allow them to win with probability 1.

These notions are defined precisely in Section 311

Lower bounding the value of entangled games using the superposed information cost. The reason
we introduce the superposed information cost for entangled games is that we want to have an information
theoretic characterization of the value of entangled games. The next theorem states that the value of any
entangled game on the uniform distribution can be lower bounded by the superposed information cost (this
does not hold for the non-superposed one).

Theorem 2. For any game G with a uniform input distribution, we have SIC(G) > 13_%;((26;)

w*(@) >1-32In(2) - SIC(G).

or equivalently

The Superposed information cost is additive under parallel repetition:
Proposition 1. SIC(G™) =nSIC(G).

Putting these two results together, we have SIC(G"™) > "%%n(é?)) This result shows that STC(G™)
is large when n increases and can be seen as evidence that the game G™ is hard to win and that w*(G™)

decreases fast.

Using SIC to show our parallel repetition theorem. We fix a game G with w*(G) = 1 — ¢ and
w*(G™) = 27 for some t. In order to prove our theorem, we consider a quantity S which is strongly related

to SIC(G™). We show that
Qne) < S <0 <w) . (1)

The lower bound is a natural extension of the above argument about the additivity of SIC. The ingredient
we need to show the upper bound is the following communication task:

— The players use an optimal strategy for G"® and win with probability w*(G™) = 27,

— Alice sends m = O(M) bits to Bob.
— Using this message, Bob’s goal is to determine with high probability whether they won most of the games
or not.

Switching to a communication task and to a related quantity S seems much weaker than showing directly
an upper bound on SIC(G"™), but it will be enough for us. Combining these two results, we conclude that

t= Q(%) or equivalently, for ¢ close to 0, w*(G™) = (1 — £2)?(ation).

log



1.3 Organization of the paper

Section 2] contains preliminaries about entangled games. In Section [3] we define the key concept of the
superposed information cost for a game and show that this quantity is additive when repeating games in
parallel. In Section @ we provide a brief organization of the main proof. In Section [l we show Theorem
and some generalizations. In Section [l we derive the upper bound of () (the lower bound is proven in the
main paper). Finally, in Section [[] we prove our main theorem. Many proofs are deferred to the Appendix.

2 Entangled Games

The value of an entangled game

Definition 1. An entangled game G = (I,0,V,p) is defined by finite input and output sets I and O as well
as an accepting function V : O? x I? — {0,1} and a probability distribution p : I* — [0,1].

A strategy for the game proceeds as follows. Alice and Bob can share any quantum state. Then, Alice
receives an input x € I and Bob receives an input y € I where these inputs are sampled according to p.
They can perform any quantum operation but are not allowed to communicate. Alice outputs a € O and
Bob outputs b € O. They win the game if V(a, bz, y) = 1.

The entangled value of a game G is the maximal probability with which Alice and Bob can win the game.
From standard purification techniques, we have that w.l.o.g., Alice and Bob share a pure state |¢) and their
optimal strategy consists of projective measurements A* = {A*},co and BY = { B} }sco on |¢). This means
that after receiving their inputs, they share a state of the form p = >°  _; payl2)(z] @ |9){(¢] @ [y)(y], for
some state |¢).

Definition 2. The entangled value of a game G is

(G = sup Y payVia,blz,y) (6] AL © BYlg).

l6), A%, BY "0 b

Definition 3. A game G = (I,0,V,p) is on the uniform distribution if I = [k] for some k and Vx,y €

(K], Doy = k—12 We write p = Unif. when this is the case.

Value of a game with advice states Consider a game G = (I,0,V,p). We are interested in the value of
the game when the two players share an advice state |¢,,) additionally to their inputs ,y. This means that
Alice and Bob share a state of the form p = 3> Puy|2) (2| ® |Pay) (bzy| @ |y) (Y.

Definition 4. The entangled value of G, given that Alice and Bob share the above state p is

w*(Glp) = nax meyV(a, blz, y)(bayl A @ By |¢uy)-
By

Repetition of entangled games In the n-fold parallel repetition of a game G, each player gets n in-
puts from I and must produce n outputs from O. Each instance of the game will be evaluated as usual by
the function V. The players win the parallel repetition game if they win all the instances. More formally,
for a game G = (I,0,V,p) we define G™ = (I',0',V',q), where I' = I"",0" = O*",qzy = Hic[nPe, y;
and V'(a,blz,y) = eV (ai,bilzi,y;). While playing G", we say that Alice and Bob win game i if
V(ai, b1|{EZ, yz) =1.

Majority game For a game G = (I,0,V,p) and a real number « € [0,1] we define G = (I’,0’, V', p')
as follows: I' = I*", O" = O*", pl, = Iicinps, .y, as in G". We define V'(a,blz,y) = 1 & #{i :
Vag, bilxi, y;) =1} > an.



3 Advice states, superposed players and information cost

The notion of information cost has been very useful for communication complexity. Here we derive a similar
notion for entangled games.

Consider a game with advice state as defined in Section Bl The advice state can potentially greatly
help the players. For example, Alice could know y and Bob could know x. We ask ourselves the following
question:

For a game G = (I = [k],0,V,p) such that w*(G) = 1 —€ < 1 and a state p = 3, () Poy|2)(x]x ®
|O2y) (Pay| 4B @ |y) (yly, what is the minimum dependency that the states {|Puzy) } oy must have on z,y to have
W (Glp) =17

There are different ways of characterizing this dependency on x,y. A first possibility would be to consider
the information that Alice has about y and Bob has about x while sharing p. However, there are cases
where Alice and Bob can win a game with probability 1 using an advice state while still not learning
anything about each other’s input. For example, take the CHSH game [7] and counsider the states |¢op) =
|bo1) = |610) = J5(100) + [11)).45 and |¢11) = 5(|01) + [10)). If the two players share the state p =
2w yeiony VAN (@|x ®@|day)(Pay|as®]y)(yly, Alice has no information about y and Bob has no information
about x. On the other hand, if both players measure their registers A and B in the computational basis
and output the results, they will win the CHSH game with probability 1 hence w*(CHSH|p) = 1 while
w*(CHSH) = cos?(n/8).

We must consider a slightly different scenario so that Alice or Bob can learn something about the other
player’s input. When considering the amount of information that Alice has about Bob’s input y, we allow
Alice to have a coherent superposition of her inputs. Similarly, we will be interested in the amount of
information Bob has about x when he has a coherent superposition of his inputs.

This scenario is motivated as follows: if Alice and Bob have a common procedure to create |¢g,) from
their respective inputs x and y, Alice can create a superposition of her inputs and they can perform the
same procedure. This scenario has for example been in order to show optimal bounds for quantum bit
commitment [5].

This approach leads to the definition of the superposed information cost of a game. In the next section,
we give formal definitions of this notion.

3.1 The superposed information cost

Consider a family of states {|¢zy) }+y and a probability distribution {pay }uy. Let pz. =37 pay and p.y = 37, pay.
Let |LP) = \/11? >y /Pyl uy)ly) and L) = \/% > \/Pay|T)|Pay). Consider the two superposed states:

ot = Pyl L)Ly xas © [y)(yly

yElk]
o =3 pela)(elx @ |LD)(LY | any:
z€[k]
Here o4 (resp. o) corresponds to p where Alice’s input (resp. Bob’s input) is put in a coherent superpo-

sition. We first define the superposed information cost of a family of states with a probability distribution.

Definition 5. The superposed information cost SIC({|@uy)s Dwytuy) s defined as SIC({|Gwy): Daytoy) =
I(Y : XA)ja +I(X : BY) 5.

Remark: This definition has good properties when the input distribution is a product distribution or
close to a product distribution. One may want to consider a more general definition when considering any
distribution.

We also define the superposed information cost of a shared state p of the form p = nye[k] Daylz) (T ®



Definition 6. SIC(p) = inf{SIC({|Puy), Puy}zy)} where the infimum is taken over all families {|uy) s Duy toy
s.t.p= Zzye[k] Paylz) (@] @ [ay) (Pay| @ |y)(yl-
Remark: Notice that a state p doesn’t uniquely define states {|¢uy), Pay }2y because it doesn’t capture the

phases in the states |¢yy).
We now define the superposed information cost of an entangled game.

Definition 7. For any entangled game G = (I,0,V,p), we define SIC(G) = inf{SIC({|pzy) }zy, {Pey}ay)}
where the infimum is taken over all ({|¢zy) }zy: {Pay}zy) such that the associated state p =3, puylr)(z| @
|Gay) (Day| @ Y)(y| satisfies w*(Glp) = 1.

The superposed information cost behaves nicely under parallel repetition. In Appendix [Bl we show

Proposition 2. For any game G, we have SIC(G™) = n - SIC(G).

4 Organisation of the proof of Theorem [II

In Section Bl we show how to use the Superposed Information Cost of a game G to bound its entangled value
w*(@). We first show:

1-w*(G)

Theorem 2. For any game G on the uniform distribution, SIC(G) > IO

We also extend this theorem as follows:
Theorem 3. There exists a small constant ¢y such that for any game G = (I = [k],0,V, Unif.) satisfying
w*(@) = 1 —¢, for any game G' = (I = [k],0,V,p) satisfying %Zzy Ipoy — 72| < coe and any state
P =20y Payl) (@] @ |day) (Puy| @ [y)(y| such that w*(G'|p) > 1 — 5, we have that SIC(p) = §2(e).

If w*(G) =1 — &, Theorem [A claims that SIC(G) > ﬁn@) which gives by additivity of the superposed
information cost that SIC(G™) > Ttz [deally, we would like to upper bound SIC(G™) with a function

of w*(G™). Unfortunately, we are not able to do this directly. In Section [6] we show the following weaker
statement:

Theorem 4. Consider a game G = (I,0,V, Unif.) such that w*(G) = 1 — ¢ and w*(G™) = 27", Let
G?75/32 = (I",0™, V', Unif.) as defined in Section[d There exists a game G' = (I",0™, V' p) and a state
§ =20y Paylr)(@| ® |Pay)(Pay| ® |y)(y| satisfying the following properties:
1. HXY)e > 2nlog(k) —t—1
2. wH(@[€) > 1 —¢/32
32log(|1]]0])
8. SIC(¢) < =2 =0((t 4 1) + |log(e)| +5) + 2t + 2.

The first condition states that p is in some sense close to the uniform distribution hence G’ is close to
GT_. /32" This theorem is weaker than an upper bound on SIC(G’) which itself is weaker than an upper

bound on SIC(G™), but this kind of upper bound will be enough.
In Appendix [E] we prove the following matching lower bound.

Theorem 5. Consider a game G = (I = [k],O,V, Unif.) such that w*(G) =1 — ¢ and w*(G™) = 27" with
t = o(ne). Let also GY__ 5, = (I" = [k"], 0", V', Unif.) as defined in Section[2 For any game G" = (I' =

k"), 0", V', p) and any state p =3, c(pn) Pay|2) (@2 @ |2y) byl as @ [y)(yly, satisfying

1. H(XY), > 2nlog(k) —t — 1
2. w*(G'|p) >1—¢/32

we have SIC(p) > 2(ne).
In Section [l we show how to use the two above theorems to conclude:

Theorem 1. For any game G = (I1,0,V, Unif.) with w*(G) < 1 — &, we have

w*(Gn) — (1 _ 52)9(10g(u“o‘) 7‘ IOg(s)‘)




5 Overview of Theorem

Theorem 2. For any game G on the uniform distribution, SIC(G) > 13—%;((20))

We sketch the proof as follows. We fix a game G = (I = [k], O, V, Unif.) and astate p =3 | o) (z|x ®
|Gy} (Daylas @ y)(yly such that w*(G|p) = 1. As in Section B} we define [L3'),|L5),04, 0P, Let p;t =
Trg|L:)(Li| and pf = Tra|LE)(LE|. Intuitively, pi' (resp. pZ) corresponds to the input-superposed state
that Alice (resp. Bob) has, conditioned on Bob getting y (resp. Alice getting z). Let F' denote the fidelity of
quantum states. We prove the following three inequalities.

1. First we show that STC(p) > 41n(2)( - = PO F%pﬁ,pﬁ) +1- % Sow F2(08,0B))
2. Then we show that

1
1__ZF2 py’py +1_k2 ZF2 Pz Py) g(l_r?%x Z ﬁ|<Q|Uw®Vy|¢wy>|2)

z,x’ z,y€[k]

—_

for some (sets of) unitaries {Uy}u, {Vy}y-

3. Finally, we show that (1 —maxqy > %|<Q|U @ Vylpay)?) > 1 — w*(G).

z,y€E[k] k

Putting the three inequalities together, we get

SIC()_4IH 1__ZF2py’py 1__ZF2px7pz
vy
! 2
= 321n( 2) X Z S Q2|Uz @ Vy|duy)|®)  for some {Us}.{V,}y
1—w*(@)
32In(2)

1-w* (G)
32M(2)

Since this holds for any p satisfying w*(G|p) = 1, we have SIC(G) >

6 Overview of Theorem [4

In this section we sketch the proof of Theorem [l The construction of the state £ will directly be inspired by
a communication task that we now present.

The communication task Fix a game G = (I, O, V, Unif.) satisfying w*(G) = 1—e. Let G* = (I", 0", V,,, Unif.)
such that w*(G™) = 27" for some ¢t. We now consider the following task H (p,m).

Task H(p, m)

— Alice and Bob are allowed to share any quantum state |¢).

— Alice and Bob get inputs * = x1,...,z, and y = y1,...,Yn, with z,y € I", following the
uniform distribution.

— Alice is allowed to send m bits to Bob

— Then Alice outputs some value a € O™ and Bob outputs some value b € O™ or ’Abort’.

For each index 7, we say that Alice and Bob win game i if Bob does not abort and V (a;, b;|x;, y;) =
1. We require the following

1. Pr[Bob does not abort] > p
Pr[Alice and Bob win > (1 — ¢/32)n games | Bob does not abort] > (1 — ¢/32).




Showing how to perform this task with a small amount of communication is a first step towards the
construction of £. We consider the following protocol P that efficiently performs this task.

Protocol P for the task H(p,m)

1. Let v < n be an integer, to be determined at the end of this section. Alice and Bob have shared
randomness that correspond to v random (not necessarily different) indices i1, ...,%, € [n] as
well as a state |¢) that allows them to win G™ with probability at least % =2~ (t+1),

2. Alice and Bob receive uniform inputs z,y. They perform a strategy that wins all n games
with probability 2~ (**1) and have some outputs a = a1, ...,a, and b= by, ..., by,.

3. For each index i € {i1,...,14,}, Alice sends z; and a; to Bob.

4. For each of these indices i, Bob looks at x;,¥;, a;,b; and checks whether they win on all of
these v games, i.e. , he checks that for all these indices, V(a;, b;|x;,y;) = 1.

5. If they do win on all of these games, Bob outputs b. Otherwise, Bob outputs "Abort’.

Proposition 3. The above protocol performs the task H(p,m) with p > 2=+ and m = w«t +
1) + |log(e)| + 5).

Proof. We have:
Pr[Bob does not abort] = Pr[Alice and Bob win G; Vi € {i1,...,i,}]
> Pr[Alice and Bob win G; Vi € [n]] = 27+,
hence p > 2~ For a uniformly random index i, we have:
Pr[Alice and Bob win G;| Alice and Bob win < (1 —¢/32)n games | < 1 —¢/32.
Since the indices in {i1,...,4,} are independent random indices in [n], we have

Pr[Bob does not abort | Alice and Bob win < (1 — &/32)n games]
= Pr[Alice and Bob win G; Vi € {i1,...,i,}| Alice and Bob win < (1 — £/32)n games]
< (1-¢/32)".

Next, we have:

Pr[A and B win < (1 —¢/32)n games | B does not abort] - Pr[B does not abort]

= Pr[B does not abort | A and B win < (1 —¢/32)n games| - Pr[A and B win < (1 — ¢/32)n games]
< Pr[B does not abort | A and B win < (1 —&/32)n games]

< (1-¢/32)".

This gives us:

1—¢/32)"
Pr[A and B win < (1 —¢/32)n games | B does not abort] < Pr[B(doesgr/lot)abort]
(1—¢/32)"
- 2—(t+1)

We can take v = 22((t + 1) + |log(e)| 4 5), such that we have
Pr[A and B win < (1 —¢/32)n games | B does not abort] < £/32.



Notice that m = v -log(|I]|O]). Therefore, if Alice sends m = w((t + 1) + |log(e)| + 5) bits to Bob,
Pr[A and B win > (1 —¢/32)n games | B does not abort] > 1 —¢/32.

Using the communication task to prove Theorem [4]

The idea is the following: Alice and Bob perform protocol P for the task H(p, m) performing everything in
superposition, including the messages and their shared randomness. The advice state we consider is the state
pna Alice and Bob share conditionned on Bob not aborting. This state pya can be written as

PNA = Z(hu|x><$|?€ ® |Guy)(Bay| @ |y)(yly

zy
To prove the theorem, we must show the following properties for pn 4.

1. H(XY),y, > 2nlog(k) —t — 1.
2. w*(G'lpNa) = 1—¢/32 where G} _ g = (I',0', V', Unif.) and G'=(I',0,V",q).
3. SIC(pna) < 218UHIO (¢ 4 1) + |log(e)| + 5) + 2t + 2.

The ideas behind the proofs of these three properties are as follows:

1. In task H(p,m), Pr[Bob does not abort] > p = 27, when conditionning on Bob winning, we remove at
most t bits of entropy from the (uniform) inputs in X,Y , the 1 in the inequality is there for technical
reasons.

2. In the task H(p,m), Pr[Alice and Bob win > (1 — £/32)n games | Bob does not abort] > (1 — ¢/32).
This directly implies the second property

3. In protocol P, before Alice sends her message, Bob has no information about z. Alice sends a message
of size m, which gives m bits of information about Alice’s input. Conditionning on Bob winning gives
him an extra 2¢ bits of information. Since m = w((t + 1) + |log(e)] + 5) from the previous
Proposition, we can conclude.

7 Final Theorem
Theorem 1. For any game G = (I1,0,V, Unif.) with w*(G) < 1 — e, we have:
W (G") = (1 — E2)Q(W*\log(s)\).
Proof. Let GY__ 5, = (I™ = [k"],0™,V,, Unif.) as defined in Section @l Using Theorem 4, we know there

exists a state £ = 3 Pay|2) (2| @ |duy) (Duy| ® |y)(y[ and a game G" = (I", 0", V,, p) satisfying

1. HXY)e > 2nlog(k) —t — 1
2. w*(G'6) > 1—¢/32
3. SI1C(¢) < 218U (1 4 1) + | log(e)| + 5),

where 27% = w*(G™). We now distinguish two cases

— If t = 2(en) then w*(G™) = (1 — £)?(™ and the theorem holds directly.
— If t = o(en), we need the following argument. The state £ satisfies all the properties of Theorem Bl which
implies that SIC(&) = 2(ne). We combine the two inequalities and obtain

_ 3210g(17]/0)
9

R(ne) < SIC(E) ((t+1) +|log(e)] +5).



It follows that ¢t = 2 (% - |10g(£)|), which allows us to conclude

w*(Gn) — 27t < (1 _ EQ)O(W*“Og(E)‘)'

Finally, we extend the result to games with complete support (i.e. , games on distributions p such that

A(z,y) for which pg,, = 0). This bound is weaker than the main result, because it depends also on p.

Corollary 1. Let G = (1,0,V,p) be a game with complete support and w*(G) = (1 —¢). Then,

where Q) =

W (G™) < (1 - 52)9<W*“°%E”>

3

2 2
k* maxgy Doy

Milgy Py

The proof of the above Corollary is in Appendix [l
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A  Preliminaries

A.1 Useful facts about the fidelity and trace distance of two quantum states.

We start by stating a few properties of the trace distance A and fidelity F' between two quantum states.
These two notions characterize how close two quantum states are.

Trace distance between two quantum states

Definition 8. For any two quantum states p,o, the trace distance A between them is given by A(p,o) =
Alo,p) =3 p=0 [

Here the used trace norm may be expressed as || X ||,, = VXX = maxy [tr(XU)|, where the maximiza-
tion is taken over all unitaries of the appropriate size.

Proposition 4. For any two states p,o, and a POVM E = {Fy,...,E,} with p; = tr(pE;) and q; =
tr(oE;), we have Alp,0) > 33, |pi — qi|. There exists a POVM (even a projective measurement) for which
this inequality is an equality.

Proposition 5. [13] Suppose Alice has a uniformly random bit ¢ € {0,1}, unknown to Bob. She sends a
quantum state p. to Bob. We have

1 A
Pr[Bob guesses ¢] < 3 + M.

There is a strategy for Bob that achieves the value % + M.

Fidelity of quantum states
Definition 9. For any two states p, o, their fidelity F is given by F(p,0) = F(o,p) = tr(\/p2op?)

Proposition 6. For any two states p,o, and a POVM E = {Fy,...,E,} with p; = tr(pE;) and q; =
tr(oE;), we have F(p,0) <>, \/Pii- There exists a POVM for which this inequality is an equality.

Definition 10. We say that a pure state |3) in AQB is a purification of some state p in B if Tra(|1){(¢]) =
p.

Proposition 7 (Uhlmann’s theorem). For any two quantum states p,o, there exists a purification |¢)
of p and a purification |¢) of o such that |{¢|Y)| = F(p, o).

Proposition 8. For any two quantum states p,o and a completely positive trace preserving operation @, we

have F(p,0) < F(Q(p), Q(0)).
Proposition 9 ([25121]). For any two quantum states p, o

max (F*(p,€) + F*(€,0)) = 1+ F(p,0).

Proposition 10 ([I1]). For any quantum states p,o, we have

1—F(p,0) SA(p,U) < Vl—F2(p,U).

As direct corollaries of Proposition [ we have

Proposition 11. Let |A),|B),|C) be three quantum states. We have

[(AIC)] = [(AIB)I* + [(BIC)I” — 1.
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and

Proposition 12. For any 3 quantum states p1, p2, ps, we have

(1- F(P1,p3)),

N | =

(1= F(p1,p2)) + (1 = F(p2,p3)) >

or equivalently F(p1, p3) =1 —2(1 = F(p1, p2) + 1 = F(p2, p3)).

Proof. Using Proposition[d we have
1+ F(p1,p3) = mgax (Fz(Pl,ﬁ) =+ F2(§7P3))
> F2(p1, p2) + F2(p2, p3),
which gives
1—F(p1,p3) <1—F?(p1,p2) +1— F*(p2,p3) < 2(1 = F(p1, p2)) + 2(1 = F(p2, p3))-

Hence 1 — F(p1,p2) + 1 — F(pa2, p3) = (1 — F(p1, p3)). u

Proposition 13. For two quantum states p = Y pzlx)(z| @ py and p' = > plle)(z| ® pl,, we have

Flp,p") = 32, /PP F (P, par).-
Proof. We use the following definition of the fidelity: F'(p,p’) = ||\/pv/p’||1. From there, we immediately

have that
Fp,p) =Y /Paba |V Pollt =D /Dabr F(pas par)-

A.2 Information Theory

For a quantum state p, the entropy of p is H(p) = —tr(plog(p)). For a quantum state p € X @ Y, H(X),
is the entropy of the quantum register in the space X when the total underlying state is p. In other words,
H(X), — H(Try(p)).

H(X|Y),=H(XY),— H(Y), is the conditional entropy of X given Y on p and I(X :Y), = H(X), +
H(Y),— H(XY), is the mutual information between X and Y on p.

We define H.pin(p) = —10g(Anazx) where Apax is the maximum eigenvalue of p. For p in X ® ), we define

Hyin(X|Y), = mea}:;(sup{)\ p<2 My @0}

We have Hpin(X|Y), < H(X|Y), [20]. In the case where Alice and Bob share p = Y p,|z)(z|x @ p(z)y,
where Alice has register X and Bob has register ), we have H,,;n(X|Y), = —log(Pr[Bob can guess x]).
Claim (Subadditivity of the conditional entropy).

H(AB|C) < H(A|C)+ H(B|C)

Claim ([19)). )

In(2)

I(A:B), > (1—F(p,pa®pp))

where pa = Trg(p) and pg = Tr4(p)

Claim (from [26]]). For any distribution p on a universe U, if H(p) > log(|U|) —¢e then A(p, Unif.) < e, where
Unif. is the uniform distribution.
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B Additivity of the superposed information cost

Our goal here is to prove the additivity of the superposed information cost, i.e. that SIC(G™) = nSIC(G).
Before the proof, we introduce some notation and prove a lemma.

Let G = (1,0,V,p) and let G™ = (I",0",V,,, q). For a string x = x1,...,x, € I", let x_; be the string
in I"~" where we remove z; from x. Let p = Y7, < 1n Gyl ) (2| @ |duy) (Day| @ |y) (y] satisfying w*(G"|p) = 1.
As in Section BT} we define [L2}), |LE), 0%, 0P for p. We first prove the following Lemma:

Lemma 1. For all i € [n] we have that
I(Y;: XA)ya + 1(X; : YB),2 > SIC(G).

Proof. By definition of G", we have quy = IT;p., ;. We define g, = IIj2ips, ;- For each i, we can rewrite
p as:

p= Y daylwi)(@ilx, @ e i) (@ ilx_, @ |bay)(buylan @ [y—i)(y-ily_, @ [v:) Wily..

x,yclm™

We define

! — -
/Y eIl =x,y;=y;

Let pi = 2o, yer Proysl i) (@il @ |25, W ZL, .| @ |yi)(yil- pi corresponds to p where the registers in
X_;,Y_; are put in superposition. Hence, Alice and Bob can go from p; to p by measuring the registers X_;
and )_; in the computational basis. Using p, Alice and Bob can win the i*" instance of G with probability
1. This means that they can also win this 7! instance of G' when sharing p; and w*(G|p;) = 1.

We define

L2 (1)) VPaiyi Zay i) |Yi)
\/pz yzel Y v
A(. Z V Py [T | 11,y1>

Z
Y
‘ \/puzxej

We now also define the two new superposed states of p;

= peplzi) @il @ [LE (WD ()| a8y
x, €1

= Z p%ﬂ’i (Z)><Li (i)h’AB)}ﬂ ® |yi><yi|yi'

yi €l
w*(Glpi) = 1 implies SIC(p;) > SIC(G) hence
I(Y; : XA),a + I(X; : BY) 5 > SIC(G).

af‘ corresponds to o where the input registers J_; are put in a coherent superposition. From there, we

have Try_, (o) = Try_,(¢4) and I(Y; : XA),a = I(Y; : XA),a. Similarly, we have I(X; : BY),» = I(X; :
BY'),z, which gives

I(Y;: XA)pa + I(X; : YB),5 > SIC(G).

We can now prove our proposition:
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Proposition 2. SIC(G") =nSIC(G).

Proof. We have:

SIC(p) =I1(Y : XA)ya + (X : BY )5

=H(Y)ya — HY|XA)ga + H(X),5 — H(X|BY )5

=Y H(Yi)ga —HY|XA)ga + > H(X;),5 — H(X|BY),s
i€[n) i€[n]

>N HY)gs — > HYi|XA)ga + Y H(Xi)or — Y H(X;|BY)ys
i€[n] i€[n] i€n] i€[n]

=Y I(Yi: XA),a +I(X;: BY),s
i€[n]

> nSIC(G),

where the first inequality comes from the subadditivity of the quantum conditional entropy and the last
inequality comes from Lemmal[ll Since this holds for any state p satisfying w*(G™|p) = 1, we conclude that
SIC(G™) > nSIC(G).

We can also notice that SIC(G™) < nSIC(G). Indeed, consider a state p such that w*(Glp) = 1. We
have w*(G"|p®™) = 1. Moreover, SIC(p®") = nSIC(p). From there, we have SIC(G") < nSIC(G). We
conclude that SIC(G™) = nSIC(G). |

C Proof of Theorems 2 and

The organisation and an overview of the proof can be found in Section

C.1 First inequality

We will show this inequality for any input distribution. Let p = 3= ) Pay|2)(%]x @ |day) Pyl a8 @ [y) (y]y-
As in Section Bl we define |L;;‘>, |LB), o4 B Let p‘; = Tr3|L?><L§| and pB = Tr4|LB)(LP|. Intuitively,
p? (resp. p2) corresponds to the input-superposed state that Alice (resp. Bob) has, conditioned on Bob
getting y (resp. Alice getting x). We prove the following.

Proposition 14. SIC(p) > 415(2) (1=, PPy F2 (i, pih) + 1 — > ar Pa-Dar F2 (07, p2)).
Proof. Let ¢4 = Trp(c?) and ¢8 = Tru(c®). This means that ¢4 = Zyp.yp;;‘ ® |y){y| and &8 =
> Pa|x) (2] ® pB. We have SIC(p) = I(XA:Y)ea + I(X : BY )¢5 Using Claim [A2] we get

2
In(2)

SIC(p) > (1-FE 440 &) +1-F(EP, 8 0 &hy)). (2)
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where &4 4 = Zyp.yp’y“ and §§ = >, Pyly)(y|. Next, using Proposition [3} we have F(EA 44 ® §§) =
2y pyF(p;, €4 4)- From there, we have:

—FEN A& =1= ) pyFp) &30

y€E[k]
:2 1_Zpy py?&XA Zpy/prang))
yE[k] y'€[k]
1
=5 D pupy[L—Flp) €20 +1 - Flpy,63.0)]
v,y €[k]
1
= 4 Z PyPoy (1 — F(p‘j;‘7 p;“,)) using Proposition [I2]
v,y €[k]
1
> 3 Z Payp-y (1 = F2(P;=P;’))
v,y €[k]

Similarly, we can show that 1— F(£%, (8 @&8,,) > Zm ek Pa-Par (1= F2(pB, pB)). Combining these with
Eq. Bl we conclude that

SIC(p) =

(1- Zp Py 207 p0) + 1= pepw F2 (02, p5)).

vy’ z,z’

C.2 Second inequality

Let p = 2 2, yep [0 (#x @ [b2y)(bzylas @ [y)(yly. As in Section B} we define |Ly), |L7),0%, o7, Let
= Trp|Li)(L;| and pB = Tra|LE)(LE|. We define:

1-> k2F2 pyrpy) = 1= B [F(0, pp)]

Y,y’
1
F=1-3 &P pd) =1- E [F*(sf, p2)]

The expectations will always be taken over the uniform distribution. We first show the following lemma.

Lemma 2. There exist i,j € [k] as well as unitaries {Uy}, and {V,}, acting respectively on A and B such
that if we define |2qy) = (Uy @ Vyy)|ay), we have:

E[Kf?mylﬁzﬁlz] 2 yl%,[FQ(p;‘, ppll=1—¢t

E (20l 2)%] > E [F2(p2, o)) =1 &P,

y
Proof. Let j € [k] that maximizes B, [F?(pf, pgr)]. We have
E[F (o', o)) 2 B [F2(py),py)] 2 1= ™. (3)

For each y, consider the unitary U, acting on B such that [(L:|(Ixa® U, )|LA>| = F(p$, pi}). Such a unitary
exists by Uhlmann’s theorem. We also choose U; = Ip. Since |Lf') = f Yoo lx)|bej) and (Ixa ® Uy) acts

only on space B, we can write (Ix4 ® Uy)|Lg) = \/— > [ |€ey) for some [€;,). Therefore, we have:
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Since we took U; = Ig, we have |£;;) = |¢;) for all z. We can hence rewrite for all y
F(pf,p?) < Ig[<§wy|§:w>] (4)

We now analyze Bob’s side of the state similarly. Let |MB> =2, \} €2 Y)- We have |[MB) = (>, la®

ly
Uy @ |y)(yDILY). Let vP = Tra|MP)(MP|. We have v = (3, UU, @ |y)(yl) - p. Hence for all z,2', we
have

F(vy,vy) = F(pg,py)- ()
Let i € [k] such that E,/[F?(v72,v5)] is maximal. We have

E[F2(v2,vB)] > 1 - <5, 6)
For each z, consider the unitary V, acting on A such that [(MZ|(V, ® Ipy)|MP)| = F(v?,vB). Such a

unitary exists by Uhlmann’s theorem. We take V; = I 4. Since |MP) = f >y ey ly) and (Vi ® Ipy) acts
only on space A, we can write (V, ® Igy)|MPEP) = \/— >y [£22y)|y) for some [£2;,). Therefore, we have:

1

F(uf,v)) = (MF|(Ve @ Iny)|M,7)| = EZ (€iy [ QLay)| = [ B[y | 2m)]| < E[[(€i]£20)I]

Using F(v2,vP) = 1, we have |;,) = |£2;,) for all y. Using Eq. B we can hence rewrite for all z:
F(p?,py) = F(vf,v)) < E[[($2iy[$2ay)l] (7)
Note finally that for all z, (V,®Ig)(|£4y)) = |£22y) hence we have for all  and for all y (2,y] 24y ) = (EwylEay)-
Using Eq. [ we have
F(p ) = Bl 6y €15)]) = {20,125 0
Equations [ and [8 give
F2 (0 pf) = Bl (e 2] < E[[{020y1225) 2
F*(p7,py) = IE}H<Qamuz|9iy>|]2 < B[[(2ey| 2i)I°]
Combining this with equations [3l and [l we conclude
1-ef < IE[FQ(PﬁPf)] < £[|<sz|9xj>|2]
L—e? <E[F*(p7, p7)] < £[|<91y|9iy>|2]-
|

We can now prove the main proposition of this section.

Proposition 15. For any state p = 75 35, i [2)(x] @ [2y) (Guy| @ [y) (yl, there exist unitaries {U,}, and
{Vy}y such that

1 1

A

etz g omg 3 Bl @ Vi)
Z,y

where A = 1= 53, & F2(of o) and &8 = 1= 5, . & F2 (¥, %),
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Proof. Fix p= 153, e 12)(2] @ |¢uy) (Pay| @ y)(yl. Using Lemma B let {U,}., {V,}y, i, such that

E ([{20y]2)*) 2 1 — €

xy
E)[ngylgly”z] >1- EBa

with [(2;y) = Us ® Vy|¢gy). Using Proposition [IT] we have

E (2|2 2 E [{QuylQus)* + {20512y )*] = 1
r,Y,Yy z,Y,Yy
>1—et 41— —1=1-24
It follows that

B 2y 2)P)2 B ({20 Q)P 2 (1= 2647 21— 42,

Similarly, we get Eu u y[|(22y]2274)|?] > 1 — 4eB. Using Proposition [Tl again, we have
E 220> B[ Qe 2urg)l + [(Qary | 2]~ 1
x,x’,y,y Z,x°,Y,Y
>1—4e +1-4eP —1=1—4(e? +£P).

This gives us

E [|<~wa|91’y’>|2] > E /[|<~wa|gw’y’>]2 >(1- 44 — 45B)2 >1- 8 — 8.

z,x’y,y’ x,x' Y,y

Using

E  [{Q0y|20y)°] < max E [[{2ey]Q0ry)[*] < max E [[(2442)]%],

z,y,@ Yy’ =’y wy [2) z,y

we have

max E [[(212:))] > E [[(Quy[20ry)]*] > 1 -84 — 87,

[2) =y z,x’ Y,y

hence

A 2P 2 21— max(E (21920)7]) = (1 - max(E (21U @ Vy[6,) 1)

C.3 Last inequality

Proposition 16. Consider a game G = (I,0,V,p) and a state

p= Z PaylT) (2] @ |Pay) (Pzy| @ |y) (Yl

z,yel
such that w*(G|p) = 1. We have that max|q) Em,yelpzy|<9|¢zy>|2 < w*(G).

Proof. Consider strategies {AZ},craco and {B} }yer,pco such that

Z PayV (@, 07, y)(¢uy|Ag © By |$ay) = 1.

T,y,a,b

18



Let |£2p) that maximizes Zz,yelpwy|<90|¢wy>|2- For any z,y, since
Yoap V(@ bz, y)(¢ay|AZ @ B |¢2y) = 1, we have:

> Via,blz,y) (2] A7 @ BY|20) = [(Q0]éay) .
a,b

From there, we have:

W (G) = > payV(a,blz, y) (20| AL © BY|2)

zyab

> szy|<90|¢zy>|2 = Hllr%xzpzy|<9|¢zy>|2
zy zy

This proposition has a useful corollary:

Corollary 2. Consider a game G = (I1,0,V,p) and a state

p= Z Pay|T)(T]x @ |Gay) (Paylas @ [y)(yly
x,yel

such that w*(G|p) = 1. We have

max T QUz(X)V T 2SW*G7
‘m’{UW}’{Vy}I%]p u|< |( y)|¢ y>| ( )

for unitaries {Uy}, and {Vy}, acting respectively on A and B.

Proof. Let {Us}+,{Vy}, that maximize max| gy Y-, <7 Pay|[(2](Us @ V) [@ay)|?. Let [thy) = U @V, [dsy). Let
0=y PaylT) (] @ [Py ) (Yzy| @ [y)(y]. Since Alice and Bob can go from 7 to p by applying respectively Ul
and V,J, we conclude that w*(G|n) = w*(G|p) = 1. Using Proposition[I we have max| ) > e yer Puyl{2|(Us®

V) ay)|? = maxioy 3, s Pyl {21ay) 2 < 0 (G). u

We now prove a similar statement in the case w*(G|p) < 1.

Proposition 17. Consider a game G = (I,0,V,p) and a state

p= D Payla)(e © |6uy) (duyl © ly)(yl.

z,yel
If w*(Glp) > 1 =~ and max) g Zz,yelpwy|<9|¢wy>|2 >1—+/, then
w'(G) = 1=2(y+9").

Proof. Consider strategies {A? }zer,aco and {B} }yerpeo such that

Z PayV (a, 0]z, y){(Pzy| A @ Bg|¢zy> =1-n.

z,y,a,b

Let M* =3, ,V(a.bla,y) A7 @ BY and let |Cry) = papsigetyy- We have tr(M*|duy) (day]) = (Cry|r)

Let guy = [{(Cuy|dzy)|?. This gives us immediately

mengcy =1- Y-
x,y
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Let [£2) such that Zm,yejpwy|<9|¢wy>|2 > 11—+, Also, let ryyy = [(2]¢2y)|? and sz = [(£2|Cyy)|>. We
have that

pry'rmy >1- "Y/v
zy

as well as

WH(G) 2 Y paytr(M™N2)(2]) 2 Y pay (RACay) P = PaySay-
Ty Ty Ty

Using Proposition [T we have that for all z,y Szy > (quy + rzy — 1) Let myy = 1 — guy + 1 — 14, We have
by defintion that >_ ., peymay <+ 7. Moreover, we have:

Zpacysxy > Zpacy(sz + Ty — 1)2
Ty Ty
= mey(l — Mgy)”
xry

zy

We conclude that w*(G) > >°,, PaySey = 1 —2(y +7). |
We derive two corollaries from this proposition.
Corollary 3. Consider a game G = (I1,0,V,p) and a state
p=D Paylt) (] ® |Gy} buylas @ [1)(yly-
x,yel
If w*(Glp) > 1 —~ and
max Pz 2 Um®v ¢LE 221_’7/7
S (I Y, )

z,yel
for unitaries {Ug}, and {Vy}, acting respectively on A and B, then
w'(G) = 1=2(y+7").

Proof. Let {U;},{V,} such that max gy >, Payl(2|(Us ® Vlbay)|? =1 =9 Let |tay) = Uz @ V| duy)-
Let =), Pay|®) (2] @ [¢2y) (Yzy| @ [y) (y]- Since Alice and Bob can go from 7 to p by applying respectively
Ul and Vi, we conclude that w*(G|n) = w*(G|p) > 1 — ~. Using Proposition [T} we conclude that w*(G) >
1—2(v+7). |

Taking a counterpostitive of the above Corollary we get the following

Corollary 4. Consider a game G = (I1,0,V,p) and a state

P = Z Pay| ) (2|2 @ [Pay)(daylas @ |y)(yly-
z,yel

If w*(Glp) > 1 —~ and w*(G) <1 —¢, then

max | (21U @ V) )2 < 1= (£/2 — ),
|2, (U }.{V, } Z Py (22 )|y (/2 —7)

x,yel

for unitaries {Uy}, and {Vy}, acting respectively on A and B.
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C.4 Putting it together

We can now show our theorems

Theorem 2. For any game G with a uniform input distribution, we have SIC(G) > 137%;((26;)

Proof. Consider a game G = (I = [k],0,V,Unif.) and p = % Dy 12N (E] ® [Pay) (Puy| ® [y)(y| such that
w*(G|p) = 1. Using Proposition [[4] and Proposition [I5] take {U,}, and {V, }, such that

1
SIC(p) > INe l—maxz (2|(Uz @ V)| oy} ).

Using Corollary 2l we have

max Z ® V )¢zy>|2 < w (G)

mye[k

From there, we have SIC(p) > 32°fn(2) Since this holds for any p satisfying w*(G|p) = 1, we can conclude

that SIC(G) > 13_2°fn<(26§)' -

We now proceed to prove a similar result for the case where w*(G|p) < 1.

Proposition 18. For any game G with a uniform input distribution, and any state p such that w*(G|p) =

1 — 7, we have SIC(p) > 32+n(2)(% — ) where e = 1 — w*(G).

Proof. The proof will be similar to the previous one. Consider a game G = (I = [k],O,V,Unif.) and
p=1= > w122 @ By ) (Dry| @ |y) (y] such that w*(Gp) = 1~ . Using Proposition Idland Proposition I35
take {U,} and {V,} such that

1
321n(2)

SIC0) > g1~ e ) U @ Vy)ou) ).

Using Corollary @ we have that

£
57

1
1-— —{R2|(Us @ V) ) uy)|? >
a3 U @ Vol 2 5

where € = 1 — w*(G). From there, we have SIC(p) > 32111(2)(% -

w*(G|p) =1, we can conclude that SIC(G) > W((Ci) |

7). Since this holds for any p satisfying

Our last extension is the following theorem, which is the one we will use for parallel repetition.

Theorem 3. There exists a constant ¢y > 0 such that for any game G = (I = [k],0,V, Unif.) satisfying
w*(@) = 1—¢, for any game G' = (I = [k],0,V,p) satisfymg ;Zzy Ipoy — 72| < coe and any state
P = 5 Do) (2] © 2y (Gay| © ) (9] such that w*(G']p) > 1 — , e hive that SIC(p) = 2(c).

Proof. Fix any G,G’, p. We also fix a small constant ¢y that will be specified later in the proof. Let p(U) =
1 Dy [2)(@] @ |Pay) (bay| © [y)(yl.
Let 04,08 the superposed states of p. As in Proposition [, we define ¢8 = Tr (o). This means that
=3, po|x) (x| ® pP for some pB. Let also £ = Trpy (£P) and {B%, = Trx(¢5).
Similarly, let ¢ (U), 0B (U) the superposed states of p(U) and let €2 (U) = Tr 4(aB(U)). This means that
EBU) =13, |2)(z| @ pB(U) for some pZ(U). Let also £8(U) = Trpy (£2(U)) and EBy(U) = Trx (E5(U)).
We want to upper bound SIC(p) = I(Y : XA),a +I(X : BY ),5. Let 6 = 5 Emy [Pay — 72| < coe. We
proceed as in Proposition [[4 Using Claim [A22] we have I(X : BY ), 5 > 111(2)( F(EB, 8w 5{333,)). Notice
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that A(c®,08(U)) < ¢ which implies A(EB(U),£8) < 6 ; A(EB(U),£8) < 6 and A({gy(U),ﬁgy) < 4.
The two last inequalities give us A((Z(U) ® {gy(U), 8w 553,) < 24. From there, by using Claim [A.2] and
Propositions [[0 and [[2], we have:

I(X :BY),s =I(X:BY)en > 1n?2) (1—-F(£7, 68 ©&6y))
> hjm (30~ FE°(U), €8 o 68y) ~ (1 - FE, €5 ()))
> o (50— FEP (). €5 0 68)) o).

Then, we have:

1= F(E°(U),6% © &gy) > %(1 — FEP (), 2(U) @ &8y (U))) — (1 = F(£3 @ &5y, €X(U) @ €5y (U)))
> L(1 - FEP (), E8(0) @ €y (U))) — 25,

which gives us

2 1

I(X: BY)gn > s (70— FE(U), E8(U) © €y (U)) — 20).

Let e =1- % > e F2(p2(U), pL(U)). As in Proposition [d] we can show that

EB

(1= F(E°(0),3(0) @ &8y (V) 2 -

hence I(X : BY ) 8 > ln?Q)(i — 26). Similarly, if we define e =1 — % D F%p;j‘(U),p?,(U)) we can

show that I(Y : XA),a > 2 (% —26), which gives

In(2)
2 ed 4B
> — .
SIC(0) 2 115 ( 32 45)

Using Proposition [IH we have:

2 1 1
I > - T Q @ 2 4 .
SIC(p) 2 s <256 o B ;;K |Gay)| 5)
We have w(G) =1 —¢ and w(G|p(U)) > 1 — /4 — 6. Using Corollary [ we have:

1
. Qlba )2 <1—(e/2—c/d—6) =1 —e/d+3.
|Q>,{%1f}’f{vy} 2 ;J: [(2|pay)|” < (e/ e/ 5) c/4+0

From there, we conclude:

2 1
> —_(e/4— &) — 49).
SIC(p) > 1n(2)(256(8/4 0) — 40)
By taking o = gg55, which implies § < 555, we obtain SIC(p) = £2(e). |
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D Proof of Theorem A

We first present the actual construction of ¢ and then show it has the desired properties required for Theo-

rem [

— Alice and Bob perform protocol P where the inputs are classical but the randomness, the message and
the outputs are left in a quantum superposition. To maintain the “classicality” of the message sent by
Alice, we ask Alice to have a quantum register which acts as a copy of the message.

— We ask Bob to determine whether he aborts or not. The state £ will be the state Alice and Bob share
conditioned on Bob not aborting.

— Using Proposition Bl we prove that £ has the desired properties

Procedure for constructing &

1. Alice and Bob pick random inputs z,y €r I"™ = [k"]. They also share a state > v,|[r)r, ®
[Py a8 @ |r)r,; Where |p) is the same as in protocol P and r corresponds to the shared ran-
domness in protocol P.

2. Alice and Bob perform a strategy that allows them to win G™ with probability 2~ ¢*1) but keep
their outputs in a coherent superposition instead of measuring. They keep these outputs in
registers O4 and Op. They hence share the state p1 = 3, 7 |2) (|2 @123, ) (25, |® |y) (Y|,
with

|“Q;y> = Z ’7$y7“ab|a>04 |T>RA |¢§5>AB|T>RB |b>0}37

a,b,r

for some states [¢7).
3. Alice sends the message M that depends on x,a,r corresponding to step 3 of protocol P to
Bob and keeps a copy of M to herself in superposition, which means that they share a state

p2 =Y.y ww o) (el @ [922,)(622, | @ [y)(yl, with

|Qa2cy> = Z '71yrabM|a>(9A |M) palr)® s |¢23>A3|T>R3 |M) mplb)os
a,b,r,M

4. Bob copies in a new register Z whether he aborts or not. This means that they share a state

p3 = Doy ww 0) (@] @ [923,)(622, | ® |y)(yl, with

22,0 = D vagravarla) M) |r)|654) r) | M) |B)| N A) 2+

a,b,r,M

Y Veyraanarla)| M)|r)|¢; % ) r)m)|AB)|AB) 2
a,r,M

We can write [£23,) = /”yzy|YNA INA) + /1 — 'yxy|YAB |AB), for some {7, }+y and states
{IY)2" oy and {|Y> Yoy

Let p_z = Trz(ps). Since the probability of Bob not aborting is p, we can write
p-z=p-pna+(1—p) pas,

for some state pap. pyva is of the form 37 quy|7) (2@ YNV A @ [y) (y]. We choose € = pya.
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In the above protocol, po corresponds to the state Alice and Bob share after Step 3 of protocol P ex-
cept that the randomness, message and outputs are kept in a quantum superposition in the way described
above.

Similarly, ¢ = pya corresponds to the state at the end of protocol P, conditioned on Bob not aborting.
Again, the randomness, message and outputs are kept in a quantum superposition in the way described
above.

D.1 Showing the desired properties of £ = pna

We now show that & = py 4 has the desired properties of Theorem Hl

1) H(XY)e > 2nlog(k) —t — 1.

Proof. H(XY),_, = 2nlog(k). Since Dim(XY') = k", this means that H,,;»(XY), , = 2nlog(k). We have
ppNA < p—z hence Hpin (XY ), a0 —log(p) > Hpin(XY),_, = 2nlog(k). This gives us Hpin(XY) x4
2nlog(k)+log(p). Since p > 2=+ 'we conclude that H,in (XY )y > 2nlog(k)—t—1, hence H(XY) x4
2nlog(k) —t — 1.

mv v

2) w*(G'|§) =1 —¢/32 where Gy__ 5, = (I',0", V', Unif.) and G'=(I',0",V',q).

Proof. This holds by construction of €. Indeed, ¢ is the superposed version of the state Alice and Bob share
after protocol P conditionned on Bob not aborting. We know that in this case, Pr[Alice and Bob win >
(1 —¢/32)n games | Bob does not abort] > (1 — £/32). From there, we have w*(G’|¢) > (1 — £/32) |

3) SIC(€) < 2210800 (4 4 1) + |log(e)| + 5) + 2t + 2.

Proof. We upper bound the superposed information cost of the state £ = pya. We are interested in the
superposed states o4y 4, 0% 4 of £ as defined in Section Bl Recall that pya = >y Qoy| TN (2] ® YA (Y4 @
ly)(y| for some ¢gy. Let A = O4 @ MA@ R4 ® A and B = Op ® Rp ® B. We have SIC(§) = I(X :
MpB'Y )ys +1(Y : XA),a . Let also o4, o8 the superposed states of ps.

To proceed with the proof, we need the following lemmas and proposition.

Lemma 3. I(X : MpB'Y),s < nlog(k) — Humin(X|[MpB'Y ), +t+1
Proof. We have:

I(X :MpB'Y),s =H(X),s —H(X|MgB'Y),s <nlog(k)—H(X|MgB'Y),s,

< nlog(k) — Hpin(X|MpB'Y)

(TB
NA
O’B .
NA
By definition, we have Hy,in (X|MpB'Y),s = —log(Pr[ Bob guesses x | Alice and Bob share oB]). When

Alice and Bob share o, if Bob tries to determine whether he aborts or not, the state he shares with Alice
conditioned on not aborting is 0§ 4. Since Bob doesn’t abort with probability greater than 27" we have

Pr[Bob guesses z | Alice and Bob share 02]) > 27+ Pr[Bob guesses = | Alice and Bob share o5 ,]
From there, we have

Hpin (XlMBB/Y)G.ZB = —log(Pr[ Bob guesses x | Alice and Bob share ¢2])
—log(Pr| Bob guesses x | Alice and Bob share 0% ,]) +t + 1
- Hmm(XIMBB’Y)g;gA +t+1.

IN

We conclude that I(X : MpB'Y),s < nlog(k)— Humin(X|MpB'Y),s < nlog(k)— Humin(X|MpB'Y),5 +
t+1. u
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We now prove the following:

Lemma 4. Hyip (X[MpB'Y),p < nlog(k) —m.

Proof. Let o'y gy = Tra(08), oy gy = Trarams (08), and o1y = Traarms (0F). We have Hpin (X|MpB'Y),p =
Hpin(X|MpB'Y) o First notice that

’
IxMp B

Iy

Moreover, we can write o'y yrpry = D2 prepm) "m| M) (M| @n(M) xpy for some states {n(M)}ar and -, ra =
1. Notice that o'y gy = >, run(M). We have:

UfXMBB’Y = Z ru| MM @n(M)xpy < Imp @ 0xpry (10)
Me[m]

Using Equations [0 and [0 we have:

1
/ / /
OxMpBY S IMp @ 0xpry < _anX ® Inp @ 0pry

om (IMB

k—nI/'\(@ 2S—m®0'/Bzy) .

IN

By definition of Hy, (Section [A22), this gives Hypin (X |MpB'Y ),

XMpB'Y

< nlog(k) —m. |

We now put everything together and prove the following.

Proposition 19. I(X : MpB'Y),s <m+t+1.
Proof. Combining Lemma [3] and Lemma [}, we have
I(X : MpB'Y),5 < nlog(k) = Hpin(X|MpB'Y )op +t+1<m+t+1.
|

Now let’s analyze o4 4. Here, Alice does not receive any message from Bob hence I(Y : X A’ Jop = 0. As
in Lemma [3 we can show that I(Y : XA"),a < I(Y: XA)oa +t+1=1t+1
Putting this all together, we have:

SICE) =1(Y : XA)pa +I(X:MpB'Y),s <m+2t+2.

To conclude the proof, recall from Section [6 that m = w((t + 1) + |log(e)| + 5). From there, we
conclude that

321og(|1]|0])
9

SIC() < (¢4 1)+ [log(e)| +5) + 2t +2,

which concludes the proof. |

We showed that £ satsfies all the desired properties of Theorem 4
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E Proof of Theorem

We now give a lower bound complementary to the upper bound described in Theorem Hl

Theorem 5. Consider a game G = (I = [k],O,V, Unif.) such that w*(G) =1 — ¢ and w*(G™) = 27" with
t = o(ne). Let also GY__ 5, = (I" = [k"], 0", V', Unif.) as defined in Section[d For any game G" = (I' =
[k"],0", V", p) and any state p = Zm,ye[kn] PaylT) (@2 @ [day)(Day| @ |y)(yly, satisfying

1. HXY), > 2nlog(k) —
2. w(G'p) >1—¢/32

we have SIC(p) > 2(ne).

Proof. Fix any state p of the form

p= > Payla)alx ®|bey) byl @ ) (yly,

z,y€lkn]

satisfying properties 1. and 2. above. Property 2 tells us that there is strategy that allows Alice and Bob to
win G’ with high probability. We make them perform this strategy.

We first show that there is a large number of indices ¢ such that Alice and Bob win game ¢ with high
probability with this stratagy and H(X;, ), is large.

Lemma 5. Let p; = Pr[Alice and Bob win game i using p]. Let K = {i : p; > 1 —¢/4}. Let L = {i :
H(X;,Y;), > 2log(k) — }. We have

|K| > 3n/4, |L| > 3n/4, which implies |K N L| > n/2.

Proof. % Zie[n] p; corresponds to the average number of games won by Alice and Bob. They win G’ if they

win at least (1 — £/32) games. Since they can win G’ with probability at least 1 — /32, we know that
w2 iem Pi > (1—¢/32)(1—¢/32) > 1 —¢/16. We have:

Yopi= pity pi<|K|[+(n— K1 -e/4)=n—(n—|K|e/4,
7 €K igK

since Y, p; > n(1 —/16), we have n — (n — |K|)e/4 > n(1 — £/16) and |K| > 32,
Similarly, we have:

ZHXY p = H(X;Y:),+ > H(X:Y:),

€L ¢ L

< 2|/ 1og(k) + (n — ||)(2log(k) ~ )

= omlos(k) — (n — L))

Since Y, H(X;Y;), > H(XY), = 2nlog(k) — t, we have 2nlog(k) — (n — |L|)% > 2nlog(k) — ¢ which gives
L] = 2
Putting this together, we have |[K N L| = |K|+ |L| — |[KJL| > |K|+ |L| —n > n/2. |
The final step of the proof will be very similar to the proof of Proposition

We start with a few notations. For a string x = 21,..., 2, € [k"], let z_; be the string in [k"~1] where
we remove x; from z. As in Section Bl we define |L;J4>, |LB), o4 aB. Also, let

=Y Doy 5 Py= D Pay

yekn] ze[kn]
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and

i _ . —1 _
Paiy; = Z Pary 5 Po iy, = Z Py’ -

gl = ! —ays Foylip! = s ! —ay
LY T, =T40,Y; =Yi TLY =T —iY_;=Y—i

For each 7, we rewrite p as:

p=Y_ peylri)(@ila @z )z ilx, @ |buy)(beylan @ ly—i)(y—ily_. @ |yi)(yi
z,y€lkn]

Vi -

We define ‘ _
|Z;1,yl> = Z p;;,yil‘rlfz%\’ﬂ ® |¢w’y’> ® |y/774>y77,
'y €lknwl=x,y.=y;
Now, let v; = 32, cigy Povys[x) (@il @ |25, ) )(Z5, .| © |yi)(yi]- The state ; corresponds to p where the
inputs in registers X_;, ))_; are in coherent superposition. In particular, Alice and Bob can go from ~; to p

by measuring the registers X_; and )_; in the computational basis.
Using p, Alice and Bob can win the i*" instance of G' with probability p;. This means that they can win
this i" instance of G when sharing +; with probability at least p;.

Now, consider o, 0B the 2 superposed states of v; as defined in Section Bl We first show the following:

70 2

Lemma 6. Ift < @ thenVie KNL, I(Y; : XA),a +1(X;: BY ), 5 = £2(c).
Proof. Consider ¢ € K N L. Since i € L, we have H(X;Y;),, > 2log(k) — 4t/n > 2log(k) — coe. Using
Claim [A22] we have A(p?, Unif.) < cpe or in other words that %Zzi,yie[k] Ph, 4 — 72| < coe. Since i € K,
we have w*(Gl|y;) > 1 —¢/4 for G = (I,0,V,p'). Using Theorem [} we conclude that SIC(vy;) = I(Y; :
XA)a+1(X;: BY) 6 = Q(e). u
We can now finish the proof. The above lemma holds for our ¢ since ¢ = o(en). First notice that Try_,(cf') =
Try_,(c?) hence I(Y; : XA)ya = I(Y; : XA),a. Similarly, we have I(X; : BY),s = I(X; : BY),5 which
gives
I(Y; : XA)ga + I(Xi : BY )5 = I(X; : BY )ya + 1(Y; : XA)ys
and hence
Vi e KNL, I(X; : BY )ya + I(Yi : XA),5 = 02(¢).
To conclude, firs we write
SIC(p) = I(Y : XA)ya + I(X : BY ),z

= H(Y)ys — H(Y|XA)ya + H(X),5 — H(X|BY),»

>H(XY),—H(Y|XA),a — H(X|BY),=

> 2nlog(k) —t — H(Y|XA)ya — H(X|BY )5

> H(Yi)ga — HY|XA)ga + > H(Xi)gs — H(X|BY )5 —t

i€[n] i€[n]
> > H(Yi)ga — HYi|XA)ga + > H(Xi)gs — H(X;|BY )5 —t
i€[n] i€[n]
= I(Yi: XA)a + I(X;: BY )gs —t
i€n]
> Y I(Yi: XA)ga +I1(X;: BY )5 —t
i€ KNL

= 2(ne) —t = 2(ne) since |[K N L| > n/2 and t = o(ne).
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F Games with complete support

In this Appendix we prove Corollary[Il The idea is the following. Starting from any game G with complete
support, we define a new game H that can be interpreted as follows:

— With some probability Alice and Bob play Gy, a variant of G' on the uniform distribution
— If they are not in the previous case, they win no matter what they answer

— They know in which case they are thanks to an extra input bit

If they ignore the extra bit of information, they play the original game.

In Lemmal[flwe prove that H™ has a larger value than G™, which intuitively follows from the fact that players
can just ignore the extra bits. Since the difficulty of winning H™ comes from the indices where Alice and
Bob must play Gy, in Lemma [8] we show that the winning probability of H™ is bounded by the winning
probability of a parallel repetition of Gyy. We have an exponential decay because Gy meets the requirements
of Theorem [Il To finish, we relate w*(G) to w*(Gy) in Lemma [@ and we prove Corollary [11

Let us start with some definitions. Let G = (1,0,V,p) with |I| = k. Let aypin = ming, {k*p.,} and
Umaxr = maXzy{kzpzy}. We have:

Ay (0%
Wwy) €1 5" <pay < 5

Let U be the uniform distribution on I2. By seeing p and U as vectors indexed by (z,y), we can rewrite
the above as aminU < p < @mazU. Let p’ the probability distribution satisfying p = qminU + (1 — qimin )P’
Let I = {0,1} x I and ¢ be the distribution on I? such that Qozoy = 2, i1y = (1 — Oémm)pgy and
Goz1y = qiz0y = 0. We have:

Qmin

Qoz0y t Qlzly = ? + (1 - amin)p;y = Pzxy-

We define the game H = (I,0,V,q) with the following winning predicate:

— V(ab|0x0y) = V (ab|zy) for all a,b € O2.
— V(ab|lzly) =1 for all a,b € O?.

This means that if Alice and Bob’s extra bit is 0 the predicate is the same than the predicate of G, while
if the extra bit is 1 they always win. Notice that for each ¢ € {0, 1}, we have V (ab|czcy) > V (ablzy). Now
consider the parallel repetition. Let z,y € I", where we write T; = ¢;x; and y; = ¢;y; with x;,y; € I and ¢;
being the extra bit. Let V’ and V' be the predicates for H™ and G™, respectively. Then for all a, b, we have

V/(ab|zg) = I1;(V (aibil #:5:)) = :(V (a;bi|zy)) = V' (ablzy). (11)
Lemma 7. w*(G™) < w*(H").

Proof. Fix an optimal strategy for G™. Let P(ablxy) the probability that Alice and Bob output a,b € O™
on inputs z,y € I when applying such strategy for G". We have

wH(G") = Z Pay P(ablzy)V' (ablxy).

zyab

Define the following strategy for H™. Alice and Bob, on inputs z,9 € I™ according to ¢", ignore the extra bit
and apply the above optimal strategy for G™ on inputs x,y. Let P(ab|Zg) the probability of outputs a,b on
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inputs # with this strategy. We have P(ab|#j) = P(ab|zy). Also note that for all 2,y € I" and ¢ € {0,1}"
we can write Gegey = PayTaye Where ryye > 0 and ) rzye = 1. It follows from above and () that

w*(H™) > Z Zqcxcyﬁ’(abﬁyc)\/’"(ab|c:1:yc)

zyab ¢

> Z Day Z Taye P (ablzy) V'™ (ablcxyc)
zyab c

> 3" pay > TayePlablzy)V" (ablzy)
zyab c

= Z PayP(ablzy)V" (ablzy) = w*(G").
zyab

We now want to upper bound w*(H™). Let Gy the game G on the uniform distribution and let ey =
1 — w*(Gy). We prove the following.

Lemma 8. w*(H") < (1 — a%)fz(glogﬁﬁf&) ~amin] log(e)])

Proof. Thanks to the extra bit, we can interpret H as follows:
— With probability ay,,, Alice and Bob play Gy
— With probability 1 — aupnin, they win on any output
— They know in which case they are

If there are k instances of Gy, Alice and Bob win the whole game if and only if they win these k& instances
of Gy. The probability that i instances of Gy occur is equal to (?) al i (1 — amin)™ % This gives

* n S n 7 n—i, * 7
) <3 (7 Jatuin1 = i) (G,
1=0

Since Gy is on the uniform distribution, we have that w*(G};) < (1 — 5?])9(1%(\;\\0\) ~11e(&)D) 1y Theorem [
This gives

1=0

We can show by analytic calculations that

§ : (") al (1= Qnin)" Y = (amin (Y — 1) +1)",
VA
1=0

By plugging this in the above inequality, we obtain

W (H™) < (1 — E%)Q(%*ammllog(s)l)_

Now we relate the values of G and Gy. Let w*(G) =1 —e.

Lemma 9. ¢ < aynaz€u.
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Proof. Fix an optimal strategy for Gy and let P(ab|zy) the probability of outputs a, b on inputs z, y for this
strategy. We have

cu =3 15 Plabley)(1  V(abley)

zyab

Pz
> Y —P(ablry)(1 - V(ablzy))
wyab max

3

>

amaz

|
Finally, we combine all of the above in the final corollary
Corollary 1. Let G = (I,0,V,p) be a game with complete support and w*(G) = (1 —¢). Then,
WH(G™) < (1 — &) amatmmon =87,
where ) = %.
Proof. By chaining the previous lemmas, we obtain
W (G") < w*(H™) < (1 — %) 2 mstittion —aminllog(@)D)
<(1-— gQ)Q(a%m:?ogfﬁuou - iz el < (1 — &%) quatmmon =67,
|
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