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Characterization of Binary Constraint System Games

Richard Cleve ∗ Rajat Mittal †

Abstract

We consider a class of nonlocal games that are related to binary constraint systems (BCSs)
in a manner similar to the games implicit in the work of Mermin [N. D. Mermin, “Simple unified
form for the major no-hidden-variables theorems,” Phys. Rev. Lett., 65(27):3373–3376, 1990],
but generalized to n binary variables and m constraints. We show that, whenever there is a
perfect entangled protocol for such a game, there exists a set of binary observables with commu-
tations and products similar to those exhibited by Mermin. We also show how to derive upper
bounds strictly below 1 for the the maximum entangled success probability of some BCS games.
These results are partial progress towards a larger project to determine the computational com-
plexity of deciding whether a given instance of a BCS game admits a perfect entangled strategy
or not.

1 Binary constraint system games

Constraint systems and various two-player non-local games associated with them have played an
important role in both computational complexity theory (probabilistic interactive proof systems [6,
4, 10, 3] and the hardness of approximation [10]) and quantum information (pertaining to the power
of entanglement [5, 7, 14, 8]).

A binary constraint system (BCS) consists of n binary variables, v1, v2, . . . , vn, and m con-
straints, c1, c2, . . . , cm, where each cj is a binary-valued function of a subset of the variables. For
convenience, we may write the constraints as equations. An example of a BCS (with n = 9 and
m = 6) is

v1 ⊕ v2 ⊕ v3 = 0 v1 ⊕ v4 ⊕ v7 = 0

v4 ⊕ v5 ⊕ v6 = 0 v2 ⊕ v5 ⊕ v8 = 0 (1)

v7 ⊕ v8 ⊕ v9 = 0 v3 ⊕ v6 ⊕ v9 = 1

(this BCS is related to the version of Bell’s theorem introduced by Mermin [11], that is discussed
further in the next section). If, as in this example, all the constraints are functions of the parity of
a subset of variables we call the system a parity BCS. A BCS is satisfiable if there exists a truth
assignment to the variables that satisfies every constraint. The above example is easily seen to be
unsatisfiable (since summing all the equations modulo 2 yields 0 = 1).

We can associate a two-player non-local game with each BCS that proceeds as follows. There
are two cooperating players, Alice and Bob, who cannot communicate with each other once the
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porotocol starts, and a verifier. The verifier randomly (uniformly) selects one constraint cs and one
variable xt from cs. The verifier sends s to Alice and t to Bob. Alice returns a truth assignment
to all variables in cs and Bob returns a truth assignment to variable xt. The verifier accepts the
answer if and only if:

1. Alice’s truth assignment satisfies the constraint cs;

2. Bob’s truth assignment for xt is consistent with Alice’s.

Strategies where Alice and Bob employ no entanglement are called classical. Strategies where they
employ entanglement are called quantum (or entangled). A strategy is perfect if it always succeeds.

It is not too hard to see that there exists a perfect classical strategy for a BCS game if and only
if the underlying BCS is satisfiable. It is interesting that there exist perfect entangled strategies
for BCS games for some unsatisfiable BCSs.

2 Mermin’s quantum strategies

Mermin [11, 12] made a remarkable discovery about sets of observables with certain properties that
has consequences for quantum strategies for BCS games1 that are unsatisfiable—in particular the
following two games. The left side of Fig. 1 summarizes the BCS specified by the aforementioned
system of equations (1). We refer to this BCS as the magic square. Similarly, the right side of Fig. 1

v1 v2 v3

v4 v5 v6

v7 v8 v9
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✂
✂
✂✂

❇
❇
❇❇

❇❇

❇
❇
❇❇
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✚✚

✚✚

✚
✚✚

❩
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v4 v2

v3

v6 v10

Figure 1: Structure of two BCSs: (a) magic square (left) and (b) magic pentagram (right). Each straight
line indicates a parity constraint on its variables of 0 for single lines, and 1 for double lines.

summarizes another BCS consisting of ten variables and five constraints, where each constraint is
related to the parity of four variables. We refer to this BCS as the magic pentagram.

To understand Mermin’s strategies, we first define a quantum satisfying assignment of a BCS
as a relaxation of a classical satisfying assignment, in the following manner. First translate each
{0, 1}-variable vj into a {+1,−1}-variable Vj = (−1)vj . Then the parity of any sequence of variables
is their product—and, in fact, every boolean function can be uniquely represented as a multilinear
polynomial over R (e.g., for the binary OR-function, the polynomial is (V1V2+V1+V2−1)/2). Now
we can define a quantum satisfying assignment as an assignment of finite-dimensional Hermitian
operators A1, A2, . . . , An to the variables V1, V2, . . . , Vn (respectively) such that:

1Mermin’s original paper was written in the language of no-hidden-variables theorems, along the lines of the
Kochen Specker Theorem; however, it discusses implications regarding Bell inequality violations, and these can be
interpreted as non-local games where quantum strategies exist that outperform classical strategies. The connection
is made more explicit by Aravind [1, 2].
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(a) Each Aj is a binary observable in that its eigenvalues are in {+1,−1} (i.e.,A2
j = I).

(b) All pairs of observables, Ai, Aj , that appear within the same constraint are commuting (i.e.,
they satisfy AiAj = AjAi).

(c) The observables satisfy each constraint cs : {+1,−1}k → {+1,−1} that acts on variables
Vi1 , . . . , Vik , in the sense that the multilinear polynomial equation cs(Ai1 , . . . , Aik) = −I is
satisfied.

This is a relaxation of the standard “classical” notion of a satisfying assignment (which corresponds
to the case of one-dimensional observables). Quantum satisfying assignments for the two BCSs in
Figure 1 are shown in Figure 2.

ZI IZ ZZ

IX XI XX

ZX XZ Y Y

✂
✂
✂✂

✂
✂

✂
✂
✂✂

❇
❇
❇❇

❇❇

❇
❇
❇❇

✚
✚✚

✚✚

✚
✚✚

❩
❩❩

❩❩

❩
❩❩

ZII

XXZ ZXX ZZZ XZX

IXI IZI

XII

IIX IIZ

Figure 2: Quantum satisfying assignments for: (a) magic square (left) and (b) magic pentagram (right).
(X , Y , and Z are the usual 2×2 Pauli matrices, and juxtaposition means tensor product.)

There is a construction (implicit in [11] and explicit in [2] for the magic square) that converts
these quantum satisfying assignments into perfect strategies—and this is easily extendable to any
quantum satisfying assignment of a BCS. For completeness, we summarize the known construction.
The entanglement is of the form |ψ〉 = 1√

d

∑d
j=1 |j〉|j〉, where d is the dimension of the observables.

Alice associates observables A1, A2, . . . , An with the variables and Bob associates their transposes
AT

1 , A
T
2 , . . . , A

T
n (with respect to the computational basis) with the variables. On input s, Alice

measures her observables that correspond to the variables in constraint cs. At this point, it should
be noted that this is a well-defined measurement since condition (b) implies that these observables
are mutually commuting. Also, on input t, Bob measures his observable AT

t . Condition (c) implies
that Alice’s output satisfies the constraint. Finally, Alice and Bob give consistent values for variable
vt because 〈ψ|At ⊗AT

t |ψ〉 = 〈ψ|At ·At ⊗ I|ψ〉 = 〈ψ|ψ〉 = 1.

3 General BCS games

A natural computational problem is: given a description of a BCS as input, determine whether or
not it has a perfect entangled strategy. A more general problem is to compute the maximum (or
supremum) value of all entangled strategies.

For classical strategies, the problem of determining whether or not a perfect strategy exists is
NP-hard for general BCS games and in polynomial-time for parity BCS games (where the problem
reduces to solving a system of linear equations in modulo 2 arithmetic). For quantum strategies, we
are currently not aware of any algorithm that determines whether or not an arbitrary parity BCS
game has a perfect strategy (i.e., presently we do not even know that the problem is decidable).
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In Section 4, we prove a converse to the construction of entangled strategies from quantum
satisfying assignments in Section 2. Namely, we show that any perfect quantum strategy that uses
countable-dimensional entanglement implies the existence of a quantum satisfying assignment.

It can be easily seen that not all BCS games have perfect quantum strategies, by this example

v1 ⊕ v2 = 0 v1 ⊕ v2 = 1. (2)

First note that no generality is lost if we assume that Alice returns only a value for v1 (since
the value of v2 is then uniquely determined by the constraint). It is not hard to see that such a
game is equivalent to the so-called CHSH game [7], which is known to admit no perfect quantum
strategy [14] (even though the quantum success probability is higher than the classical success
probability [7]). In Section 5, we show how to derive upper bounds strictly below 1 on the entangled
value of many parity BCSs.

4 Characterization of perfect strategies in terms of observables

Theorem 1. For any binary constraint system, if there exists a perfect quantum strategy for the
corresponding BCS game that uses finite or countably-infinite dimensional entanglement, then it
has a quantum satisfying assignment.

Proof. We start with an arbitrary binary constraint system with variables v1, v2, . . . , vn and con-
straints c1, c2, . . . , cm. Assume that there is a perfect entangled protocol for this system that uses
entanglement

|ψ〉 =
∞
∑

i=1

αi|φi〉|ψi〉, (3)

where {|φ1〉, |φ2〉, . . . } and {|ψ1〉, |ψ2〉, . . . } are orthonormal sets, α1, α2, · · · > 0, and
∑∞

i=1 |αi|2 = 1.
We consider two separate cases for Alice’s strategy. In the first case, she applies an arbitrary

projective measurement to the first register of |ψ〉. In the second case, Alice can apply an arbitrary
POVM measurement to the first register of |ψ〉.

We will prove that quantum satisfying assignment exists in the first case. Then we will show
that the second case can be reduced to first one, hence proving the theorem.

Case 1: Projective measurements for Alice. For each s ∈ {1, 2, . . . , n}, let cs be a constraint
consisting of rs variables. Therefore, the set of outcomes for Alice is {0, 1}rs . These can be
associated with orthogonal projectors Πs

a (a ∈ {0, 1}rs ). From these projectors, we can define the
r individual bits of the outcome as the binary observables

A(j)
s =

∑

a∈{0,1}rs
(−1)ajΠa, (4)

for j ∈ {1, . . . , rs}. It is easy to check that {A(j)
s : j ∈ {1, . . . , rs}} is a set of commuting binary

observables. We have defined a binary observable for Alice for each variable in the context of
each constraint that includes it. For example, in the case of the magic square (Eqns. (1)), there

is a binary observable A
(1)
3 for v7 in the context of the third constraint and a binary observable

A
(3)
4 for v7 in the context of the fourth constraint. We have not yet shown that A

(1)
3 = A

(3)
4

(non-contextuality).
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The measurements for Bob are (without loss of generality) binary observables Bt for each
variable vt (t ∈ {1, 2, . . . , n}).

We need to show that the observables for Alice must be non-contextual: for each variable, Alice’s
observables for it are the same, regardless of the constraint that they arise from (for example, for

the magic square game, A
(1)
3 = A

(3)
4 ). We shall use the following lemma.

Lemma 2. Let −I � C1, C2, B � I be Hermitian matrices on some Hilbert space H. Let |ψ〉 ∈
H ⊗H be of the form

|ψ〉 =
∞
∑

i=1

αi|φi〉|ψi〉, (5)

where {|φ1〉, |φ2〉, . . . } and {|ψ1〉, |ψ2〉, . . . } are orthonormal bases for H, α1, α2, · · · > 0, and
∑∞

i=1 |αi|2 = 1. Then, for the Hermitian matrices {B,C1, C2}, if 〈ψ|B⊗C1|ψ〉 = 〈ψ|B⊗C2|ψ〉 = 1
then C1 = C2.

Proof of Lemma 2. Consider the vectors w = B⊗ I|ψ〉, u1 = I⊗C1|ψ〉, and u2 = I⊗C2|ψ〉. These
are vectors with length at most 1 and we have w · u1 = w · u2 = 1, which implies that u1 = w = u2.
Therefore,

0 = I ⊗ C1|ψ〉 − I ⊗ C2|ψ〉 (6)

= (I ⊗ (C1 − C2))

( ∞
∑

i=1

αi|φi〉|ψi〉
)

(7)

=

∞
∑

i=1

αi|φi〉(C1 − C2)|ψi〉, (8)

which implies that (C1 − C2)|φi〉 = 0, for all i ∈ {1, 2, . . . }. This implies that C1 = C2, which
completes the proof of the lemma.

Returning to the proof of Theorem 1, let t ∈ {1, 2, . . . , n} and A
(j)
s and A

(j′)
s′ be any two observ-

ables of Alice corresponding to the same variable vt. Since Alice’s binary observables associated
with constraint cs are commuting, we can assume that Alice begins her measurement process by

measuring A
(j)
s , while Bob measures Bt. Since these two measurements must yield the same out-

come, we have 〈ψ|A(j)
s ⊗Bt|ψ〉 = 1. Similarly, 〈ψ|A(j′)

s′ ⊗Bt|ψ〉 = 1. Therefore, applying Lemma 2,

we have A
(j)
s = A

(j′)
s′ , which establishes that Alice’s observables are non-contextual.

In addition to consistency between Alice and Bob, Alice’s output bits must satisfy the con-
straint cs (recall that cs can be expressed as a multilinear polynomial over R). That is,

〈ψ|cs(A(1)
s , . . . , A(rs)

s )⊗ I|ψ〉 = −1. (9)

By invoking Lemma 2 again, with C1 = −cs(A(1)
s , . . . , A

(rs)
s ), C2 = I, B = I, we can deduce that

cs(A
(1)
s , . . . , A

(rs)
s ) = −I.

At this point, it is convenient to rename Alice’s observables to At, for each t ∈ {1, 2, . . . , n}
(which we can do because we proved they are non-contextual). The observables associated with
each constraint commute and their product has the required parity.
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A
(1)
s A

(2)
s

· · ·

A
(rs)
s

input
state

· · ·
· · ·

|0〉 · · ·
|0〉 · · ·
|0〉 · · ·

Figure 3: Alice’s POVM measurement on receiving input s expressed in Stinespring form (Case 2).

We will finally prove that a finite-dimensional set of observables must exist. Since, for all
t ∈ {1, 2, . . . , n}, 〈ψ|At ⊗Bt|ψ〉 = 1, we have At ⊗ I|ψ〉 = I ⊗Bt|ψ〉, so

∞
∑

i=1

αi (At|φi〉) |ψi〉 =
∞
∑

i=1

αi|φi〉 (Bt|ψi〉) . (10)

Both sides of Eq. (10) are Schmidt decompositions of the same quantum state. Now we can
use the fact that the Schmidt decomposition is unique up to a change of basis for the subspace
associated with each distinct Schmidt coefficient. Consider any Schmidt coefficient with multiplicity
d (each Schmidt coefficient appears with finite multiplicity). Suppose, without loss of generality,
that α1 = α2 = · · · = αd = α. Then the span of {At|φi〉 : i ∈ {1, 2, . . . , d}} equals the span of
{|φi〉 : i ∈ {1, 2, . . . , d}}. In other words, At leaves the subspace spanned by {|φi〉 : i ∈ {1, 2, . . . , d}}
fixed. By similar reasoning, Bt leaves the subspace spanned by {|ψi〉 : i ∈ {1, 2, . . . , d}} fixed.
Therefore, there exist bases in which At and Bt have block decompositions of the form

At =











A′
t 0 0 . . .
0 A′′

t 0 . . .
0 0 A′′′

t . . .
...

...
...

. . .











Bt =











B′
t 0 0 . . .
0 B′′

t 0 . . .
0 0 B′′′

t . . .
...

...
...

. . .











(11)

with one block for the subspace of each Schmidt coefficient. We can take, say, the d-dimensional
observables from the first block {A′

t : t ∈ {1, 2, . . . , n}} as a quantum satisfying assignment (which
changes the effective entanglement to a d-dimensional maximally entangled state).

Case 2: POVM measurements for Alice. A POVM measurement can be expressed as a pro-
jective measurement in a larger Hilbert space that includes ancilliary qubits, as shown in Figure 3.
Again we can define binary observables for jth variable in a constraint s as in Case 1.

A(j)
s =

∑

a∈{0,1}rs
(−1)ajΠa, (12)

these observables act on the larger Hilbert space Hs ⊗ Hp. Here Hs (Hp) represents the Hilbert

space for the entangled (private) qubits. Like before, the {A(j)
s : j ∈ {1, . . . , rs}} is a set of

commuting binary observables. Since these observables commute, without loss of generality, any of
the corresponding variables can be measured first by Alice.
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We will focus on the first measurement done by Alice given some constraint. Let us suppress the
superscript and subscript for brevity of notation. Say, Alice uses observable A for the first measure-
ment corresponding to variable t. This defines a projective measurement (Π0 = A+I

2 ,Π1 = I−A
2 )

on Hs ⊗Hp.
Suppose that the reduced entangled state on Alice’s side is ρ. Then Alice’s strategy is to apply

the channel which adds the ancilla qubits to ρ and then applies the measurement (Π0,Π1). Using
the Kraus operators of this channel, we can come up with equivalent POVM elements E0, E1 acting
on the Hilbert space Hs. Here equivalent means, for all i ∈ {0, 1} and |φ〉 ∈ Hs,

〈φ, 00 . . . 0|Πi|φ, 00 . . . 0〉 = 〈φ|Ei|φ〉. (13)

Similarly, Bob has POVM elements (F0, F1) to measure variable t. Since their strategy is
perfect, they always answer with same bit when asked for the variable t, which implies

〈ψ|E0 ⊗ F0|ψ〉 + 〈ψ|E1 ⊗ F1|ψ〉 = 1. (14)

This can be simplified to
〈ψ|(E0 − E1)⊗ (F0 − F1)|ψ〉 = 1. (15)

Now we use the following lemma to prove that (E0, E1) is actually a projective measurements
(similarly (F0, F1) is projective).

Lemma 3. Let |ψ〉 ∈ HA ⊗ HB be such that |ψ〉 =
∑∞

i=1 αi|φi〉|ψi〉, where α1, α2, · · · > 0. If we
have two POVM measurements, (E0, E1) on HA and (F0, F1) on HB, such that

〈ψ|(E0 − E1)⊗ (F0 − F1)|ψ〉 = 1 (16)

then (E0, E1) and (F0, F1) are projective measurements.

Proof of Lemma 3. We will prove that (E0, E1) is a projective measurement. The proof for (F0, F1)
is the same.

Notice that E0 and E1 are simultaneously diagonalizable (they are both Hermitian and E0 + E1 = I).
In the basis which diagonalizes them,

E0 =











λ1
λ2

. . .

λn











and E1 =











1− λ1
1− λ2

. . .

1− λn











.

This implies that E0 and E1 can be thought of as a probability distribution on 2n projective
measurements. For each S ⊆ [n], define the projectors ΠS

0 =
∑

i∈S |i〉〈i| and ΠS
1 = I − ΠS

0 , and
pS =

∏

i∈S
λi
∏

i/∈S
(1− λi). Note that

∑

S⊆[n]

pS = 1. It is straightforward to verify that

E0 =
∑

S⊆[n]

pSΠ
S
0 and E1 =

∑

S⊆[n]

pSΠ
S
1 . (17)

By Eqns. (16), (17), and linearity,

∑

S⊆[n]

pS 〈ψ|(ΠS
0 −ΠS

1 )⊗ (F0 − F1)|ψ〉 = 1. (18)
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In the above equation, pS ’s sum up to 1, and the term multiplied to them is at most 1. By an
averaging argument, for all S,

〈ψ|(ΠS
0 −ΠS

1 )⊗ (F0 − F1)|ψ〉 = 1. (19)

Using Lemma 2, there can be at most one pS with non-zero probability. Hence (E0, E1) is a
projective measurement.

Now we know that (E0, E1) is a projective measurement. Also, using Eq. (13), any eigenvector
|φ〉 of E0 can be converted into an eigenvector |φ, 00 · · · 0〉 for Π0 with same eigenvalue. Then, in
the basis where eigenvalues of the form |φ, 00 · · · 0〉 are listed first,

Π0 =











E0 0 · · · 0

0
...
0

M0











and Π1 =











E1 0 · · · 0

0
...
0

M1











. (20)

It is given that the observables Π0−Π1 corresponding to different variables in the same context
commute. It follows that the observables E0 −E1 corresponding to different variables in the same
context also commute. Hence the proof for Case 2 follows from Case 1.

5 Proving gaps on the maximum quantum success probability

Theorem 1 does not address strategies that employ more exotic kinds of infinite entanglement
than expressed by Eq. (3). In particular, we have not ruled out the possibility that a binary
constraint system exists for which there is no perfect strategy employing finite (or countably infinite)
entanglement, but for which there is an infinite sequence of strategies, P1,P2,P3, . . . , where strategy
Pd uses entanglement of the form

|ψ〉 = 1√
d

d
∑

j=1

|j〉|j〉, (21)

and succeeds with probability pd < 1 such that limd→∞ pd = 1. In this section, we show that this
cannot happen for certain parity BCS games.

Consider the BCS illustrated in Figure 4, that we will refer to as the four-line BCS (with each
pair of lines intersecting)

❏
❏
❏

❏
❏
❏

✟✟
✟✟✟✟

v1 v2 v3

v4
v5

v6

Figure 4: Structure of four-line BCS.
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which corresponds to the system of equations

v1 ⊕ v2 ⊕ v3 = 0

v3 ⊕ v4 ⊕ v5 = 0 (22)

v5 ⊕ v6 ⊕ v1 = 0

v2 ⊕ v4 ⊕ v6 = 1.

Speelman [13] showed that this has no quantum satisfying assignment by some simple algebra.
Applying a sequence of substitutions among the observables yields:

A1A2A3 = I (corresponding to the first constraint) (23)

A1A2A4A5 = I (substituting A3 = A4A5 from the second constraint) (24)

A1A2A4A6A1 = I (substituting A5 = A6A1 from the third constraint) (25)

A1A2A2A6A6A1 = −I (substituting A4 = −A2A6 from the fourth constraint). (26)

Note that Eq. (26), which we refer to as the final equation of the process, simplifies to the contra-
diction I = −I because each Aj squares to I.

This substitution method works for many other parity BCSs, where the general methodology is
to apply a sequence of substitutions to obtain a final equation (along the lines of Eq. (26)) that
has the property that it simplifies to I = −I using A2

j = I (but not assuming any additional
commutations). For example, it is straightforward to use this method to show that the “truncated
pentagram” of Figure 5 has no quantum satisfying assignment.

✂
✂

✂
✂
✂✂

❇❇

❇
❇
❇❇

✚
✚✚

✚✚

✚
✚✚

❩
❩❩

❩❩

❩
❩❩

v7 v5 v1 v8

v4 v2

v3

v6 v9

Figure 5: Structure of truncated pentagram BCS.

Can a sequence of strategies have success probability approaching 1 for any of these examples?
We prove the following theorem.

Theorem 4. Whenever a parity BCS can be proven not to be quantum satisfiable by the substitution
method, there exists a constant ε > 0 such that, for any strategy for the BCS game that uses finite
entangement of the form of Eq. (21), the success probability is upper bounded by 1− ε (where ε is
independent of the dimension of the entanglement).

Proof. As in the proof of Theorem 1, we can assume, without loss of generality, that Alice has
commuting observables for each constraint and that their product is ±I in correspondence with
the constraint. This is because it is never advantageous for Alice to return bits that do not satisfy
the constraint. The difference here from the setting of the proof of Theorem 1 is that, since Alice
and Bob’s bits do not have to be perfectly consistent, Alice’s observables can be contextual. Thus,
for each constraint cs and each variable vt within that constraint, there exists an observable At,s
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that represents Alice’s measurement for variable vt in the context of constraint cs. On Bob’s side
there remains one observable Bt associated with each variable vt.

We will show that, if the probability of Alice and Bob’s bits being consistent is too high, then the
substitution method still yields a contradiction. Since the observables are contextual, the substi-
tuted variables are not actually eliminated; instead, a product of two versions (in different contexts)
appears. For example, the final equation for the four-lines BCS isA1A2A3A

′
3A4A

′
4A

′
2A6A5A

′
5A

′
6A

′
1 =

−I (rather than Eq. (26)), where Aj and A′
j correspond to the two contexts of each variable vj .

Let us suppose that the minimim consistency probability over all question pairs is cos θ for some
θ ≥ 0 (we will derive a lower bound on θ).

For all question pairs, (s1, t) and (s2, t),

(〈ψ|At,s1 ⊗ I) · (I ⊗Bt|ψ〉) = 〈ψ|At,s1 ⊗Bt|ψ〉 ≥ cos θ (27)

(〈ψ|At,s2 ⊗ I) · (I ⊗Bt|ψ〉) = 〈ψ|At,s2 ⊗Bt|ψ〉 ≥ cos θ. (28)

Our first observation is that,

(〈ψ|At,s1 ⊗ I) · (At,s2 ⊗ I|ψ〉) = 〈ψ|At,s1At,s2 ⊗ I|ψ〉 ≥ cos(2θ). (29)

This follows by considering the inner products among the three vectors 〈ψ|At,s1 ⊗ I, 〈ψ|I ⊗ Bt,
〈ψ|At,s2 ⊗ I and noting that the extremal case is when they are co-planar.

Since, in general, At,s1 6= At,s2 , the final equation from the substitution approach does not
reduce to I = −I (we cannot assume At,s1At,s2 = I). Nevertheless, Eq. (29) enables us to obtain a
quantitative version of the contradiction, via the following lemma.

Lemma 5 (approximate cancellation). Suppose that |ψ〉 is the maximally entangled state

|ψ〉 = 1√
d

d
∑

i=j

|j〉|j〉 (30)

and let A,B,B′, C be binary observables such that

〈ψ|ABB′C ⊗ I|ψ〉 ≥ cosΘ (31)

and
〈ψ|B′B ⊗ I|ψ〉 ≥ cos(2θ). (32)

Then
〈ψ|AC ⊗ I|ψ〉 ≥ cos(Θ + 2θ). (33)

Proof of Lemma 5. Consider the vectors

〈ψ|AB ⊗ I (34)

〈ψ|CB′ ⊗ I (35)

〈ψ|CB ⊗ I. (36)

The inner product between the first two vectors is at least cosΘ. The inner product between the
second and third vectors is

〈ψ|CB′BC ⊗ I|ψ〉 = 〈ψ|B′B ⊗ CT · CT |ψ〉 (37)

= 〈ψ|B′B ⊗ (CC)T |ψ〉 (38)

= 〈ψ|B′B ⊗ I|ψ〉 (39)

≥ cos(2θ). (40)
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Therefore, the inner product between the first and third vector is at least cos(Θ + 2θ) because the
extremal case is when the three vectors are co-planar. Since ABBC = AC, this completes the
proof of the lemma.

Returning to the proof of Theorem 4, we can apply Lemma 5 and Eq. (29) for each simplification
step in the final equation arising from the substitution approach. If there are k such steps then we
obtain

− 1 = −〈ψ|I ⊗ I|ψ〉 ≥ cos(2kθ), (41)

which is a contradiction unless 2kθ ≥ π. It follows that the minimum success probability over all
questions is upper bounded by cos(π/2k), which is strictly below 1.

For the four-line BCS game (Figure 4, Eqns. (22)) the above approach implies that the minimum
success probability over all questions is at most (1 + cos(π/12))/2 = cos2(π/24) ≈ 0.9830. From
this we can immediately bound the value of the game by 1− (1/12) sin2(π/24) ≈ 0.9986 (assuming
a uniform distribution on questions). We can obtain a better bound by considering averages of
consistency probabilities rather than the minimum consistency probability, namely cos2(π/24) ≈
0.9830. For comparison, the classical value of the four-line BCS game is 11/12 ≈ 0.9167.

6 Conclusion

6.1 Related work

There has been some interesting related work after the appearance of the first version of this article.
Arkhipov [16] studied parity BCS games where every variable appears exactly twice. He showed
that any such game has perfect strategy if and only if a related dual graph of the game is non-
planar. The result combines elegant techniques with Kuratowski’s theorem and our characterization
of perfect strategies.

Very recently, Ji [15] showed that interesting examples like quantum chromatic number and
Kochen-Specker sets can be described in the BCS game framework. He used special gadgets, called
commutativity gadgets, to show reductions between various BCS’s which preserve satisfiability
using quantum assignments. Also, he showed that for all k, there exists a parity BCS game which
requires at least k entangled qubits to play perfectly.

6.2 Open questions

There are many questions left open by this work. We have a characterization of perfect strategies
for BCS games. It shows that there always exists a perfect strategy using maximal entanglement if
a perfect entangled strategy exist. Still, given a game, deciding whether it has a perfect strategy is
open. Theorem 4 (which pertains to sequences of strategies whose success probability approaches
1 in the limit) relies on the assumption that players use maximally entangled states. Is this
assumption necessary?

There are questions pertaining to the optimal values of BCS games that admit no perfect
strategies, such as computing them. Another question is whether there always exists an optimal
strategy for a BCS game which uses maximally entangled states.

All of the above questions can be asked for general non-local games too. For the case of XOR
games, the optimal value is given by a semidefinite program [8, 14]. This shows how to compute the
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optimal value of the game and that there always exist an optimal strategy which uses maximally
entangled states [8]. It is also known for graph coloring games (like BCS games) that there always
exists a perfect strategy using maximal entanglement (if a perfect entangled strategy exist) [9]. But
whether this is true for general games that have perfect strategies remains open.
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