
Algorithmica
DOI 10.1007/s00453-017-0300-x

How Unsplittable-Flow-Covering Helps Scheduling
with Job-Dependent Cost Functions

Wiebke Höhn1 · Julián Mestre2 ·
Andreas Wiese3

Received: 11 May 2016 / Accepted: 3 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract Generalizing many well-known and natural scheduling problems, schedul-
ingwith job-specific cost functions has gained a lot of attention recently. In this setting,
each job incurs a cost depending on its completion time, given by a private cost func-
tion, and one seeks to schedule the jobs to minimize the total sum of these costs. The
framework captures many important scheduling objectives such as weighted flow time
or weighted tardiness. Still, the general case as well as the mentioned special cases are
far from being very well understood yet, even for only one machine. Aiming for better
general understanding of this problem, in this paper we focus on the case of uniform
job release dates on one machine for which the state of the art is a 4-approximation
algorithm. This is true even for a special case that is equivalent to the covering version
of the well-studied and prominent unsplittable flow on a path problem, which is inter-
esting in its own right. For that covering problem, we present a quasi-polynomial time
(1 + ε)-approximation algorithm that yields an (e + ε)-approximation for the above
scheduling problem. Moreover, for the latter we devise the best possible resource

Funded by the Go8-DAAD joint research cooperation scheme. An extended abstract of this paper
appeared in the proceedings of ICALP 2014.

B Andreas Wiese
awiese@mpi-inf.mpg.de

Wiebke Höhn
hoehn@math.tu-berlin.de

Julián Mestre
mestre@it.usyd.edu.au

1 Technische Universität Berlin, Berlin, Germany

2 The University of Sydney, Sydney, Australia

3 Max-Planck-Institut für Informatik, Saarbücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0300-x&domain=pdf
http://orcid.org/0000-0001-7814-8775

Algorithmica

augmentation result regarding speed: a polynomial time algorithm which computes a
solution with optimal cost at 1 + ε speedup. Finally, we present an elegant QPTAS
for the special case where the cost functions of the jobs fall into at most log n many
classes. This algorithm allows the jobs even to have up to log n many distinct release
dates. All proposed quasi-polynomial time algorithms require the input data to be
quasi-polynomially bounded.

Keywords Approximation algorithms · Scheduling · Job-dependent cost functions ·
Unsplittable flow

Mathematics Subject Classification Approximation algorithms (68W25)

1 Introduction

In scheduling, a natural way to evaluate the quality of a solution is to assign a cost to
each job which depends on its completion time. The goal is then to minimize the sum
of these costs. The function describing this dependence may be completely different
for each job.

There are many well-studied and important scheduling objectives which can be
cast in this framework. Some of them are already very well understood, for instance
weighted sum of completion times

∑
j w jC j for which there are polynomial time

approximation schemes (PTASs) [1], even for multiple machines and very general
machine models. On the other hand, for natural and important objectives such as
weighted flow time or weighted tardiness, not even a constant factor polynomial time
approximation algorithm is known, even on a singlemachine. In a recent break-through
result, Bansal and Pruhs presented a O(log log P)-approximation algorithm [6] for the
single machine case where every job has its private cost function, denoting by P the
range of the processing times. Formally, they study the General Scheduling Problem
(GSP) where the input consists of a set of jobs J where each job j ∈ J is specified by a
processing time p j , a release date r j , and a non-decreasing cost function f j . The goal
is to compute a preemptive schedule on one machine which minimizes

∑
j f j (C j)

where C j denotes the completion time of job j in the schedule. Interestingly, even
though this problem is very general, subsuming all the objectives listed above, the best
known complexity result for it is only strong NP-hardness. Thus, there might even be
a polynomial time (1 + ε)-approximation.

Aiming to better understand GSP, in this paper we investigate the special case
that all jobs are released at time 0. This version is still strongly NP-hard [19], even
in the restricted case where the individual cost functions are scaled versions of an
underlying common function [17]. The currently best know approximation algorithm
for GSP without release dates is a (4+ ε)-approximation algorithm [16]. As observed
by Bansal and Verschae [7], this problem is a generalization of the covering-version of
the well-studied Unsplittable Flow on a Path problem (UFP) [2,3,5,9,12,15], which
we refer to as UFP cover problem. The input of this problem consists of a path, each
edge e having a demand ue, and a set of tasks T . Each task i is specified by a start
vertex si and an end vertex ti on the path, defining a sub-path Pi , a size pi , and a

123

Algorithmica

cost ci . In the UFP cover problem, the goal is to select a subset of the tasks T ′ ⊆ T
which covers the demand profile, i.e.,

∑
i∈T ′∩Te pi ≥ ue where Te denotes the set of

all tasks i ∈ T such that e ∈ Pi . The objective is to minimize the total cost
∑

i∈T ′ ci .
The UFP cover problem is a generalization of the knapsack cover problem [10] and

corresponds to instances of GSP without release dates where the cost function of each
job attains only the values 0, some job-dependent value ci , and ∞. The UFP cover
problem has applications to resource allocation settings such as workforce and energy
management, making it an interesting problem in its own right. For example, one can
think of the tasks as representing time intervals when employees are available, and
one aims at providing certain service level that changes over the day. The best known
approximation algorithm for UFP cover is a 4-approximation [8,11]. This essentially
matches the best known result for GSP without release dates.

1.1 Our Contribution

In this paper we present several new approximation results for GSP without release
dates and some of its special cases. Since these results are based on approximations
for UFP cover problem, we state these auxiliary related results first.

First, we give a (1 + ε)-approximation algorithm for the UFP cover problem with
quasi-polynomial running time. Our algorithm uses some ideas from the QPTAS for
UFP (packing) of Bansal et al. [3]. In UPF (packing), each edge has a capacity value
analogous to the demand value in UFP cover; the goal is to select a maximum profit
subset of tasks such that every edge the aggregate size of tasks using that edge does
not exceed its capacity. The high-level idea behind the QPTAS of Bansal et al. [3] is
to start with an edge in the middle of the path and to consider the tasks using it. One
divides these tasks into groups, all tasks in a group having roughly the same size and
cost. For each group, one guesses an approximation of the capacity profile used by an
optimal solution using the tasks in that group. In UPF (packing), one can show that
by slightly underestimating the true profile one still obtains almost the same profit as
the optimum.

A natural adaptation of this idea to the UFP cover problem would be to guess an
approximate coverage profile that overestimates the profile covered by an optimal
solution. Unfortunately, it might happen that the tasks in a group may not suffice to
cover certain approximate profiles. When considering only a polynomial number of
approximate profiles, this could lead to a situation where the coverable approximate
profiles are much more expensive to cover that the optimal solution.

We remedy this problem in a maybe counterintuitive fashion. Instead of guessing
an approximate upper bound of the true profile, we first guess a lower bound of it.
Then we select tasks that cover this lower bound, and finally add a small number
of “maximally long” additional tasks. Using this procedure, we cannot guarantee
how much our selected tasks exceed the guessed profile on each edge. However,
we can guarantee that for the correctly guessed profile, we cover at least as much
as the optimum and pay only slightly more. Together with the recursive framework
from [3], we obtain a QPTAS. As an application, we use this algorithm to get a quasi-
polynomial time (e+ε)-approximation algorithm for GSPwith uniform release dates,

123

Algorithmica

improving the approximation ratio of the best knownpolynomial time4-approximation
algorithm [16]. This algorithm, as well as the QPTAS mentioned below, requires the
input data to be quasi-polynomially bounded.

In addition, we consider a different way to relax the problem. Rather than sacrificing
a 1 + ε factor in the objective value, we present a polynomial time algorithm that
computes a solution with optimal cost but requires a speedup of 1 + ε. Such a result
can be easily obtained for job-independent, scalable cost functions i.e., functions f
for which there exist a function φ satisfying f (c · t) = φ(c) · f (t) for any c, t ≥ 0.
In this case, the result is immediatly implied by the PTAS in [21] and the observation
that for scalable cost functions s-speed c-approximate algorithms translate into (s ·c)-
speed optimal ones. In our case, however, the cost functions of the jobs can be much
more complicated and, even worse, they can be different for each job. Our algorithm
first imposes some simplification on the solutions under consideration, at the cost of a
(1 + ε)-speedup. Then, we use a recently introduced technique to by Sviridenko and
Wiese [23]. They first guess a set of discrete intervals representing slots for large jobs
and the placement of big jobs into discrete intervals. Then they use a linear program
to simultaneously assign large jobs into these slots and small jobs into the remaining
idle times. Like in the latter paper, for the case that the processing times of the jobs are
not polynomially bounded, we employ a technically involved dynamic programwhich
moves on the time axis from left to right and considers groups of O(log n) intervals
at a time.

An interesting open question is to design a (Q)PTAS for GSP without release
dates. As a first step towards this goal, recently Megow and Verschae [21] presented
a PTAS for minimizing the objective function

∑
j w j g(C j) where each job j has a

private weight w j but the function g is identical for all jobs. In Sect. 4 we present
a QPTAS for a generalization of this setting. Instead of only one function g for all
jobs, we allow up to (log n)O(1) such functions, each job using one of them, and we
even allow the jobs to have up to (log n)O(1) distinct release dates. We note that our
algorithm requires the weights of the jobs to be in a quasi-polynomial range. Despite
the fact that this setting is much more general, our algorithm is very clean and easy to
analyze.

1.2 Related Work

As mentioned above, Bansal and Pruhs present a O(log log P)-approximation algo-
rithm forGSP [6]. Even for somewell-studied special cases, this is now the best known
polynomial time approximation result. For instance, for the important weighted flow
time objective, previously the best known approximation factors were O(log2 P),
O(logW) and O(log nP) [4,14], where P and W denote the ranges of the job pro-
cessing times and weights, respectively. A QPTAS with running time nOε(log P logW)

is also known [13]. For the objective of minimizing the weighted sum of completion
times, PTASs are known, even for an arbitrary number of identical and a constant
number of unrelated machines [1].

For the case of GSP with identical release dates, Bansal and Pruhs [6] give a 16-
approximation algorithm. Later, Cheung et al. [16] gave a pseudo-polynomial primal-

123

Algorithmica

dual 4-approximation, which can be adapted to run in polynomial time at the expense
of increasing the approximation factor to (4 + ε).

As mentioned above, a special case of GSP with uniform release dates is a general-
ization for the UFP cover problem. For this special case, a 4-approximation algorithm
is known [8,11]. The packing version is very well studied. After a series of papers on
the problem and its special cases [5,9,12,15], the currently best known approximation
results are a QPTAS [3] and a (2 + ε)-approximation in polynomial time [2].

2 Quasi-PTAS for UFP Cover

In this section, we present a quasi-polynomial time (1 + ε)-approximation algorithm
for the UFP cover problem. Subsequently, we show how it can be used to obtain
an approximation algorithm with approximation ratio e + ε ≈ 2.718 + ε and quasi-
polynomial running time for GSPwith uniform release dates. Throughout this section,
we assume that the sizes of the tasks are quasi-polynomially bounded. Our algorithm
follows the structure from theQPTAS for the packingversion of theUFPcover problem
due to Bansal et al. [3]. First, we describe a recursive exact algorithmwith exponential
running time. Subsequently, we describe how to turn this routine into an algorithm
with only quasi-polynomial running time and an approximation ratio of 1 + ε.

To compute the exact solution (in exponential time) one can use the following
recursive algorithm: Given the path G = (V, E), denote by eM the edge in the middle
of G and let TM denote the set of tasks that use eM , i.e., the set of all tasks i such
that eM ∈ Pi . Our strategy is to “guess” which tasks in TM are contained in OPT, an
(unknown) optimal solution.

Throughout this paper, whenever we use the notion of guessing a set of tasks (or
some other entity), we mean that we enumerate all possibilities for this set of tasks (or
the entity) and continue the algorithm for each enumerated option. One of them will
correspond to the respective choice in an optimal solution or in a suitably chosen near-
optimal solution. In order to analyze the resulting algorithm, we can therefore assume
that we know the corresponding choice in the mentioned (near-)optimal solution. This
motivates the notion of guessing. Note that if we enumerate K possibilities for the set
of tasks (or the entity) then this increases the running time of the remaining algorithm
by a factor of K .

Once we have choosen the tasks from TM that we want to include in our solution,
the remaining problem splits into the two independent subproblems given by the edges
on the left and on the right of eM , respectively, and the tasks whose paths are fully
contained in them. Therefore, we enumerate all subsets of T ′

M ⊆ TM . Denote by TM
the resulting set of sets. For each set T ′

M ∈ TM we recursively compute the optimal
solution for the subpaths {e1, . . . , eM−1} and {eM+1, . . . , e|E |}, subject to the tasks in
T ′
M being already chosen and that no more tasks from TM are allowed to be chosen.

The leaf subproblems are given when the path in the recursive call has only one edge.
Since |E | = O(n) this procedure has a recursion depth of O(log n) which is helpful
when aiming at quasi-polynomial running time. However, since in each recursive step
we try each set T ′

M ∈ TM , the running time is exponential (even in a single step
of the recursion). To remedy this issue, we will show that there is a set of task sets

123

Algorithmica

T̄M ⊆ TM which is of small size and which approximates TM well. More precisely,
we can compute T̄M in quasi-polynomial time (and it thus has only quasi-polynomial
size) and there is a set T ∗

M ∈ T̄M such that c(T ∗
M) ≤ (1 + ε) · c(TM ∩ OPT) and

T ∗
M dominates TM ∩ OPT. In this context, for any set of tasks T , its cost is denoted

by c(T) := ∑
i∈T ci . We modify the above procedure such that we do recurse on

each set in T̄M , instead of recursing on each set in TM . The set of task sets T̄M has
quasi-polynomial size and T̄M contains the mentioned set T ∗

M . When we continue in
the same manner, the recursion depth becomes O(log n) and the resulting algorithm
is a QPTAS. In the sequel, we describe the above algorithm in detail and show in
particular how to obtain the set of task sets T̄M .

2.1 Formal Description of the Algorithm

We assume that we know the value of the optimal objective, which we denote by B; if
we do not know the value of B, we can use binary search and the algorithm to estimate
it within a 1 + ε factor. In a preprocessing step we reject all tasks i whose cost is
larger than B and select all tasks i whose cost is at most εB/n. The latter cost at most
n · εB/n ≤ εB and thus only a factor 1+ ε in the approximation ratio. We update the
demand profile accordingly.

We define a recursive procedure UFPcover(E ′, T ′), which gets as input a subpath
E ′ ⊆ E of G and a set of already chosen tasks T ′. Denote by T̄ the set of all tasks i ∈
T \T ′ such that the path of i uses only edges in E ′. The output of UFPcover(E ′, T ′) is
a (1+ε)-approximation to the minimum cost solution for the subproblem of selecting
a set of tasks T ′′ ⊆ T̄ such that T ′ ∪ T ′′ satisfy all demands of the edges in E ′, i.e.,∑

i∈(T ′∪T ′′)∩Te pi ≥ ue for each edge e ∈ E ′. Note that there might be no feasible
solution for this subproblem in which case we output ∞. Let eM be an edge in the
“middle” of E ′, such that the number of edges on the left and on the right of eM differ
by at most one. Denote by TM ⊆ T̄ all tasks in T̄ whose path uses eM . As described
in the previous subsection, the key is now to construct the set of task sets T̄M such
that (i) each task set in T̄M is a subset of TM , (ii) one of them (the set T ∗

M in the
previous discussion) dominates TM ∩OPT while c(T ∗

M) ≤ (1+ε) ·c(TM ∩OPT), and
(iii) T̄M contains only a quasi-polynomial number of task sets. Given T̄M , we compute
UFPcover(E ′

L , T ′∪T ′
M) andUFPcover(E ′

R, T ′∪T ′
M) for each set T ′

M ∈ T̄M , where E ′
L

and E ′
R denote the subpaths of E ′ on the left and on the right of eM , respectivley. We

output

min
T ′
M∈T̄M

c(T ′
M) + UFPcover(E ′

L , T ′ ∪ T ′
M) + UFPcover(E ′

R, T ′ ∪ T ′
M).

For computing the set of task sets T̄M , we first group the tasks in TM into (log n)O(1)

many groups, all tasks in a group having roughly the same costs and sizes. Formally,
for each pair (k, �), denoting (approximately) cost (1 + ε)k and size (1 + ε)�, we
define

T(k,�) :=
{
i ∈ TM : (1 + ε)k ≤ ci < (1 + ε)k+1 ∧ (1 + ε)� ≤ pi < (1 + ε)�+1

}
.

123

Algorithmica

Since the sizes of the tasks are quasi-polynomially bounded and we preprocessed the
weights of the tasks, we have (log n)O(1) non-empty groups. As we will show in the
lemma below, for each group T(k,�), we can compute a polynomial-size set of task
sets T̄(k,�) containing at least one set that approximates OPT(k,�) := OPT∩ T(k,�)

sufficiently well.
In order to prove the lemma, we formally introduce the notion of a profile. A

profile Q : E ′ → R≥0 assigns a height Q(e) to each edge e ∈ E ′, and a profile Q
dominates a profile Q′ if Q(e) ≥ Q′(e) holds for all e ∈ E ′. The profile QT̃ induced
by a set of tasks T̃ is defined by the heights QT̃ (e) := ∑

i∈Te∈T̃ pi (recall that Te
denotes all tasks in T whose path Pi contains the edge e). Finally, a set of tasks T̃
dominates a set of tasks T̃ ′ if QT̃ dominates QT̃ ′ .

Lemma 1 Given a group T(k,�), there is a polynomial time algorithm which computes
a set of task sets T̄(k,�) that contains a set T ∗

(k,�) ∈ T̄(k,�) such that

c
(
T ∗

(k,�)

)
≤ (1 + ε) · c (OPT(k,�)

)

and T ∗
(k,�) dominates OPT(k,�) .

Proof First, we guess the number of tasks in OPT(k,�). If |OPT(k,�) | is smaller than 1
ε2

then we can guess an optimal set OPT(k,�). Otherwise, we will consider a polynomial
number of approximate profiles, one of them underestimates the unknown true profile
induced by OPT(k,�) by at most O(ε) · ∣∣OPT(k,�)

∣
∣ units on each edge. For each

approximate profile we will compute a cover of cost no more than 1 + O(ε) time
the optimum cost of covering this profile, and if the profile is close to the true profile
induced by OPT(k,�), we can extend this solution to a dominate the latter profile by
adding only O(ε) · ∣∣OPT(k,�)

∣
∣ more tasks.

Several arguments in the remaining proof are based on the structure of T(k,�) and
the structure of the true profile QOPT(k,�) . Since all tasks in T(k,�) contain the edge eM
and span a subpath of E ′, the height of the profile QOPT(k,�) is unimodular: It is non-
decreasing until eM and non-increasing after that; see Fig. 1. In particular, a task that
covers a certain edge e covers all edges in between e and eM as well.

ε(1+ε) OPT()
leftmost tasks

ε(1+ε) OPT()
rightmost tasks

not yet used
for covering
approx. profile

ε OPT() (1 + ε) +1

eM E

true profile of OPT(k)approximate profile

Fig. 1 Construction from Lemma 1

123

Algorithmica

For the approximate profiles, we restrict ourselves to heights from

H :=
{
j · ε · |OPT(k,�) | · (1 + ε)�+1

∣
∣
∣ j ∈ {0, 1, . . . , 1

ε

}}
.

Moreover, aiming to approximate the true profile, we only take into account profiles in
which the edges have non-decreasing and non-increasing height before and after eM
on the path, respectively. Utilizing the natural ordering of the edges on the path, we
formally define the set Q of approximate profiles as follows

Q :=
{
Q
∣
∣
∣

Q(e) ∈ H ∀ e ∈ E ′ ∧ Q(e) ≤ Q(e′) ∀ e < e′ ≤ eM
∧ Q(e) ≥ Q(e′) ∀ eM ≤ e < e′

}
.

Since |OPT(k,�) | · (1 + ε)�+1 is an upper bound on the height of QOPT(k,�) , there is a
profile Q∗ ∈ Qwhich is dominated by QOPT(k,�) and for which the gap QOPT(k,�) (e)−
Q(e) does not exceed ε · |OPT(k,�) | · (1 + ε)�+1 for all e ∈ E ′. Observe that by
construction, an approximate profile can have at most |H| edges at which it jumps
from one height to a larger one, and analogously, it can have at most |H| edges where
it can jump down to some smaller height. Hence, Q contains at most n2 |H| = n2/ε

profiles.
For each approximate profile Q ∈ Q, we compute a cover based on LP rounding.

To this end, we denote by eL(h) and eR(h) the first and last edge e ∈ E ′ for which
Q(e) ≥ h, respectively. Note that by the structure of the paths of tasks in T(k,�), in
fact every set of tasks covering eL(h) also covers all edges between eM and eL(h) by
at least the same amount, and analogously for eR(h). Regarding the LP-formulation,
this allows us to only require a sufficient covering of the edges eL(h) and eR(h) rather
than of all edges. Denoting by xi the decision variable representing its selection for
the cover, we formulate the LP as follows

min
∑

i∈T(k,�)

ci · xi
∑

i∈T(k,�):eL (h)∈Pi

xi · pi ≥ h ∀ h ∈ H

∑

i∈T(k,�):eR(h)∈Pi

xi · pi ≥ h ∀ h ∈ H

0 ≤ xi ≤ 1 ∀ i ∈ T(k,�) .

If there exists a feasible solution to the LP, we round up all fractional values x∗
i

(i.e., values x∗
i ∈ (0, 1)) of some optimal extreme point solution x∗, and we choose

the corresponding tasks as a cover for Q and denote them by T ∗. Since the LP has
only 2|H| = 2

ε
more constraints than variables, its optimal extreme point solutions

contain at most 2
ε
fractional variables. Hence, the additional cost incurred by the

rounding does not exceed 2
ε
(1+ε)k+1, where the latter term is the maximum task cost

in T(k,�). For the matter of calculating the cost of the computed solution, let us assume
that Q = Q∗ (recall that Q∗ is a profile dominated by QOPT(k,�) for which the gap

123

Algorithmica

QOPT(k,�) (e) − Q(e) is bounded by ε · |OPT(k,�) | · (1 + ε)�+1 on each edge e ∈ E ′).
Then, the cost of the selected tasks is at most

∑

i∈T(k,�)

ci · x∗
i + 2

ε
(1 + ε)k+1 ≤ c(OPT(k,�)) + 2ε · ∣∣OPT(k,�)

∣
∣ · (1 + ε)k+1

≤ (
1 + 2ε (1 + ε)

) · c(OPT(k,�)) ,

where the first and second inequality follows from
∣
∣OPT(k,�)

∣
∣ ≥ 1

ε2
and from the

minimum task weight in T(k,�), respectively, and moreover, the first inequality uses
that Q = Q∗ is dominated by QOPT(k,�) .

After covering some Q ∈ Q with tasks T ∗ in the first step, in the second step
we extend this cover by additional edges A∗ ⊆ T(k,�) \ T ∗. We define the set A∗ to
contain ε (1 + ε) · ∣∣OPT(k,�)

∣
∣ tasks T(k,�) \ T ∗ with the leftmost start vertices and

ε (1 + ε) · ∣∣OPT(k,�)
∣
∣ tasks in T(k,�) \ T ∗ with the rightmost end vertices. We add

T ∗ ∪ A∗ to the set of task sets T̄(k,�).
Assume that Q = Q∗. Then the above LP has a feasible solution and in particular

the resulting set T ∗ ∪ A∗ was added to T̄(k,�). We claim that the computed tasks
T ∗ ∪ A∗ dominate OPT(k,�). Firstly, observe that any set of ε (1+ε) · ∣∣OPT(k,�)

∣
∣ tasks

from T(k,�) has a total size of at least the gap between two height steps fromH. Hence,
if an edge e is covered by that many edges from A∗ and Q = Q∗ then we know that
QT ∗∪A∗(e) ≥ QOPT(k,�) (e).

On the other hand, if an edge e is covered by less than ε (1+ ε) · ∣∣OPT(k,�)
∣
∣ tasks

from A∗, we know that there exists no further task in T(k,�) \ (T ∗ ∪ A∗) whose path
contains e. Otherwise, this would be a contradiction to the choice of the tasks A∗
being the ε (1+ε) · ∣∣OPT(k,�)

∣
∣ ones with the leftmost start and rightmost end vertices,

respectively. Thus, since in this second case T ∗ ∪ A∗ contains all tasks that cover e,
we have that QT ∗∪A∗(e) ≥ QOPT(k,�) (e).

Finally, the total cost of A∗ does not exceed

2ε (1 + ε) · ∣∣OPT(k,�)
∣
∣ · (1 + ε)k+1 ≤ 2ε (1 + ε)2 · c(OPT(k,�)) ,

and so T ∗ ∪ A∗ has cost of at most (1 + ε′) · c(OPT(k,�)) for ε′ := 2ε(1 + ε)

(2 + ε). ��
We define the set of tasks sets T̄M as follows: we consider all combinations of

taking exactly one set T̄(k,�) ∈ T̄(k,�) from each set of task sets T̄(k,�) (there is one
such set for each group T(k,�)). For each such combination we take the union of the
respective sets T̄(k,�) and add the resulting union to T̄M . Since there are (log n)O(1)

groups, by Lemma 1 the set T̄M contains only a quasi-polynomial number of task sets
and it contains one set T ∗

M which is a good approximation to TM ∩ OPT, i.e., the set
T ∗
M dominates TM ∩OPT and it is at most by a factor 1+ O(ε) more expensive. Now

each node in the recursion tree has at most n(log n)O(1)
children and, as argued above,

the recursion depth is O(log n). Thus, a call to UFPcover(E,∅) has quasi-polynomial
running time and yields a (1 + O(ε))-approximation for the overall problem.

123

Algorithmica

Theorem 1 For any ε > 0 there is a quasi-polynomial (1 + ε)-approximation algo-
rithm for UFP cover if the sizes of the tasks are in a quasi-polynomial range.

2.2 (e+ ε)-Approximation for GSP with Uniform Release Dates

Bansal and Pruhs [6] give a 4-approximation-preserving reduction from GSP with
uniform release dates to UFP cover using geometric rounding. Here we observe that
if instead we use randomized geometric rounding [18], then one can obtain an e-
approximation-preserving reduction. Together with our QPTAS for UFP cover, we
get the following result.

Theorem 2 For any ε > 0 there is a quasi-polynomial time (e + ε)-approximation
algorithm for GSP with uniform release dates.

Proof The heart of the proof is an e-approximation-preserving reduction from GSP
with uniform release dates to UFP cover. Although here we develop a randomized
algorithm, we note that the reduction can be de-randomized using standard techniques.

Given an instance of the scheduling problem we construct an instance of UFP
cover as follows. For ease of presentation, we take our path G = (V, E) to have
vertices 0, 1, . . . , P; towards the end, we explain how to obtain an equivalent and
more succinct instance. For each i = 1, . . . , P , edge e = (i − 1, i) has demand
ue = P − i . Finally, we assume that for each job j and time slot t we have f j (t) = 0
or f j (t) ≥ 1; otherwise, we can always scale the functions so that this property holds.

The reduction has two parameters, γ > 1 and α ∈ [0, 1], which will be chosen
later to minimize the approximation guarantee. For each job j , we define a sequence
of times t j0 , t j1 , t j2 , . . . , t jk starting from 0 and ending with P + 1 such that the cost
of finishing a job in between two consecutive times differs by at most a factor of γ .
Formally, t j0 = 0, t jk = P + 1 and t ji is the first time step such that f (t ji) > γ i−1+α .

For each i > 0 such that t ji−1 < t ji , we create a task covering the interval
[
t ji−1, t

j
i − 1

]

having demand p j and costing f j (t
j
i − 1).

Given a feasible solution of the UFP cover instance, we claim that we can construct
a feasible schedule of no greater cost. For each job j , we consider the right-most task
chosen (we need to pick at least one task from each job to be feasible) in the UFP cover
solution and assign to j a due date equal to the right endpoint of the task. Notice that
the cost of finishing the jobs by their due date equals the total cost of these right-most
tasks. By the feasibility of the UFP cover solution, it must be the case that for each
time t , the total processing volume of jobs with a due date of t or greater is at least
T − t + 1. Therefore, scheduling the jobs according to earliest due date first, yields a
schedule that meets all the due date. Therefore, the cost of the schedule is at most the
cost of the UFP cover instance.

Conversely, given a feasible schedule, we claim that, if α is chosen uniformly at
random and γ is set to e, then there is a solution of the UFP cover instance whose
expected cost is at most e times more expensive that the cost of the schedule. For
each job j , we pick all the tasks whose left endpoint is less than or equal to C j , the
completion time of j . It follows that the UFP cover solution is feasible. Let f j (C j)

123

Algorithmica

be the cost incurred by j . For a fixed α, let the most expensive task induced by j
cost f j (C j)γ

β . Notice that β is also uniformly distributed in [0, 1]. The combined
expected cost of all the tasks induced by j is therefore

∫ 1

0
f j (C j)

(
γ β + γ β−1 + · · ·

)
dβ = f j (C j)

γ

ln γ
,

which is minimum at γ = e. By linearity of expectation, we get that the total cost of
the UFP cover solution is at most an e factor larger than the cost of the schedule.

To de-randomize the reduction, and at the expense of adding another ε′ to the
approximation factor, one can discretize the randomvariableα, solve several instances,
and return the one producing the best solution. Finally, we mention that it is not
necessary to construct the full path from 0 to P . It is enough to keep the vertices
where tasks start or end. Stretches where no task begins or end can be summarized by
an edge having demand equal to the largest demand in that stretch.

Applying the e-approximation-preserving reduction and then running the (1 + ε)-
approximation of Theorem 2 finishes the proof. ��

3 General Cost Functions Under Speedup

We present a polynomial time algorithm that computes a solution for an instance of
GSPwith uniform release dateswhose cost is optimal and that is feasible if themachine
runs with speed 1 + ε (rather than unit speed).

Let 0 < ε < 1 be a constant and assume for simplicity that 1
ε

∈ N. For our
algorithm, we first prove different properties that we can assume “at 1 + ε speedup”;
by this, wemean that there is a schedule whose cost is at most the optimal cost (without
enforcing these restricting properties) and that is feasible if we increase the speed of
the machine by a factor 1+ ε. Many statements are similar to properties that are used
in [1] for constructing PTASs for the problem of minimizing the weighted sum of
completion times.

For a given schedule denote by S j and C j the start and completion times of job j

(recall that we consider only non-preemptive schedules). We define C (1+ε)
j to be the

smallest power of 1 + ε which is not smaller than C j , i.e.,

C (1+ε)
j := (1 + ε)�log1+ε C j� ,

and we adjust the objective function as given in the next lemma. Also, we impose that
jobs that are relatively large are not processed too early (the speedup will compensate
for the delay of the start time). Formally, we enforce this by introducing artificial
release dates r(j) for each job j , and we disallow to start job j before time r(j).

In a given schedule, we call a job j large if S j ≤ 1
ε3

· p j and small otherwise.
For the large jobs, we do not allow arbitrary starting times but we discretize the time
axis such that it contains only a constant number of starting times for large jobs (for
constant ε). For this purpose, we define intervals and subintervals of the form

123

Algorithmica

It := [Rt , Rt+1) with Rt := (1 + ε)t ∀ t ∈ N

It,k := [Rt,k, Rt,k+1) with Rt,k :=
(
1 + k · 1

6
ε4

1+ε

)
· Rt ∀ t ∈ N,

k ∈
{
0, ..., 6 � 1+ε

ε3
�
}

.

Note that for any fixed t all intervals It,k have equal length. For the small jobs, we
do not want them to overlap over interval boundaries and we want that all small jobs
scheduled in an interval It are scheduled during one (connected) subinterval I st ⊆ It .

Lemma 2 At 1 + O(ε) speedup we can make the following assumptions:

1. The objective function is
∑

j f j
(
C (1+ε)

j

)
, instead of

∑
j f j (C j).

2. For each job j it holds S j ≥ (1 + ε)

⌊
log1+ε

(
ε

1+ε
·p j

)⌋

=: r(j).
3. Any small job starting during an interval It finishes in It .
4. Each large job starts at some point in time Rt,k and every interval It,k is used by

either only small jobs or by one large job or it is empty.
5. For each interval It there is a time interval It,k,� := [Rt,k, Rt,�) with 0 ≤ k ≤ � ≤

6 1+ε
ε3

during which no large jobs are scheduled, and no small jobs are scheduled
during It \ It,k,�.

Proof Each property of the lemma will require us to increase the speed of the machine
by a factor of 1 + ε, apart from the last property. Compared to the initial unit speed,
the final speed will be some power of 1+ ε. Technically, we consolidate the resulting
polynomial in ε to some ε′ = O(ε), achieving all properties at speed 1 + ε′.

Throughout the proof we make use of the observation that at speedup 1 + ε, a
processing time p reduces to 1

1+ε
· p, and hence, we gain idle time of length ε

1+ε
· p.

To observe the first point of the lemma, consider some job j with completion
timeC j in an arbitrary schedule at unit speed. After increasing of the speed by a factor

of 1 + ε, time C (1+ε)
j corresponds to

(1 + ε)

⌈

log1+ε

C j
1+ε

⌉

= (1 + ε)�log1+ε C j�−1 ≤ C j ,

and hence, the ensued cost never exceeds the original cost.
Regarding the second point of the lemma, the above observation implies that at

speedup 1 + ε a job j of processing time p j allows for an additional idle time of

length ε/(1 + ε) · p j . Hence, if S j < (1 + ε)�log1+ε(ε·p j /(1+ε))� = r(j) we can set its
start time to r(j) without exceeding its unit speed completion time.

For showing the third point, consider a small job that starts in It and that finishes
in some later interval. By definition, its length is at most ε3 · Rt+1. From the above
observations and the interval length |It | = ε · Rt , it follows that at speed 1 + ε, the
interval It provides an additional idle time of length ε2/(1 + ε) · Rt , and the length
of the small job reduces to at most ε3 · Rt . Since for sufficiently small ε it holds that
ε2

1+ε
≥ ε3, the small job can be scheduled during the new idle time, and hence, it

finishes in It .

123

Algorithmica

Regarding the second to last point of the lemma, we consider a large job i , the
large job j that is scheduled after i , and all small jobs scheduled between i and j (any
of the three may also not exist). Let It be the interval during which i finishes, and
let It (i, j) ⊆ It be the subinterval of It that is used by i and j and all small jobs in
between. If i or j is fully scheduled during It then the length of It (i, j) is at least the
minimum processing time of a large job ε3 · Rt . Otherwise, if i starts before It and j
finishes after It , it holds It (i, j) = It , and thus, |It (i, j)| = ε · Rt . Hence, in any case
we know that

|It (i, j)| ≥ min{ε3 · Rt , ε · Rt } = ε3 · Rt .

By the above observation, at speedup 1 + ε the interval It (i, j) provides additional
idle time of ε4/(1 + ε) · Rt , i.e., 6 free intervals It,k . We use two of these intervals
to separate i from the small jobs and the small jobs from j , respectively. The remain-
ing idle intervals It,k ensure that we can proceed analogously for the overlapping
intervals It (∗, i) and It (j, ∗).

Note that by starting jobs from It earlier in the same interval we do not violate the
release dates assumed by Lemma 2.2 since jobs are only released at the beginning of
an interval It . This completes the proof of the fourth part of the lemma.

The proof of the last point of the lemma is a straight-forward implication of its
fourth point. By this we can assume that all small jobs are contained in intervals It,k
that contain no large jobs. We change the order of the subintervals which either belong
to small jobs or to large jobs that are fully scheduled in It . We proceed in such a way
that all intervals of small jobs occur consecutively. Since all jobs still finish in It this
modification does not increase the cost of the schedule.

Overall, we can make the assumptions of the lemma at a total speedup of (1+ ε)4,
which is 1 + O(ε) under our assumption that ε < 1, so the lemma follows. ��

3.1 Special Case of Polynomial Processing Times

For the moment, let us assume that the processing times of the instance are polyno-
mially bounded. We will give a generalization to arbitrary instances later.

Our strategy is the following: Since the processing times are bounded, the whole
schedule finishes within log1+ε(

∑
j p j) ≤ O(1

ε
log n) intervals, (i.e., O(log n) for

constant ε).1 Ideally, we would like to guess the placement of all large jobs in the
schedule and then use a linear program to fill in the remaining small jobs. However, this

would result in nO(1
ε
log n) possibilities for the large jobs, which is quasi-polynomial

but not polynomial. Instead, we only guess the pattern of large-job usage for each
interval. A pattern P for an interval is a set of O(1

ε3
) integers which defines the start

and end times of the slots during which large jobs are executed in It .

Proposition 1 For each interval It there are only N ∈ Oε(1)many possible patterns,
i.e., constantly many for constant ε. The value N is independent of t .

1 We write Oε(f (n)) for an expression which is O(f (n)) for constant ε.

123

Algorithmica

We first guess all patterns for all intervals at once. Since there are only O
(1

ε
log n

)

intervals, this yields only N
O
(
1
ε
log n

)

∈ nOε(1) possible combinations for all patterns
for all intervals. Suppose now that we guessed the pattern corresponding to the optimal
solution correctly. Next, we solve a linear program that in parallel

– assigns large jobs to the slots specified by the pattern,
– assigns small jobs into the remaining idle times on the intervals.

Formally, we solve the following LP. We denote by Q the set of all slots for large
jobs, size(s) denotes the length of a slot s, begin(s) its start time, and t (s) denotes
the index of the interval It that contains s. For each interval It denote by rem(t) the
remaining idle time for small jobs, and consider these idle times as slots for small
jobs, which we refer to by their interval indices I := {1, . . . , log1+ε(

∑
j p j)}. For

each pair of slot s ∈ Q and job j ∈ J , we introduce a variable xs, j corresponding to
assigning j to s. Analogously, we use variables yt, j for the slots in I .

min
∑

j∈J

(∑

s∈Q
f j (Rt (s)+1) · xs, j +

∑

t∈I
f j (Rt+1) · yt, j

)

(1)

∑

s∈Q
xs, j +

∑

t∈I
yt, j = 1 ∀ j ∈ J (2)

∑

j∈J

xs, j ≤ 1 ∀ s ∈ Q (3)

∑

j∈J

p j · yt, j ≤ rem(t) ∀ t ∈ I (4)

xs, j = 0 ∀ s ∈ Q, ∀ j ∈ J : r(j) > begin(s) ∨ p j > size(s) (5)
yt, j = 0 ∀ t ∈ I, ∀ j ∈ J : r(j) > Rt ∨ p j > ε · |It |. (6)

xs, j , yt, j ≥ 0 ∀ s ∈ Q, ∀ t ∈ I, ∀ j ∈ J (7)

Denote the above LP by sLP. It has polynomial size and thus we can solve it
efficiently. Borrowing ideas from [22] we round it to a solution that is not more costly
and which can be made feasible using additional speedup of 1 + ε.

Lemma 3 Given a fractional solution (x, y) to sLP. In polynomial time, we can
compute a non-negative integral solution (x ′, y′) whose cost is not larger than the
cost of (x, y) and which fulfills the constraints (2), (3), (5), (6), (7) and

∑

j∈J

p j · yt, j ≤ rem(t) + ε · |It | ∀ t ∈ I. (4a)

Proof The proof follows the general idea of [22]. Given some fractional solution (x, y)
to the sLP (2)–(7), we construct a fractional matchingM in a bipartite graphG = (V ∪
W, E). For each job j ∈ J and for each large slot s ∈ Q, we introduce vertices v j ∈ V
and ws ∈ W , respectively. Moreover, for each slot of small jobs t ∈ I , we add kt :=⌈∑

j∈J yt, j
⌉
vertices wt,1, . . . , wt,kt ∈ W . We introduce an edge (v j , ws) ∈ E with

cost f j (Rt (s)+1) for all job-slot pairs for which xs, j > 0, and we choose it to an
extent of xs, j for M . Regarding the vertices wt,1, . . . , wt,kt , we add edges in the

123

Algorithmica

following way. We first sort all jobs j with yt, j > 0 in non-increasing order of their
length p j , and we assign them greedily to wt,1, . . . , wt,kt ; that is, we choose the first
vertex wt,� which has not yet been assigned one unit of fractional jobs, we assign as
much as possible of yt, j to it, and if necessary, we assign the remaining part to the next
vertexwt,�+1. Analogously to the above edges, we define the cost of an edge (v j , wt,�)

to be f j (Rt+1), and we add it fractionally to M according to the fraction yt,�, j of yt, j
the job was assigned to wt,� by the greedy assignment. Note that pmin

t,� ≥ pmax
t,�+1 for

� = 1, . . . , kt − 1 where pmin
t,� and pmax

t,� are the minimum and maximum length of all
jobs (fractionally) assigned to wt,�, respectively.

By construction, M is in fact a fractional matching, i.e., for every vertex v j ∈ V the
set M contains edges whose chosen fractions add up to exactly 1. Moreover, the total
cost of M equals the cost of the solution (x, y). Due to standard matching theory, we
know that there also exists an integral matching M ′ in G whose cost does not exceed
the cost of M , and sinceG is bipartite, we can compute such a matching in polynomial
time, see e.g., [20]. We translate M back into an integral solution (x ′, y′) of the LP
where we set yt, j = 1 for every edge (v j , wt,�) in M . It remains to show that (x ′, y′)
satisfies (2), (3), (4a), (5), (6) and (7). All constraints but (4a) are immediately satisfied
by construction. In order to show that (4a) is satisfied observe that

∑

j∈J

p j · y′
t, j ≤

kt∑

�=1

pmax
t,� ≤ pmax

t,1 +
kt∑

�=2

pmax
t,� ≤ ε · |It | +

kt−1∑

�=1

pmin
t,�

≤ ε · |It | +
kt−1∑

�=1

∑

j∈J :
(v j ,wt,�)∈E

p j · yt,�, j ≤ ε · |It | +
kt∑

�=1

∑

j∈J :
(v j ,wt,�)∈E

p j · yt,�, j

= ε · |It | +
∑

j∈J

p j · yt, j ≤ ε · |It | + rem(t) ,

where the third inequality follows from (6). ��

In particular, the cost of the computed solution is no more than the cost of the
integral optimum and it is feasible under 1 + O(ε) speedup according to Lemma 2.
We remark that the technique of guessing patterns and filling them in by a linear
program was first used in [23].

3.2 General Processing Times

For the general case, i.e., for arbitrary processing times, we first show that at 1 + ε

speedup, we can assume that for each job j there are only O(log n) intervals
between r(j) (the artificial release date of j) and C j . Then we devise a dynamic pro-
gram which moves from left to right on the time axis and considers sets of O(log n)

intervals at a time, using the technique from Sect. 3.1.

123

Algorithmica

Lemma 4 At 1 + ε speedup we can assume that

C j

r(j)
≤ q(n) := 1

ε3
n + (1 + ε)5 .

Thus, [r(j),C j) has non-empty intersection with at most K ≤ Oε(log n) intervals It .

Proof Consider some interval It and some job j that has been released not later than
the beginning of the interval, i.e., r(j) ≤ Rt . According to the definition of r(j)

in Lemma 2.2 this is equivalent to t ≥
⌊
log1+ε

(
ε

1+ε
· p j

)⌋
, which can be further

bounded as follows
⌊
log1+ε

(
ε

1+ε
· p j

)⌋
≥ log1+ε

(
ε

1+ε
· p j

)
− 1 = log1+ε

(
ε · p j

)− 2 .

This implies an upper bound on the total processing time of all jobs released before It

∑

j :r(j)≤Rt

p j ≤
∑

j :r(j)≤Rt

1
ε
(1 + ε)t+2 ≤ n · 1

ε
(1 + ε)t+2 ≤ ε2(1 + ε)

t+2+
⌈
log1+ε(

n
ε3

)
⌉

.

(8)

Now, consider the idle time that we gain in It at speedup 1+ ε, which has a length
of ε/(1 + ε) · |It | = ε2 (1 + ε)t−1. From (8) it follows that at speedup 1 + ε the
interval It+s with s := �log1+ε

(n
ε3

)� + 3 provides enough space to hold all jobs
released before Rt . Hence, we can assume those jobs to finish not later than Rt+s+1.

Since all jobs i with r(i) ≤ Rt−1 can be scheduled in the idle time of some earlier
interval if necessary, we can assume Rt−1 < r(j) ≤ Rt , and hence,

C j

r(j)
≤ Rt+s+1

Rt−1
= (1 + ε)s+2 = 1

ε3
· n + (1 + ε)5 .

In particular, it is sufficient to consider s + 2 = Oε(log n) intervals for processing a
job. ��

Throughout the remainder of this section let K := ⌈
log1+ε(q(n))

⌉ ∈ Oε(log n)

where q(n) is the polynomial from Lemma 4. Thus, K denotes the number of intervals
between the time r(j) and the completion time C j of each job j .

If after the assumption of Lemma 4 there is a point in time τ that will not schedule
any job, i.e., there is no job j with τ ∈ [r(j), r(j) · q(n)), then we divide the instance
into two independent pieces.

Proposition 2 Without loss of generality we can assume that the union of all intervals⋃
j [r(j), r(j) · q(n)) is a (connected) interval.

For our dynamic program (DP)we subdivide the time axis intoblocks. Eachblock Bi
consists of the intervals Ii ·K , . . . , I(i+1)·K−1. The idea is that in each iteration the DP
schedules the jobs released during a block Bi in the intervals corresponding to the

123

Algorithmica

blocks Bi and Bi+1. So in the end, the intervals of each block Bi+1 contain jobs
released during Bi and Bi+1. To separate the jobs from both blocks we prove the
following lemma.

Lemma 5 At 1 + ε speedup we can assume that during each interval It in a block
Bi+1 there are two subintervals [at , bt), [bt , ct) ⊆ It such that

– during [at , bt) only small jobs from block Bi are scheduled and during It \ [at , bt)
no small jobs from block Bi are scheduled,

– during [bt , ct) only small jobs fromblock Bi+1 are scheduled and during It \[bt , ct)
no small jobs from block Bi+1 are scheduled,

– the interval boundaries at , bt , ct are of the form
(
1 + z · ε4

4 (1+ε)2

) · Rt for x ∈ N

and z ∈ {0, 1, . . . , 4 (1+ε)2

ε3

}
(so possibly [at , bt) = ∅ or [bt , ct) = ∅).

Proof Based on Lemma 2.3 we can assume that all small jobs that are started within It
also finish in It ; moreover, they are processed in some interval It,k,� ⊆ It which
contains no large jobs (see Lemma 2.5 for the notation). By Lemma 4, the interval It
can be assumed to contain only small jobs with release date in Bi and Bi+1, and by
Lemma 2.1 we know that we can rearrange the jobs in It without changing the cost.
Hence, for proving the lemma it is sufficient to show that we can split It,k,� at some of
the discrete points given in the lemma, such that the small jobs released in Bi and Bi+1
are scheduled before and after this point, respectively.

The interval It,k,� starts at (1+ 1
4 k · ε4/(1+ ε)) · Rt and its length is some integral

multiple of 1
4 ε4/(1+ε)·Rt . At a speedup of 1+ε, the interval It,k,� provides additional

idle time of length at least 1
4 ε4/(1 + ε)2 · Rt (if It,k,� is not empty), which equals

the step width of the discrete interval end points required in the lemma. Hence, by
scheduling all small jobs released in Bi and Bi+1 at the very beginning and very end
of It,k,�, there must be a point in time τ := (1 + z · ε4/(4 (1 + ε)2)) · Rt with z ∈
{0, 1, . . . , 4 (1 + ε)2/ε3} which lies in the idle interval between the two groups of
small jobs. Finally, if setting at and ct to the start and end of It,k,�, respectively, and
if choosing bt := τ , we obtain intervals as claimed in the lemma. ��

Using Lemma 4 we devise a dynamic program.We work again with patterns for the
intervals. Here a pattern for an interval It in a block Bi denotes O(ε) integers which
define

– the start and end times of the large jobs from Bi−1 which are executed during It ,
– the start and end times of the large jobs from Bi which are executed during It ,
– at , bt , ct according to Lemma 5, implying slots for small jobs.

Denote by N̄ the number of possible patterns for an interval It according to this
definition. Similarly as in Proposition 1 we have that N̄ ∈ Oε(1) and N̄ is independent
of t .

Each dynamic programming cell is characterized by a tuple (Bi , Pi) where Bi is a
block during which at least one job is released or during the block thereafter, and Pi
denotes a pattern for all intervals of block Bi . For a pattern Pi , we denote by Qi (Pi)
and Qi−1(Pi) the set of slots in Bi which are reserved for large jobs released in Bi−1

123

Algorithmica

and Bi , respectively. Moreover, for some interval It in Bi let Di−1,t (Pi) and Di,t (Pi)
be the two slots for small jobs from Bi−1 and Bi , respectively. The number of DP-
cells is polynomially bounded as there are only n blocks during which at least one
job is released and, as in Sect. 3.1, the number of patterns for a block is bounded by
N̄ Oε(log n) ∈ nOε(1).

The subproblem encoded in a cell (Bi , Pi) is to schedule all jobs j with r(j) ≥ Ii ·K
during [Ri ·K ,∞) while obeying the pattern Pi for the intervals Ii ·K , . . . , I(i+1)·K−1.
To solve this subproblem we first enumerate all possible patterns Pi+1 for all intervals
of block Bi+1. Suppose that we guessed the pattern Pi+1 corresponding to the optimal
solution of the subproblem given by the cell (Bi , Pi). Like in Sect. 3.1 we solve
the problem of scheduling the jobs of block Bi according to the patterns Pi and
Pi+1 by solving and rounding a linear program of the same type as sLP. Denote by
opt(Bi , Pi , Pi+1) the optimal solution to this subproblem.

Lemma 6 Given a DP-cell (Bi , Pi) and a pattern Pi+1, there is a polynomial time
algorithm that computes a solution to the problem of scheduling all jobs released
during Bi according to the patterns Pi , Pi+1 such that

– the cost is bounded by opt(Bi , Pi , Pi+1) and
– the schedule is feasible if during Bi and Bi+1 the speed of the machine is increased
by a factor of 1 + ε.

Proof The proof works analogously to the proof of Lemma 3. We formulate the fol-
lowing LP for (fractionally) solving the problem

min
∑

j∈Ji

⎛

⎜
⎜
⎝

∑

s∈Qi (Pi)∪Qi (Pi+1)

f j (Rt (s)+1) · xs, j +
(i+2)·K−1∑

t=i ·K
f j (Rt+1) · yt, j

⎞

⎟
⎟
⎠ (9)

∑

s∈Qi (Pi)∪Qi (Pi+1)

xs, j +
(i+2)·K−1∑

t=i ·K
yt, j = 1 ∀ j ∈ Ji (10)

∑

j∈Ji

xs, j ≤ 1 ∀ s ∈ Qi (Pi) ∪ Qi (Pi+1) (11)

∑

j∈Ji

p j · yt, j ≤ ∣
∣Di,t

(
Pi(t)

)∣
∣ ∀ t ∈ {i · K , . . . , (i + 2) · K − 1} (12)

xs, j = 0 ∀ j ∈ Ji , ∀ s ∈ Q : r(j) > begin(s)

∨ p j > size(s) (13)
yt, j = 0 ∀ t ∈ I, ∀ j ∈ Ji : r(j) > Rt

∨ p j > ε · |It | (14)
xs, j , yt, j ≥ 0 ∀ j ∈ Ji , ∀ s ∈ Qi (Pi) ∪ Qi (Pi+1),

∀ t ∈ {i · K , . . . , (i + 2) · K − 1} , (15)

where Ji ⊆ J denotes the set of all jobs j with r(j) ∈ Bi , and i(t) is the index of the
block that contains the interval It .

123

Algorithmica

This LP has exactly the same structure as sLP (1)–(7) and hence, we obtain an
analogous result to Lemma 3. This means that given a fractional solution (x, y) to
the above LP, we can construct an integral solution (x ′, y′) which is not more costly
than (x, y), and which fulfills all constraints (10)– (15) with (12) being replaced by
the relaxed constraint

∑

j∈Ji

p j · yt, j ≤ |Di,t (Pi(t))| + ε · |It | ∀ t ∈ {i · K , . . . , (i + 2) · K − 1} .

We increase the speed by a factor of 1+ ε
1−ε

∈ 1+O(ε) and thus each interval provides
an additional idle time of ε · |It |. Therefore, in each interval It we can schedule all
jobs that are assigned to It by the integral solution (x ′, y′). Due to Lemma 2.1, this
does not increase the cost of the schedule which concludes the proof. ��

By definition of the patterns, an optimal solution OPT(Bi+1, Pi+1) is independent
of the patterns that have been chosen for earlier blocks. This is simply due to the
separately reserved slots for jobs from different blocks within each pattern, i.e., a slot
in Bi+1 which is reserved for jobs from Bi cannot be used by jobs from Bi+1 in any
case. Hence, OPT(Bi , Pi) decomposes into OPT(Bi+1, Pi+1) and opt(Bi , Pi , Pi+1)

for a pattern Pi+1 ∈ Pi+1 which leads to the lowest cost, where Pi+1 denotes the set
of all possible patterns for block Bi+1. Thus, formally it holds that

OPT(Bi , Pi) = min
Pi+1∈Pi+1

OPT(Bi+1, Pi+1) + opt(Bi , Pi , Pi+1) . (16)

This observation of an optimal substructure allows to easily formulate a DP. We
interpret each cell (Bi , Pi) as a node in a graph, and we add an edge between
cells (Bi , Pi) and (Bi+1, Pi+1) for all Pi ∈ Pi and Pi+1 ∈ Pi+1. For each triple
Bi , Pi , Pi+1 we compute a solution using Lemma 6, and we assign the cost of this
solution to the edge

(
(Bi , Pi), (Bi+1, Pi+1)

)
. Due to (16), a minimum cost path in this

O(poly(n)) size graph corresponds to a scheduling solution whose cost, at speed 1+ε,
does not exceed the optimal cost at unit speed.

Overall, in our argumentation abovewe needed to increase the speed of themachine
by a factor 1 + O(ε) ≤ 1 + α · ε for some constant α and we obtained a polynomial
time algorithm, assuming that ε is constant. Therefore, for any given constant ε′ > 0
we can define ε := ε′/α and construct our algorithm above for this value of ε. This
yields a polynomial time algorithm that needs to increase the speed of the machine
only by a factor 1 + ε′. The main theorem of this section follows.

Theorem 3 Let ε > 0. There is a polynomial time algorithm for GSP with uniform
release dates which computes a solution with optimal cost and which is feasible if the
machine runs with speed 1 + ε.

4 Few Classes of Cost Functions

In this section, we study the following special case of GSP with release dates. We
assume that each cost function f j can be expressed as f j = w j · gu(j) for a job-

123

Algorithmica

dependent weight w j ∈ N, k global functions g1, . . . , gk , and an assignment u : J →
[k] of cost functions to jobs. We present a QPTAS for this problem, assuming that
k = (log n)O(1) and that the jobs have at most (log n)O(1) distinct release dates. We
assume that the job weights are in a quasi-polynomial range, i.e., we assume that there
is an upper bound W = 2(log n)O(1)

for the job weights.
In our algorithm, we first round the values of the functions gi so that they attain

only few values, (log n)O(1) many. Then we guess the (log n)O(1)/ε most expensive
jobs and their costs. For the remaining problem, we use a linear program. Since we
rounded the functions gi , our LP is sparse, and by rounding an extreme point solution
we increase the cost by at most an ε-fraction of the cost of the previously guessed
jobs, which yields an (1 + ε)-approximation overall.

Formally,we use a binary search framework to estimate the optimal value B. Having
this estimate, we adjust the functions gi such that each of them is a step function with
at most (log n)O(1) steps, all being powers of 1 + ε or 0.

Lemma 7 At 1 + ε loss we can assume that for each i ∈ [k] and each t it holds that
gi (t) is either 0 or a power of 1 + ε in

[
ε
n · B

W , B
)
.

Proof Denote by g(1+ε)
i the rounded cost functions for i ∈ [k], i.e., formally we define

g(1+ε)
i (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

min
{
(1 + ε)�log1+ε(gi (t))�, B

}
, if gi (t) > ε

n · B
W

ε
n · B

W , if 0 < gi (t) ≤ ε
n · B

W

0, if gi (t) = 0 .

Consider some optimal schedule with completion time C j for j ∈ J . Then it holds
that

∑

j∈J

w j · g(1+ε)
u(j)

(
C j
) ≤

∑

j∈J : 0<gu(j)(C j)
≤(ε·B)/(n·W)

w j · ε·B
n·W + (1 + ε) ·

∑

j∈J : gu(j)(C j)

>(ε·B)/(n·W)

w j · gu(j)

≤ ε · B · 1
n

∑

j∈J : 0<gu(j)(C j)
≤(ε·B)/(n·W)

w j
W + (1 + ε) · B

≤ ε · B + (1 + ε) · B = (1 + 2 ε) · B .

The lemma follows by redefining ε. ��
Our problem is in fact equivalent to assigning a due date d j to each job such that the

due dates are feasible, meaning that there is a preemptive schedule where every job
finishes no later than its due date, and the objective being

∑
j f j (d j) (see also [6]).

The following lemma characterizes when a set of due dates is feasible.

Lemma 8 ([6]) Given a set of jobs and a set of due dates. The due dates are feasible
if and only if for every interval I = [r j , d j ′] for any two jobs j, j ′, the jobs in

123

Algorithmica

X (I) := { j̄ : r j̄ ∈ I } that are assigned a deadline after I have a total size of at least
ex(I) := max(

∑
j̄∈X (I) p j̄ − |I |, 0). That is,

∑

j̄∈X (I):d j̄>d j ′

p j̄ ≥ ex(I) ∀ I = [r j , d j ′] .

Denote by D all points in time where at least one cost function g(1+ε)
i increases. It

suffices to consider only those values as possible due dates.

Proposition 3 There is an optimal due date assignment such that d j ∈ D for each
job j .

Denote by R the set of all release dates of the jobs. Recall that |R| ≤ (log n)O(1). Now,
we guess the |D|·|R|/εmost expensive jobs of the optimal solution and their respective
costs. Due to the rounding in Lemma 7 we have that |D| ≤ k · log1+ε(W · n/ε) =
(log n)O(1) and thus there are only O(n|D|·|R|/ε) = n(log n)O(1)/ε many guesses.

Suppose we guess this information correctly. Let JE denote the guessed jobs and
for each job j ∈ JE denote by d j the latest time where it attains the guessed cost,
i.e., its due date. Denote by cthres the minimum cost of a job in JE , according to the
guessed costs. The remaining problem consists of assigning a due date d j ∈ D to each
job J \ JE such that none of these jobs costs more than cthres, all due dates together
are feasible, and the overall cost is minimized. We express this as a linear program.

In the LP, we have a variable x j,t for each pair of a job j ∈ J \ JE and a due date
t ∈ D such that j does not cost more than cthres when finishing at time t . We add the
constraint

∑
t∈D x j,t = 1 for each job j , modeling that the job has a due date, and one

constraint for each interval [r, t] with r ∈ R and t ∈ D to model the condition given
by Lemma 8.

min
∑

j∈J\JE

∑

t∈D
x j,t · f j (t) (17)

∑

j∈(J\JE)

∩X ([r,t])

∑

t ′∈D:
t ′>t

p j · x j,t ′ +
∑

j∈JE∩X ([r,t]):
d j>t

p j ≥ ex([r, t]) ∀ r ∈ R ∀ t ∈ D (18)

∑

t∈D
x j,t = 1 ∀ j ∈ J \ JE (19)

x j,t = 0 ∀ j ∈ J \ JE ∀t ∈ D :
r j + p j > t ∨ w j gu(j)(t) > cthres

(20)

x j,t ≥ 0 ∀ j ∈ J \ JE ∀t ∈ D (21)

In polynomial time, we compute an extreme point solution x∗ for the LP. The next
lemma shows that by appropriate rounding, we can turn x∗ into an integral solution at
a small increase of cost.

123

Algorithmica

Lemma 9 Denote by c(x∗) the cost of an extreme point solution x∗. In polynomial
time we can compute a set of feasible due dates {d j } j∈J such that

∑

j∈J\JE
f j (d j) ≤ c(x∗) + ε ·

∑

j∈JE

f j (d j) .

Proof The solution x∗ has at most |D| · |R| + |J \ JE | many non-zeros. Each job j
needs at least one non-zero variable x∗

j,t , due to the constraint
∑

t∈D x j,t = 1. Thus,
there are at most |D| · |R| fractionally assigned jobs, i.e., jobs j having a variable x∗

j,t
with 0 < x∗

j,t < 1. We define an integral solution by rounding x∗ as follows: For each
job j we set d j to be the maximum value t such that x∗

j,t > 0. Since the solution x∗
has at most |D| · |R| fractional entries, the rounding affects at most |D| · |R| variables
whose corresponding cost x j,t · f j (t) do not exceed cthres after the rounding. Thus, in
the resulting schedule we have

∑

j∈J\JE
f j (d j) ≤ c

(
x∗)+ |D| · |R| · cthres ≤ c

(
x∗)+ ε · 1

ε
· |D| · |R| · cthres

≤ c
(
x∗)+ ε ·

∑

j∈JE

f j (d j) .

This completes the proof. ��
Since c(x∗) +∑JE f j (d j) is a lower bound on the optimum, we obtain a (1+ ε)-

approximation. As there are quasi-polynomially many guesses for the expensive jobs
and the remainder can be done in polynomial time, we obtain a QPTAS.

Theorem 4 There is a QPTAS for GSP, assuming that each cost function f j can
be expressed as f j = w j · gu(j) for some job-dependent weight w j and at most
k = (log n)O(1) global functions g1, . . . , gk, and that the jobs have at most (log n)O(1)

distinct release dates.

Acknowledgements Open access funding provided by Max Planck Society. We would like to thank the
anonymous reviewers for many helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D. Kenyon, C., Khanna, S., Milis, I., Queyranne, M.,
Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted
completion time with release dates. In: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS ’99), pp. 32–44 (1999)

2. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: A mazing 2+ε approximation for unsplit-
table flow on a path. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’14), pp. 26–41 (2014)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

3. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line
graphs. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC ’06),
pp. 721–729 (2006)

4. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algorithms 3(4), 39 (2007)
5. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, R.: A logarithmic approximation for unsplit-

table flow on line graphs. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’09), pp. 702–709 (2009)

6. Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5), 1684–1698 (2014)
7. Bansal, N., Verschae, J.: Personal communication
8. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating

resource allocation and scheduling. J. ACM 48(5), 1069–1090 (2001)
9. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for unsplittable flow on

paths. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’11), pp. 47–56 (2011)

10. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated
network design and covering problems. In: Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’00), pp. 106–115 (2000)

11. Chakaravarthy, V.T., Kumar, A., Roy, S., Sabharwal, Y.: Resource allocation for covering time varying
demands. In: Proceedings of the 19th European Symposium on Algorithms (ESA ’11), volume 6942
of LNCS, pp. 543–554. Springer (2011)

12. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable
flow problem. In: Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX ’02), volume 2462 of LNCS, pp. 51–66. Springer
(2002)

13. Chekuri, C., Khanna, S.: Approximation schemes for preemptive weighted flow time. In: Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC ’02), pp. 297–305 (2002)

14. Chekuri, C., Khanna, S., Zhu, A.: Algorithms for minimizing weighted flow time. In: Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 84–93 (2001)

15. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flowin a tree and packing integer
programs. ACM Trans. Algorithms 3(3), 27 (2007)

16. Cheung, M., Mestre, J., Shmoys, D.B., Verschae, J.: A primal-dual approximation algorithm for min-
sum single-machine scheduling problems. arXiv:1612.03339

17. Höhn, W., Jacobs, T.: On the performance of Smith’s rule insingle-machine scheduling with nonlinear
cost. ACM Trans. Algorithms 11(4), 25 (2015)

18. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized
algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

19. Lawler, E.L.: A “pseudopolynomial” algorithm for sequencing jobsto minimize total tardiness. In:
Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics, pp. 331–342. North-
Holland, Amsterdam (1977)

20. Lovász, L., Plummer, M.: Matching Theory, volume 29 of Annals of Discrete Mathematics. North-
Holland, Amsterdam (1986)

21. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying speed. In: Pro-
ceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP
’13), volume 7965 of LNCS, pp. 745–756. Springer (2013)

22. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem.Math.
Program. 62(1–3), 461–474 (1993)

23. Sviridenko,M.,Wiese, A.: Approximating the configuration-LP for minimizing weighted sum of com-
pletion times on unrelated machines. In: Proceedings of the 16th Conference on Integer Programming
and Combinatorial Optimization (IPCO ’13), volume 7801 of LNCS, pp. 387–398. Springer (2013)

123

http://arxiv.org/abs/1612.03339

	How Unsplittable-Flow-Covering Helps Scheduling with Job-Dependent Cost Functions
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Quasi-PTAS for UFP Cover
	2.1 Formal Description of the Algorithm
	2.2 (e + ε)-Approximation for GSP with Uniform Release Dates

	3 General Cost Functions Under Speedup
	3.1 Special Case of Polynomial Processing Times
	3.2 General Processing Times

	4 Few Classes of Cost Functions
	Acknowledgements
	References

