
ar
X

iv
:1

40
4.

70
60

v1
 [

cs
.D

S]
 2

8
A

pr
 2

01
4

Testing Forest-Isomorphism in the Adjacency

List Model

Mitsuru Kusumoto1⋆ and Yuichi Yoshida1,2⋆⋆

1 Preferred Infrastructure, Inc. mkusumoto@preferred.jp
2 National Institute of Informatics. yyoshida@nii.ac.jp.

Abstract. We consider the problem of testing if two input forests are
isomorphic or are far from being so. An algorithm is called an ε-tester
for forest-isomorphism if given an oracle access to two forests G and H
in the adjacency list model, with high probability, accepts if G and H
are isomorphic and rejects if we must modify at least εn edges to make
G isomorphic to H . We show an ε-tester for forest-isomorphism with a
query complexity polylog(n) and a lower bound of Ω(

√
log n). Further,

with the aid of the tester, we show that every graph property is testable
in the adjacency list model with polylog(n) queries if the input graph is
a forest.

1 Introduction

In property testing, we want to design an efficient algorithm that distinguishes the
case in which the input object satisfies some property or is “far” from satisfying
it [11]. In particular, an object is called ε-far from a property P if we have to
modify an ε-fraction of the input to make it satisfy P . A (randomized) algorithm
is called an ε-tester for a property P if it accepts objects satisfying P and rejects
objects that are ε-far from P with high probability (say 2/3).

Graph property testing is one of the major topics in property testing, and
many properties are known to be testable in sublinear time or even in constant
time (in the input size). See [5] for surveys. In order to design sublinear-time
testers, we have to define how to access the input graph, as just reading the entire
graph requires linear time. The model used here is the adjacency list model [9].
In this model, the input graph G = (V,E) is represented by an adjacency list
and we are given an oracle access OG to it. We have two types of queries.
The first query, called a degree query, specifies a vertex v, and the oracle OG

returns the degree of v. The second query, called a neighbor query, specifies a
vertex v and an index i, and the oracle OG returns the i-th neighbor of v. A
graph G is called ε-far from a property P if we must add or remove at least
εm edges for it to satisfy the property P , where m is the number of edges. In

⋆ JST, ERATO, Kawarabayashi Large Graph Project.
⋆⋆ Supported by JSPS Grant-in-Aid for Research Activity Start-up (24800082), MEXT

Grant-in-Aid for Scientific Research on Innovative Areas (24106003), and JST, ER-
ATO, Kawarabayashi Large Graph Project.

http://arxiv.org/abs/1404.7060v1

contrast to other models such as the adjacency matrix and the bounded-degree
models, only a few properties are known to be efficiently testable in the adjacency
list model. For examples, testing triangle-freeness, k-colorability for a constant
k, and bipartiteness requires Ω(

√
n) queries [2,3,9], where n is the number of

vertices.
A graph G is called isomorphic to another graph H if there is a bijection

π : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (π(u), π(v)) ∈ E(H). In
this paper, we consider the problem of testing if the input graph G is isomorphic
to a fixed graphH , or if it isH-isomorphic. We assume that the (unknown) input
graphG has the same number of vertices asH . The problem of deciding if a graph
is isomorphic to H is fundamental and theoretically important. For example,
the problem is one of the rare problems that is neither known to be in P nor
NP-Complete. This motivates us to consider H-isomorphism in the property
testing literature. A graph property refers to a property that is closed under
taking isomorphism. Then, H-isomorphism can be identified as the simplest
graph property such that every graph property can be expressed as a union ofH-
isomorphisms. Owing to these observations, Newman and Sohler [10] showed that
every graph property is testable in the bounded-degree model if the input graph
is a (bounded-degree) planar graph. This connection also holds for the adjacency
list model, which motivates us to consider H-isomorphism in the adjacency list
model.

If we assume that the input graph is an arbitrary graph possibly containing
Ω(n2) edges, testing H-isomorphism in the adjacency list model requires Ω(

√
n)

queries [4]. To investigate efficient testers for H-isomorphism, we restrict the
input graph: We assume that the input graph and H are forests with the same
number of vertices n. Note that we have no assumption on the degree as opposed
to the bounded-degree model. To avoid uninteresting technicalities, we modify
the definition of ε-farness as follows: Instead of using the number of edges in G
to measure the distance, we say that a forest G is ε-far from isomorphic to a
forest H if we must add or remove εn edges to transform G to H .3

With these definitions, we refer to the problem of testing the property of
being isomorphic to a fixed forest as testing forest-isomorphism. The main result
of this paper is as follows.

Theorem 1.1. In the adjacency list model, we can test forest-isomorphism with
polylog(n) queries.

Indeed, in our proof, we show that we can test forest-isomorphism even if both
graphs are given as oracle accesses.

Further, we show a lower bound for testing forest-isomorphism.

Theorem 1.2. In the adjacency list model, testing forest-isomorphism requires
Ω(

√
logn) queries.

3 Indeed, we often assume that the input graph contains Ω(n) edges in the adjacency
list model. Thus, our definition of ε-farness for forests and the definition of ε-farness
in the adjacency list model with the assumption are identical up to a constant
multiplicative factor.

As a corollary of Theorem 1.1, we show the following general result.

Theorem 1.3. In the adjacency list model, given an oracle access to a forest,
we can test any graph property with polylog(n) queries.

Techniques We state a proof sketch of our main theorem, Theorem 1.1. Given
a tree G, by removing εn edges from G, we can obtain a graph G′ with the
following property for some s = s(ε). Each connected component of G′ is either
(i) a tree of maximum degree at most s, or (ii) a tree consisting of a (unique)
root vertex of degree more than s and subtrees of size at most s.

The first step in our algorithm is providing an oracle access OG′ to G′ using
the oracle access OG to G. We call OG′ the partitioning oracle. In particular, if
we specify a vertex v and an index i, the oracle OG′ returns whether the i-th
edge incident to v in G is still alive in G′. By carefully designing the construction
of G′, we can answer the query with O(s2) queries to OG.

Suppose that we have an oracle access OG′ to G′. Since we can deal with
trees of type (i) using existing algorithms in the bounded-degree model, let us
elaborate on trees of type (ii). For a tree T of type (ii), we can associate a tuple
(d, c1, . . . , ct(s)) with it, where t(s) is the number of possible trees of maximum
degree at most s and size at most s. Note that t(s) depends only on ε. Here, d
is the degree of the root vertex of T , and ci is the number of subtrees of the i-th
type in T . Though we cannot exactly compute the tuple, given the root vertex
of T , we can approximate it well using OG′ . Since G′ consists of trees of type
(ii), we can associate a multiset of tuples with G′. We call it the sketch of G′.
Though we cannot exactly compute the sketch, we can approximate it to some
extent. The query complexity becomes polylog(n) since we want to approximate
d to within the multiplicative factor of 1 + ε and d can be up to n.

If G and H are isomorphic, then sketches associated with G′ and H ′ must be
the same. Our claim is that, if G′ and H ′ are ε-far from being isomorphic, then
their sketches are also far. Further, we will show that the distance between two
sketches can be computed via maximum matching in the bipartite graph such
that each vertex in the left part corresponds to a tree in G′ and each vertex in
the right part corresponds to a tree in H ′. Since we can approximate sketches
well and then approximate the size of the maximum matching from them, we
obtain a tester for forest-isomorphism.

Related works There are two major models on the representation of graphs. In
the dense graph model, a graph G = (V,E) is given as an oracle OG : V × V →
{0, 1}. Given two vertices u, v ∈ V , the oracle returns whether u and v are
connected in G. A graph is called ε-far from a property P if we must add or
remove at least εn2 edges for it to satisfy P .

In the dense graph model, many properties such as triangle-freeness and k-
colorability are known to be testable in constant time [6]. Indeed, Alon et al. [1]
obtained the characterization of constant-time testable properties using Sze-
merédi’s regularity lemma. As for graph isomorphism, Fischer and Matsliah [4]

showed that testing H-isomorphism can be carried out with Θ̃(
√
n) queries. If

both G and H are given as oracle accesses, then we need Ω(n) queries, and

we can test with Õ(n5/4) queries. We can trivially test forest-isomorphism: If a
graph is isomorphic to a forest H , then it has at most n edges. If a graph is ε-far
from being isomorphic to H , then it has at least εn2−n edges (otherwise, we can
remove all edges and then add new edges to make H). Thus, we can distinguish

the two cases only by estimating the number of edges up to, say εn2

2 .
In the bounded-degree model with a degree bound d, a graph G = (V,E) is

given as an oracle OG : V × [d] → V ∪ {⊥}, where [d] = {1, . . . , d} and ⊥ is a
special symbol. Given a vertex v ∈ V and an index i ∈ [d], the oracle returns
the i-th neighbor of v. If there is no such neighbor, then the oracle returns ⊥.

Many properties are known to be testable in constant time [7] and several
general conditions of constant-time testability are shown [10,12]. Hassidim et
al. [8] introduced the concept of the partitioning oracle to test minor closed
properties. Our partitioning oracle is similar to theirs, but their oracle provides
an oracle access to the graph that is determined by its internal random coin
whereas ours provides an oracle access to a graph that is deterministically de-
termined. As for graph isomorphism, it is known that H-isomorphism is testable
in constant time when H is hyperfinite [10]. Here, a graph is hyperfinite if by
removing εn edges, we can decompose the graph into connected components of
size at most f(ε) for some function f .

Organization In Section 2, we give notations and definitions used throughout the
paper. In Section 3, we introduce the partitioning oracle. Using the partitioning
oracle, it suffices to consider the case where each tree in the input graph is either
a bounded-degree tree or a tree consisting of a high-degree root and subtrees of
small sizes. In Section 4, we consider the case in which every tree in the input
graph is the latter type and the degrees of roots are within a small interval. We
deal with the general case and prove Theorem 1.1 in Section 5. Due to limitations
of space, some proofs in Section 3, 4, 5 are presented in Appendix A, B, C. We
prove Theorem 1.3 in Appendix D. We show the lower bound in Appendix E.

2 Preliminaries

For an integer n, we denote by [n] the set {1, 2, . . . , n} and denote by N<n (resp.
N≤n) the set {0, 1, . . . , n− 1} (resp. {0, 1, . . . , n}).

Let G = (V,E) be a graph. For a vertex v, degG(v) denotes the degree of
v. We omit the subscript if it is clear from the context. For a set of vertices
S ⊆ V , G[S] denotes the subgraph induced by S. For graphs G and H with the
same number of vertices, the distance d(G,H) between G and H is defined as
the minimum number of edges that need to be added or removed to make G
isomorphic to H . Formally,

d(G,H) = min
π

(#{(u, v) ∈ E(G) | (π(u), π(v)) 6∈ E(H)}

+#{(u, v) 6∈ E(G) | (π(u), π(v)) ∈ E(H)}),

where π is over bijections from V (G) to V (H). We extend the definition of
d(G,H) for the case in which G and H have different number of vertices by
adding a sufficient number of isolated vertices. For a graphG and an integer k, let
G+ kv be the graph consisting of G and k isolated vertices. If |V (G)| > |V (H)|,
we define d(G,H) = d(G,H+(|V (G)|−|V (H)|)v). Similarly, if |V (G)| < |V (H)|,
we define d(G,H) = d(G+ (|V (H)| − |V (G)|)v,H).

For an integer s ≥ 1, we call a tree T an s-rooted tree if T contains a (unique)
vertex v with deg(v) ≥ s + 1 such that each subtree of v contains at most s
vertices. The vertex v is called the root vertex of T and is denoted by root(T).
We call a tree T an s-bounded-degree tree if every vertex in T has a degree of at
most s. We call a tree T an s-tree if it is an s-rooted tree or an s-bounded-degree
tree. To designate a union of trees, we use the term “forest.” For example, an
s-rooted forest means a disjoint union of s-rooted trees.

3 Partitioning Oracle

In this section, we show that, for any ε > 0, there exists s = s(ε) such that we
can partition any forest into an s-forest by removing at most εn edges. Then,
we show that we can provide an oracle access to the s-forest, which we call the
partitioning oracle. We refer to a vertex with degree more than s in the original
graph G as a high-degree vertex.

Lemma 3.1 (Partitioning oracle). Suppose that we have an oracle access OG

to a forest G in the adjacency list model. Then for every ε > 0, we can provide
an oracle access O′

G to a graph G′ with the following properties:

1. G′ is an s-forest for some s = s3.1(ε). G
′ depends only on G and ε.

2. G′ is obtained from G by removing at most εn edges.
3. Let Vh be high-degree vertices in G. Then, each tree in G′ contains at most

one vertex from Vh.

The oracle O′
G supports alive-edge queries: Given a vertex v and an integer i,

the oracle returns whether the i-th edge incident to v in G still exists in G′. For
each alive-edge query, the oracle issues O(1/ε2) queries to OG. The output of
O′

G is deterministically calculated. Moreover, if G and H are isomorphic and
Ψ : V (G) → V (H) is an isomorphism, O′

G(e) = O′
H(Ψ(e)) holds for every edge

e ∈ E(G).

Proof. We set s = 11
ε . If the degree of a vertex is at most s, we call it low-

degree. Let Vh and Vl be the sets of high-degree and low-degree vertices in G,
respectively. We call a connected component in G[Vl] large if it has more than
s vertices and small otherwise. From the definition, there are at most 2n/s
high-degree vertices in G and at most n/s large components in G[Vl].

We first give a polynomial-time algorithm that outputs an s-forest from the
input forest G. First, we remove edges (u, v) with u, v ∈ Vh from G. Owing to
this, the resulting graph can be seen as a bipartite graph, where the left part

is Vh and the right part consists of components in G[Vl]. Now for each small
component C in G[Vl], if it is adjacent to two or more vertices in Vh, we remove
all the edges connecting C and Vh. Further, we remove all the edges between
large components in G[Vl] and Vh. We define G′ as the resulting graph. As
every subtree of each high-degree vertex is small, G′ is an s-forest. Since each
connected component of G′ contains at most one high-degree vertex, the third
property holds. Further, since any large small-degree connected component is not
connected to a high-degree vertex, the first property holds. The total number of
removed edges is at most |Vh| + 2|Vh| + (n/s + 2|Vh|) = εn. Thus, the second
property also holds.

We next show how to provide an oracle access to G′. We can support alive-
edge queries as follows: Let e = (v, w) be the queried edge. For v and w, we check
if they are in Vh, in a large component of G[Vl], or in a small component of G[Vl].
If they are in a small component of G[Vl], we check whether the component
is incident to two or more vertices in Vh. We can check these properties by
performing a BFS in G[Vl]: If the BFS stops before visiting more than s vertices,
it means that the vertex belongs to a small component. Otherwise, the vertex
belongs to a large component. From this information, we can answer the alive-
edge query. The total number of queries to OG is O(s2). From the argument
above, answers to alive-edge queries are determined deterministically. ⊓⊔

Since our construction of G′ is deterministic and we remove at most εn edges,
the following corollary holds.

Corollary 3.2. Let G and H be two forests of n vertices, and G′ and H ′ be
the graphs obtained from G and H by the partitioning oracle with a parameter
ε
4 , respectively. If d(G,H) = 0, then d(G′, H ′) = 0 holds. If d(G,H) ≥ εn, then
d(G′, H ′) ≥ εn/2 holds. ⊓⊔

Thus, we can preprocess the graph using the partitioning oracle, and it is suf-
ficient to show that we can test isomorphism between two s-forests. We consider
s-bounded-degree forests and s-rooted forests separately. Therefore, we construct
a tester for the isomorphism of each corresponding tree in G′ and H ′. To test
isomorphism between s-bounded-degree forests, we use a technique from [10].
We will develop a technique to test isomorphism between s-rooted forests in G′

and H ′ under some conditions in the next section.
One technical issue of the partitioning oracle is that we cannot obtain the

exact degree degG′(v) of a vertex v in G′ since degG(v) can be up to n. Instead of
computing the exact degree, we approximate the degree by randomly sampling
incident edges as follows: Choose i ∈ [degG(v)] uniformly at random and apply
the alive-edge query to the i-th incident edge. For a parameter q ≥ 1, repeat this
q times. Then, count the number of existing edges. Let c be this count. We use

the value c degG(v)
q as an approximation to degG′(v) and denote it by d̃egG′,q(v).

The standard argument using Chernoff’s bound gives the following lemma.

Lemma 3.3. Let G′ be the graph obtained from a graph G by the partitioning or-
acle. For any δ, τ ∈ (0, 1) and a vertex v, there exists a polynomial q = q3.3(δ, τ)

such that Pr[|d̃egG′,q(v)− degG′(v)| ≤ δ degG(v)] ≥ 1− τ .

There is another issue of the partitioning oracle. If most parts of edges in-
cident to a high-degree vertex v (i.e., a vertex with degree more than s) are

removed by the partitioning oracle, the approximation d̃egG′,q(v) may have a
considerably large relative error. However, we can ensure that the number of
such high-degree vertices v is sufficiently small. To make the argument more
formal, for an integer R > s, we call a vertex v R-bad if R ·max(degG′(v), 1) ≤
degG(v). Otherwise, we call v R-good. Note that an R-bad vertex must satisfy
degG(v) ≥ R > s. Thus, an R-bad vertex must be a high-degree vertex in G.
Further, we call an s-rooted tree R-bad (resp. R-good) if the root vertex is R-bad
(resp. R-good). Then, the number of vertices in R-bad s-rooted trees is bounded
as follows.

Lemma 3.4. Let G′ be the s-forest obtained from a graph G by the partitioning
oracle. For any R > s, the number of vertices in R-bad s-rooted trees of G′ is at
most 4sn

R .

Proof. Let B be the set of R-bad vertices and B′ be the set of vertices in R-
bad s-rooted trees. Since there are at most 2n/R vertices with degG(v) ≥ R,
|B| ≤ 2n/R holds. From the third property of Lemma 3.1, each s-rooted tree in
G′ contains at most one high-degree vertex in G. Hence,

|B′| ≤
∑

v∈B

(s · degG′(v) + 1) ≤
∑

v∈B

(
s degG(v)

R
+ 1) ≤ 4sn

R
.

⊓⊔

By Lemma 3.4, random vertex sampling does not pick up any R-bad vertex
with high probability if R is chosen sufficiently large. In Section 4, assuming that
every s-rooted tree is R-good in the input graph, we will construct a tester for
forest-isomorphism. In Section 5, combining Lemma 3.4 and the tester given in
Section 4, we will construct a tester for any s-forest.

For later use, we define auxiliary procedures on s-rooted trees. First, the
following lemma is useful.

Lemma 3.5. Given a vertex v ∈ V (G′) in an s-rooted tree T , there is an algo-
rithm that finds a root vertex root(T) with query complexity O(poly(s)).

Proof. Perform a BFS in G′ starting from the vertex v until we find a high-
degree vertex. The third property of Lemma 3.1 guarantees that we can find the
high-degree vertex and it is root(T). ⊓⊔

Let T (s) = {T (1), T (2), . . . , T (t(s))} be the family of all rooted trees with at
most s vertices, where t(s) = |T (s)|. For an s-rooted tree T , let Freq(T) be
the t(s)-dimensional vector whose i-th coordinate is the number of subtrees of
root(T) isomorphic to T (i). As the root vertex uniquely exists in an s-rooted
tree T , there is a unique t(s)-dimensional vector corresponding to T .

Since the degree of a root vertex can be up to n, we cannot exactly compute
Freq(T). Instead, we approximate Freq(T) by randomly sampling subtrees in T .

Given the root vertex v of an s-rooted tree T , we can define a procedure that

approximates Freq(T). We denote the procedure by F̃reqq(v). The procedure F̃req
randomly samples an edge incident to v in G (rather than G′) and invokes the
alive-edge query. If the edge is alive, the procedure performs a BFS from the
edge to obtain the whole subtree rooted at the edge. The procedure repeats this

q times, where q is the parameter of the procedure. We give the procedure F̃req

in Algorithm 1. Again, Chernoff’s bound guarantees the following.

Algorithm 1 Given the root vertex v of an s-rooted tree T and an integer q, the

procedure F̃reqq(v) returns an approximation to Freq(T) by randomly sampling
subtrees in T . The integer q represents the number of samples.

1: procedure F̃reqq(v)

2: Let F̃ be the all-zero t(s)-dimensional vector.
3: for j = 1, . . . , q do

4: Choose an integer k from [degG(v)] uniformly at random.
5: Ask whether the k-th edge (v, u) incident to v is alive.
6: if the edge is alive then

7: Perform a BFS from u to obtain the whole subtree rooted at u.
8: Suppose that the subtree is isomorphic to T (i). Then, set F̃[i] = F̃[i]+1.

9: return (degG(v)/q) · F̃

Lemma 3.6. For s ≥ 1 and δ, τ ∈ (0, 1), there exists a polynomial q = q3.6(s, δ, τ)

such that for any s-rooted tree T , |Freq(T)[i]− F̃reqq(root(T))[i]| ≤ δ degG(v) for
all i ∈ [t(s)] with probability at least 1− τ .

Proof. Let q3.6(s, δ, τ) = O(log(t(s)/τ)δ2). By Chernoff’s bound, it holds that

Pr[|Freq(T)[i] − F̃reqq3.6
(v)[i]| > δ degG(v)] < τ/t(s) for each i. By applying

the union bound over all i ∈ [t(s)], we obtain the lemma. ⊓⊔

It is also useful to approximate the number of vertices in an s-rooted tree.

For an s-rooted tree T , we can define a procedure S̃ize that approximates |V (T)|
by randomly sampling the subtrees of T and computing the number of vertices

in the subtrees. We give the procedure S̃ize in Algorithm 2. the procedure S̃ize

first computes the approximate degree of the root vertex v of T by d̃eg with

sufficiently large samples. If d̃eg = 0, the procedure just returns 1 since T looks
an isolated vertex. Otherwise, we randomly sample subtrees in G′ q times, where
q is the parameter of the procedure. For each subtree, we compute the number
of vertices in the subtree. To randomly sample the subtrees, we randomly choose
an edge in G (rather than G′) until we choose an alive edge. This may take large
amount of time since it is possible that most parts of edges incident to v are not
alive. However, if T is guaranteed to be R-good for some R > s, the following
holds.

Algorithm 2 Given two integers q, R and the root vertex v of an R-good s-
rooted tree T , returns an approximation to |V (T)| by randomly sampling the
subtrees in T and computing the size of the subtrees. The integer q represents
the number of samples.

1: procedure S̃izeG′,q,R(v)

2: Set q′ = q3.3(O(δ/R), O(τ)) and compute d̃ = d̃egG′,q′(v).

3: if degG(v) < R then round d̃ to the nearest integer.
4: if d̃ = 0 then return 1
5: S̃ = 0
6: for j = 1, . . . , q do

7: loop

8: Choose an integer k ∈ [degG(v)] uniformly at random.
9: Ask whether the k-th edge (v, u) incident to v is alive.
10: if the edge is alive then break

11: Perform a BFS from u to obtain the size t of the subtree rooted at u.
12: S̃ = S̃ + t

13: return d̃ S̃
q
+ 1

Lemma 3.7. For any s,R ≥ 1 and δ, τ ∈ (0, 1), there exists a polynomial q =

q3.7(s, δ, τ) such that, for any R-good s-rooted tree T , |S̃izeG′,q,R(root(T)) −
|V (T)|| ≤ δ|V (T)| holds with probability at least 1 − τ . The expected number of

queries issued by the procedure S̃ize is O(poly(s,R, δ, τ)).

The proof of Lemma 3.7 is a little complicated. We give the proof in Ap-
pendix A.

4 When All Root Vertices Have Similar Degrees

In this section and the next section, we assume that we read the input graphs
G and H through the partitioning oracle. Thus, we are allowed to use alive-edge

queries and the procedures d̃eg, F̃req, and S̃ize. Further, we assume that s is a
constant that depends only on ε.

We consider the case in which the root of all components have similar degrees.
Formally, we assume that each component in G and H is R-good s-rooted tree
and that the degree of each s-rooted tree in G and H is greater than B and
at most γB. Here, B(> s) is an integer that can be up to O(n) and s, γ ≥ 1
is an arbitrary constant. We call such a forest an R-good s-rooted forest with
root degrees in (B, γB]. In this section, we will show that there is a forest-
isomorphism tester for R-good s-rooted forest with root degrees in (B, γB] whose
query complexity is a polynomial in γ and R.

With the tester given in this section, we can construct a tester for the general
case as follows. After applying the partitioning oracle, the graph becomes a
disjoint union of an s-bounded-degree forest and an s-rooted forest. We partition
the s-rooted forest into several groups by the root degree. First, we ignore all

the R-bad s-rooted trees from the graph. Since the number of R-bad trees is
sufficiently small for a large R from Lemma 3.4, this does not affect so much.
Second, if deg(root(T)) is greater than O(γi) and at most O(γi+1), we consider
that a tree T is in the i-th group. Note that there are O(log n) groups. Then we
apply the isomorphism tester of this section to each group. If input graphs G and
H are isomorphic, the tester must return YES (isomorphic) for all the groups.
In contrast, if G and H are ε-far from isomorphic, there must exist a group such
that the tester returns NO (not isomorphic) for the group. Here, there is one
technical issue: The number of vertices in such a group might be different.

We resolve this issue. We assume that n := |V (G)| and n′ := |V (H)| might
be slightly different and the algorithm does not know the exact values of n and
n′ but know their approximations. Formally, we assume that our algorithm will
be given a value ñ ≥ 1, an approximation to n and n′, and η ∈ (0, 1) with
ñ
n ,

ñ
n′

∈ [1− η, 1].

We can prove the following lemma.

Lemma 4.1. Suppose that we are given ε′ > 0, ñ ≥ 1, γ ≥ 1, R,B > s,
τ ∈ (0, 1) and we can access s-forests G and H through the partitioning oracle,
where n = |V (G)| and n′ = |V (H)| might be different. Then, there exists η =
η4.1(s, ε

′, γ, τ, R) > 0 with the following property. If G and H are R-good s-
rooted forests with root degrees in (B, γB] with ñ

n ,
ñ
n′

∈ [1 − η, 1], then there
exists an algorithm that tests if d(G,H) = 0 or d(G,H) ≥ ε′ñ with probability
at least 1− τ . Assuming that s is constant, the query complexity is a polynomial

in R, γ, ε′, τ and does not depend on B, ñ. Further, denote by q4.1random(s, γ, ε
′, τ)

the number of random vertex queries the algorithm invokes. Then, q4.1random is a
polynomial in γ, ε′, τ .

In this section, we only write an overview of the proof of Lemma 4.1 since
the proof is complicated, We provide the proof in Appendix B.

Since Freq(T) maps to a unique t(s)-dimensional vector corresponding to an
s-rooted tree T , there is a unique multiset of vectors corresponding to an s-rooted

forest G. For a t(s)-dimensional vector w ∈ N
t(s)
<n , let ΨG[w] be the number of

s-rooted trees T in G such that Freq(T) = w. Note that ΨG can be seen as the
sketch of G. Clearly, G is isomorphic to H if and only if ΨG[w] = ΨH [w] for all
w. We use this property to create a tester. Since it is impossible to compute ΨG

exactly, we resort to approximate it. We choose an integer k ≥ 1, and divide
each axis of the t(s)-dimensional space into k segments to make kt(s) cells. We
then estimate the number of s-rooted trees in each cell. We call this estimation
the sketch of G. We focus on computing the sketch.

For an integer k ≥ 1, we define intervals Ii = [ñi
(1−η)k ,

ñ(i+1)
(1−η)k) (i ∈ N<k).

Note that, for every 0 ≤ i ≤ n− 1, there exists a unique interval Ij with i ∈ Ij .

For a vector u ∈ N
t(s)
<k , let Cell(u) be the corresponding cell formed by intervals

I
u[1], . . . , Iu[t(s)]. Further, for a vector w ∈ [0, n]t(s), we define Round(w) = u,

where u ∈ N
t(s)
<k is such that Cell(u) ∋ w.

For a vector u ∈ N
t(s)
<k , we approximate the number of s-rooted trees T in G

with Freq(T) ∈ Cell(u) by the following algorithm S̃ketch.

Algorithm 3 returns a map Φ : N
t(s)
<k → [0, n], given integers qloop, qfreq,

qsize,R,k, a real ñ and an R-good s-rooted forest G with root degrees in (B, γB]
through the partitioning oracle. Here, Φ(u) is an approximation to the number
of s-rooted trees T with Freq(T) ∈ Cell(u).

1: procedure S̃ketchqloop ,qfreq,qsize,R,k(G)

2: Set Φ(u) = 0 for all u ∈ N
t(s)
<k

3: for j = 1, . . . , qloop do

4: Choose a vertex u ∈ V (G) uniformly at random
5: Perform a BFS from u to find a root vertex v.
6: u = Round(F̃reqqfreq (v))

7: Φ(u) = Φ(u) + 1/S̃izeG,qsize,R(v)

8: return ñ
qloop

Φ

To create a forest-isomorphism tester, we first compute the sketches of G and

H by the algorithm S̃ketch, and then, we compute the minimum matching be-
tween the sketches. Here, the minimum matching is defined as the min-cost flow
of complete bipartite graphs where vertices correspond to the cells of the sketches
and the weight of an edge is the L1 distance between two cells of the sketches in
the t(s)-dimensional space. Since the L1 distance in the t(s)-dimensional space
corresponds to the number of different subtrees in s-rooted trees, we can prove
that the a minimum matching between the sketches is a good approximation to
d(G,H) with high probability. Thus, it suffices to compute the sketches of G
and H and the minimum matching between them. Note that we do not have to
make any query to G and H to compute the minimum matching.

5 General Case

In this section, we prove Theorem 1.1. Missing parts of this section are given in
Appendix C. Missing proofs are given in Appendix C.1. Again G and H denote
the graphs given through the partitioning oracle and s is constant. For an integer
L ≥ 1, we call G1, . . . , GL ⊆ G a partition of G if each Gi is a union of connected
components in G and G is a disjoint union of G1, . . . , GL. The following lemma
allows us to consider each part in the partition separately.

Lemma 5.1. Let L ≥ 1 be an integer and G1, · · · , GL (resp. H1, · · · , HL) be
any partition of G (resp. H). Then, for any β1, · · · , βL ≥ 0 summing up to 1,
the following holds: For any ε > 0, if d(G,H) ≥ εn, there exists i ∈ [L] such
that d(Gi, Hi) ≥ βiεn holds.

Proof. We can obtain the lemma immediately from the following claim.

Claim. d(G,H) ≤ ∑L
i=1 d(Gi, Hi).

We prove the claim. Construct a sequence of modifications to transform G to
H . For each subgraph Gi with |V (Gi)| ≥ |V (Hi)|, we transform Gi into Hi and
|V (Gi)| − |V (Hi)| isolated vertices. After this modification, for each subgraph
Gi with |V (Gi)| < |V (Hi)|, we use Gi and |V (Hi)|− |V (Gi)| isolated vertices to
construct Hi. The total number of modifications is

∑
i d(Gi, Hi). ⊓⊔

To construct a tester for the isomorphism of s-forests, we first give a par-
tition of an s-forest and apply Lemma 5.1. Then we test the isomorphism of
each corresponding partition of G and H . That is, we check d(Gi, Hi) = 0 or
d(Gi, Hi) ≥ βiεn for each i. Here, if d(G,H) = 0, all parts of the partition in G
and H are isomorphic, so all the tests must output YES (with high probability).
If d(G,H) ≥ εn, there must be an index i where the test outputs NO. To provide
oracle accesses to Gi and Hi, we estimate the size of V (Gi) and V (Hi) by ran-
dom sampling. If they are sufficiently far, we immediately return NO. If they are
sufficiently small, we simply ignore Gi and Hi. Otherwise, we can provide the
oracle accesses to Gi and Hi that costs for each query at most poly(L) queries
to G and H . Using this access, we test whether d(Gi, Hi) ≥ βiεn.

To provide a partition of an s-forest, we introduce a new notion. For α, γ ≥ 1,
µ > 0, and a tree T , we say that T is on the (α, γ, µ)-boundary, if there exists an
integer i ≥ 1 with 1−µ ≤ deg(root(T))/(αγi) ≤ 1+µ. We denote by Bα,γ,µ(G)
the number of vertices in the trees of G that are on the (α, γ, µ)-boundary. For
λ > 0, we call α (γ, µ, λ)-good with respect to G if Bα,γ,µ(G) < λn. We can
show that, if we choose α from [1, γ] at random, α is (γ, µ, λ)-good with high
probability.

Lemma 5.2. Suppose that α is chosen from [1, γ] uniformly at random. Then,
for γ ≥ 2, µ ∈ (0, 1/3), and λ ∈ (0, 1), α is (γ, µ, λ)-good with respect to G with
probability at least 1− 4γµ

λ .

We consider a partition of an s-forest G. Let α, γ, µ, and R be values chosen

later. Let G
[0]
s,α,γ,µ,R be the maximal s-bounded-degree forest in G and G

[1]
s,α,γ,µ,R

be the union of R-good s-rooted trees with root degree in (s, αγ] that are not on
the (α, γ, µ)-boundary inG. Similarly, for 2 ≤ i ≤ L, where L = ⌈logn/ log γ⌉, let
G

[i]
s,α,γ,µ,R be the union of R-good s-rooted trees with root degree in (αγi−1, αγi]

that are not on the (α, γ, µ)-boundary in G. Finally, let G
[L+1]
s,α,γ,µ,R be the re-

maining trees that are not assigned to any partition so far. That is, G[L+1] is
the union of trees that are R-bad or on the (α, γ, µ)-boundary in G. We omit

the subscript of G
[i]
s,α,γ,µ,R if it is clear from the context. Note that we can write

G = G[0] ∪G[1] ∪ · · · ∪G[L+1]. We use the same notion for the other graph H .
We define a procedure that, given a vertex v ∈ V (G), returns i with v ∈ G[i]

as follows. Our procedure first determines if v is in an s-bounded-degree tree
by performing a BFS from v until we visit O(s) vertices. If we cannot find

a high-degree vertex, v ∈ G[0]. Otherwise, for a parameter q ≥ 1, we in-

voke d̃egq(root(v)) and return an appropriate output. We call this procedure
Whichq(v).

Here, the technical issue is that the procedure Which may output a wrong
value. We show that Which outputs the correct value with high probability for
any partition of G except for G[L+1] and that the size of G[L+1] is sufficiently
small.

Lemma 5.3. For any τ ∈ (0, 1) and R ≥ 1, there exists a polynomial q =
q5.3(γ, µ,R, τ) such that the procedure Whichq(v) outputs a correct value with

probability 1− τ for v ∈ V (G
[0]
s,α,γ,µ,R) ∪ · · · ∪ V (G

[L]
s,α,γ,µ,R).

Lemma 5.4. For any γ ≥ 2 and λ ∈ (0, 1), there exist R = O(s/λ), µ = O(λ/γ)

such that if α is chosen from [1, γ] uniformly at random, |V (G
[L+1]
s,α,γ,µ,R)| ≤ λn

holds with probability 1−O(1).

Using the procedure Which, we can approximate the number of vertices in
G[i] by random sampling. For i ∈ N≤L, we denote by Sizeqloop,qwhich

(G, i) the al-
gorithm that samples qloop vertices uniformly at random, and applies Whichqwhich

for each sampled vertex, and then approximates |V (G[i])|. By Chernoff’s bound,
we obtain the following lemma.

Lemma 5.5. For any δ, τ ∈ (0, 1) and parameters α, γ, µ, and R, there exist
polynomials qloop = qloop5.5(δ, τ) and qwhich = qwhich5.5(δ, τ) such that the fol-

lowing holds: For any λ ∈ (0, 1) with |V (G
[L+1]
s,α,γ,µ,R)| ≤ λn, |Sizeqloop,qwhich

(G, i)−
|V (G

[i]
s,α,γ,µ,R)|| ≤ (λ+ δ)n with probability 1− τ . ⊓⊔

Further, using the procedure Which, we can provide oracle accesses to G[i]

for i ∈ Ni≤L. Let Randomq(G, i) denote the procedure that repeats itself to pick
up a vertex v in G uniformly at random and invokes the procedure Whichq(v)
and returns v if the returned value of Which is i.

Lemma 5.6. For every δ, τ ∈ (0, 1) and parameters α, γ, µ, and R, there ex-
ist polynomials q = q5.6(δ, τ) and λ = λ5.6(δ, τ) such that the following holds
for every i ∈ N≤L: If |V (G[i])| ≥ δn and |V (G[L+1])| ≤ λn, the procedure
Randomq(G, i) outputs a vertex of G[i] uniformly at random by invoking the
procedure Whichq at most O(1/(δτ)) times with probability 1− τ .

The sketch of the proof of Theorem 1.1 is as follows. As we mentioned, it
suffices to create an isomorphism tester between G[i] and H [i] for each i ∈ N≤L.
First, set γ = 2s and choose α ∈ [1, γ] uniformly at random. From Lemma 5.4,
|V (G[L+1])| and |V (H [L+1])| are small with high probability. Thus, we can apply
the procedures Which, Size and Random to the input graphs. From Lemmas 5.3,
5.5, and 5.6, these procedures output the correct value with sufficiently high
probability. Using the procedure Size, we can test if |V (G[i])| and |V (H [i])| are
large and sufficiently close. Then, we can test forest-isomorphism between G[i]

and H [i] (with high probability) by providing oracle accesses to G[i] and H [i]

through the procedure Random. For i = 0, we use a method proposed by [10]
with a little modification. See Appendix C.2 for details. For 1 ≤ i ≤ L, we use
the method in Section 4. Here, every parameter depends on polylog(n) assuming
that s is constant. Thus, the query complexity of our forest-isomorphism tester is
polylog(n) in total. See Algorithm 5 in Appendix C.3 for the detailed description
of the tester for forest-isomorphism.

References

1. N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characteriza-
tion of the testable graph properties: It’s all about regularity. SIAM Journal on

Computing, 39(1):143–167, 2009.
2. N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle-freeness in

general graphs. SIAM Journal on Discrete Mathematics, 22(2):786–819, 2008.
3. I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength

of query types in property testing: the case of testing k-colorability. In SODA’08:

Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1213–1222, 2008.

4. E. Fischer and A. Matsliah. Testing graph isomorphism. SIAM Journal on Com-

puting, 38(1):207–225, 2008.
5. O. Goldreich. Introduction to testing graph properties. pages 105–141. Property

Testing, 2010.
6. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to

learning and approximation. Journal of the ACM, 45(4):653–750, 1998.
7. O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,

32(2):302–343, 2002.
8. A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions

for approximation and testing. FOCS’09: Proceedings of the 50th Annual IEEE

Symposium on Foundations of Computer Science, pages 22–31, 2009.
9. T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness

in general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004.
10. I. Newman and C. Sohler. Every property of hyperfinite graphs is testable. SIAM

Journal on Computing, 42(3):1095–1112, 2013.
11. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with appli-

cations to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.
12. S. Tanigawa and Y. Yoshida. Testing the supermodular-cut condition. Algorith-

mica, pages 1–11, 2013.
13. Y. Wu, Y. Yoshida, Y. Zhou, and A. Vijayraghavan. Graph isomorphism: Approx-

imate and robust, 2013. manuscript.

A Proof of Lemma 3.7

Proof. First, we evaluate the probability that our procedure returns a good

approximation. Let S = |V (T)| − 1 and set q = q3.7 = O(s
2 log(1/τ)

δ2). In Line 7–
12, we choose an edge incident to v in G′ uniformly at random. Therefore, by

Chernoff’s bound, | S̃q − S
degG′(v)

| ≤ O(δ) holds with probability 1− O(τ). Since

we assume that T is R-good, at least one of (i) R degG′(v) > degG(v) and (ii)

degG(v) < R holds. To bound |d̃egG′,q′(v)
S̃
q −S|, let us consider these two cases.

When (i) holds but (ii) does not hold, v is not an isolated vertex in G′

and d̃ in the procedure is equal to the output of d̃egG′,q′(v). From Lemma 3.3,

|d̃egG′,q′(v) − degG′(v)| ≤ O(degG(v)/R) holds with probability 1 − O(τ). The
following claim is useful.

Claim. For any positive reals A,B,C,D with |A − B| ≤ α and |C − D| ≤ β,
|AC −BD| ≤ αD + βB + αβ holds.

Proof. By the triangle inequality,

|AC −BD| = 1

2
|(A−B)(C +D) + (A+B)(C −D)|

≤ 1

2
(|A−B||C +D|+ |A+B||C −D|)

≤ 1

2
(α|C +D|+ β|A+B|) ≤ αD + βB + αβ.

⊓⊔

From the claim and the union bound, we have |d̃egG′,q′(v)
S̃
q−S| ≤ O(δ degG′(v))+

O(δ degG(v)
R degG′ (v)

S) + O(δ degG(v)/R) ≤ O(δS) + O(δS) + O(δS) = δS with proba-

bility 1− τ .
When (ii) holds, d̃ = degG′(v) holds (with probability 1−O(τ)) by rounding

in Line 3. Thus, if v is an isolated vertex in G′, our procedure will return 1

in Line 4. Otherwise, |d̃ S̃
q − S| = | S̃q − S

degG′(v)
| · d̃ ≤ δd̃ ≤ δ|V (T)| holds with

probability 1− τ .

Next, we turn to analyze the expected number of queries issued by the proce-
dure. Since q′ is poly(R, δ, τ), we make at most poly(R, δ, τ) queries to compute

d̃egG′,q′(v) in Line 2. Further, since we assume that T is R-good, Line 7–12
takes O(R + poly(s)) time on average. Thus, the expected query complexity is
O(poly(s,R, δ, τ)) in total. ⊓⊔

B Proof of Lemma 4.1

In this section, we prove Lemma 4.1. We use the notions defined in Section 4.
Throughout this section, c(G) denotes the number of connected components in
G.

This section is organized as follows. First, we analyze the behavior of the

algorithm S̃ketch in Algorithm 3 in Section B.1. Next, we discuss the formal
definition of the minimum matching between sketches in Section B.2. Finally,
we show that the minimum matching is a good approximation to d(G,H) and
we give a tester for isomorphism in Section B.3.

B.1 Approximation algorithms for sketches

In this subsection, we analyze the behavior of the algorithm S̃ketch. Upon com-

puting the sketch, it is desired that the procedure S̃izeG,qsize,R(T) always out-
puts a good approximation to |V (T)| for an s-rooted tree T . For δ′ ∈ (0, 1)

and an s-rooted tree T , we say that (the output of) S̃izeG,qsize,R(T) is δ′-safe

if |S̃izeG,q,R(root(T)) − |V (T)|| ≤ δ′|V (T)| holds. Further, we say that (the ex-

ecution of) S̃ketch is δ′-safe if all the outputs of S̃ize in Line 7 are δ′-safe.

Let Sketchδ
′

qloop,qfreq,qsize,R,k(G)(u) = E[S̃ketchqloop,qfreq,qsize,R,k(G)(u) | S̃ketch :

δ′-safe]. Note that S̃ketch is δ′-safe with high probability if the parameters are
chosen appropriately by Lemma 3.7. Let G(i) (i ∈ [c(G)]) be the i-th s-rooted
tree in G and v(i) = root(G(i)). We use the following two lemmas in the next
subsection.

Lemma B.1. For any k, s, R,B ≥ 1 and δ, δ′, τ ∈ (0, 1), there exist qloop =

qB.1
loop (k, s, δ, δ

′, τ) and qsize = qB.1
size (k, s, δ, δ′, τ) such that for any qfreq and an R-

good s-rooted forest G with root degrees in (B, γB], |S̃ketchqloop,qfreq,qsize,R,k(G)(u)−
Sketchδ

′

qloop,qfreq,qsize,R,k(G)(u)| ≤ δn
B holds for all u ∈ N

t(s)
<k with probability at

least 1− τ . Here qB.1
loop and qB.1

size are polynomials in kt(s), δ, δ′, τ .

Proof. For simplicity, we omit the subscript of procedures. Let pi,u be the prob-
ability that a vertex of G(i) is chosen in Line 4 and u is obtained in Line 6 of

S̃ketch. Denote by Φ the mapping in the algorithm S̃ketch.

For δ′ ∈ (0, 1), it holds that

Var[Φ(u) | S̃ketch : δ′-safe] ≤
∑

i∈[c(G)]

pi,u ·E
[

1

S̃izeG,qsize,R(v
(i))2

∣∣∣∣∣S̃ize : δ
′-safe

]

≤
∑

i∈[c(G)]

|V (G(i))|
n

·
(

1

(1− δ′)|V (G(i))|

)2

.

Further, since we assume that the root degree of each s-tree in G is in (B, γB],
c(G) ≤ n/B holds. By Chebyshev’s inequality,

Pr

[
|S̃ketch(u)− Sketchδ

′

(u)| ≥ δn

B

∣∣∣∣S̃ketch : δ′-safe

]

≤
(
B

δn

)2

·
(

ñ

qloop

)2

·Var[Φ(u) | S̃ketch : δ′-safe]

≤
(
B

δn

)2

·
(

ñ

qloop

)2

· qloop
∑

i∈[c(G)]

|V (G(i))|
n

·
(

1

(1− δ′)|V (G(i))|

)2

≤ 1

qloopδ2(1− δ′)2

∑

i∈[c(G)]

B2

n|V (G(i))|

≤ 1

qloopδ2(1− δ′)2
.

Here, in the last inequality, note that

∑

i∈[c(G)]

B2

n|V (G(i))| ≤
∑

i∈[c(G)]

B

n
=

c(G)B

n
≤ 1.

Set qB.1
loop (s, k, δ, δ

′, τ) = O(kt(s)/(δ2(1−δ′)2τ)) and qB.1
size (s, k, δ, δ′, τ) = q3.7(s, δ

′, τ/(2qloop)).

Then, the execution of S̃ketch is δ′-safe with probability 1−τ/(2kt(s)). Therefore,

concerning the conditional probability, |S̃ketch(u)−Sketchδ
′

(u)| < δn
B holds with

probability 1 − τ/kt(s). Applying the union bound for all u ∈ N
t(s)
<k , the lemma

follows. ⊓⊔

Lemma B.2. For any s ≥ 1 and δ ∈ (0, 1), there exist linear functions δ′ =
δ′B.2(δ) and η = ηB.2(δ) such that if ñ

n ∈ [1−η, 1], then for any R, k,B, γ, qloop, qfreq, qsize ≥
1 and R-good s-rooted forest G with root degrees in (B, γB], |‖Sketchδ′qloop,qfreq,qsize,R,k(G)‖1−
c(G)| ≤ δc(G) holds.

Proof. Again, for simplicity, we omit the subscript of procedures. For u ∈ V (G),
let v(u) be a root vertex of an s-rooted tree that u belongs to.

‖Sketchδ′(G)‖1 =
ñ

qloop
· qloop · E

u∈V (G)

[
1

S̃izeG,qsize,R(v(u))

∣∣∣∣∣S̃ize : δ
′-safe

]

= ñ
∑

i∈[c(G)]

Pr[vertex of G(i) is chosen] · E
[

1

S̃izeG,qsize,R(v
(i))

∣∣∣∣∣S̃ize : δ
′-safe

]

= ñ
∑

i∈[c(G)]

|V (G(i))|
n

·E
[

1

S̃izeG,qsize,R(v
(i))

∣∣∣∣∣S̃ize : δ
′-safe

]
.

By the condition of the lemma, ñ/n ∈ [1− η, 1]. Further, the expectation in the
last equation is between 1/((1 + δ′)|V (G(i))|) and 1/((1 − δ′)|V (G(i))|). There-
fore, ‖Sketchδ′(G)‖1 ∈ [(1 − η)c(G)/(1 + δ′), c(G)/(1 − δ′)]. Setting ηB.2(δ) =
δ′B.2(δ) = δ/2, the lemma follows. ⊓⊔

Hereafter, for δ, τ ∈ (0, 1) and qfreq, k, R ≥ 1, we denote by S̃ketchδ,τ,qfreq,R,k

the procedure S̃ketchqloop,qfreq,qsize,R,k for δ′ = δ′B.2(δ), qloop = qB.1
loop (k, s, δ, δ

′, τ),

and qsize = qB.1
size (k, s, δ, δ′, τ) in order to simplify the notion. Further, we denote

by Sketchδ,τ,qfreq,R,k the conditional expectation Sketchδ
′

qloop,qfreq,qsize,R,k.

Finally, we consider the (expected) query complexity of S̃ketch. Since qB.1
loop , q

B.1
size

are polynomials in k, δ, and τ , the following holds.

Lemma B.3. For δ, τ ∈ (0, 1) and R, k ≥ 1, the expected query complexity of

the algorithm S̃ketchδ,τ,qfreq,R,k is a polynomial in δ, τ, qfreq, R, kt(s). ⊓⊔

B.2 Matching sketches

In this subsection, we define the distance between two sketches so that it is a
good approximation to d(G,H). Let denote by R≥0 the set of non-negative reals.

A weighted point set is a tuple X = (w, S), where w : S → R≥0 is a weight
function and S is a set of vectors. To define the distance between sketches, we
consider the following problem.

Definition B.4 (Minimum matching between weighted point sets). Let
X1 = (w1, S1) and X2 = (w2, S2) be two weighted points sets with ‖w1‖1 =
‖w2‖1. We call a function f : S1 × S2 → R≥0 a flow function from X1 to X2

if
∑

v∈S2
f(u,v) = w1(u) for all u ∈ S1 and

∑
u∈S1

f(u,v) = w2(v) for all
v ∈ S2. The value of a flow function f is defined as

∑

(u,v)∈S1×S2

f(u,v) · ‖u− v‖1.

The minimum value of a flow function is denoted by M(X1, X2), and the flow
function that achieves the minimum value is called the optimal flow function.

Note that the optimal flow function can be calculated by a min-cost flow
algorithm on a bipartite graph. Therefore, the following lemma holds.

Lemma B.5. Let X1 = (w1, S1) and X2 = (w2, S2) be weighted point sets. If
w1 and w2 are integral, there exists an optimal flow function f∗ that is integral.
In particular, if all values of w1 and w2 are 1, the set of pairs {(u,v) ∈ S1×S2 |
f∗(u,v) = 1} forms a matching. ⊓⊔

For an s-rooted forestG, let Freq(G) denote the multiset {Freq(G(1)), · · · ,Freq(G(c(G)))}.
To define the distance between sketches, we first associate weighted point sets

FG, SG, and S̃G with Freq(G), Sketch(G), and S̃ketch(G), respectively. Then,

we show that M(FG, FH) can be well approximated by M(S̃G, S̃H). Next, we
show that d(G,H) can be approximated by M(FG, FH). Since we can efficiently
compute S̃G and S̃H , it follows that we can well approximate d(G,H). Hence,
we can test isomorphism between G and H .

We first introduce auxiliary weighted point sets. Let F ′
G = (1,Freq(G)),

where 1 is the constant-one function. For parameters δ, τ, qfreq, R, k, we define
S′
G,δ,τ,qfreq,R,k as follows. First for a cell C, we define vtx(C) as the unique point

in C that is minimal with respect to every axis. Then, for each u ∈ N
t(s)
<k , we add

a point vtx(Cell(u)) with weight Sketchδ,τ,qfreq,R,k(G)(u). Similarly, we define

S̃′
G,δ,τ,qfreq,R,k. If the parameters are clear from the context, we occasionally drop

the subscripts of S̃′ and S′. A technical issue here is that the sums of weights

of F ′
G, S

′
G, and S̃′

G might be different since S̃ketch is a random variable, and it
means that we cannot define matchings among them. To avoid this issue, for a
large integer value M , we define ext((w′, S′),M) = (w, S) as the extension of
(w′, S′) so that S = S′∪{⊥} and w(⊥) = M−‖w′‖1. We regard⊥ as the all-zero
vector when measuring distances to other vectors. For a sufficiently large M , we
define FG = ext(F ′

G,M), SG = ext(S′
G,M), and S̃G = ext(S̃′

G,M).
This section is devoted to prove the following lemma.

Lemma B.6. For any s,R, γ ≥ 1, and δ′′, τ ′ ∈ (0, 1), there exist parameters δ,
τ , qfreq, and k such that |M(FG, FH)−M(S̃G, S̃H)| ≤ δ′′n holds with probability
at least 1− τ ′. The parameters δ, k are polynomials in γ, δ′′, τ is O(τ ′), and qfreq
is a polynomial in γ, δ′′, R.

To prove Lemma B.6, we prove several lemmas first.

Lemma B.7. For any s,γ,qfreq ≥ 1, and δ′′, τ ∈ (0, 1), there exists δ = δB.7(s, γ, δ
′′)

such that

M(SG,δ,τ,qfreq,R,k, S̃G,δ,τ,qfreq,R,k) ≤ δ′′n

with probability at least 1− τ . Here δB.7 is a polynomial in γ, δ′′.

Proof. We construct a flow function from SG to S̃G so that
∑

(u,v) f(u,v)‖u−
v‖1 ≤ δ′′n holds with high probability. We assign f(u,u) = min(Sketch(G)(u), S̃ketch(G)(u))

for each u ∈ N
t(s)
<k and assign an arbitrary value to other parts of f so that f satis-

fies the condition of a flow function. By Lemma B.1,
∑

u,v∈N
t(s)
<k

,u 6=v
f(u,v) ≤ δn

B

with probability at least 1 − τ . Set δ = δB.7(s, γ, δ
′′) = δ′′/(t(s)γ). Since

‖u− v‖1 ≤ t(s)γB, we have

∑

(u,v)

f(u,v)‖u− v‖1 ≤ δn

B
· t(s)γB ≤ δ′′n.

⊓⊔
Lemma B.8. For any s,R, γ ≥ 1 and δ′′, τ ∈ (0, 1), there exist k = kB.8(s, γ, δ

′′),
qfreq = qfreqB.8(s, γ, δ

′′, R), δ = δB.8(s, γ, δ
′′) such that M(FG, SG,δ,τ,qfreq,R,k) ≤

δ′′n holds. The parameters kB.8, δB.8 are polynomials in γ, δ′′ and qfreqB.8 is a

polynomial in γ, δ′′, R.

Proof. Let k, δ, qfreq be parameters chosen later. Again, we construct a flow func-
tion f from FG to SG. We define a hypercube Ci inRt(s) as Ci = {(x1, x2, . . . , xt(s)) |
|xj − Freq(G(i))[j]| < γB/(2k), j ∈ [t(s)]}. Further, let Bi = {vtx(Cell(v)) | v ∈
N

t(s)
<k ,Cell(v) ∩ Ci 6= ∅}. Note that |Bi| ≤ 2t(s).

Let δ′ = δ′B.2(δ). Let p
(i) be the probability that a vertex of G(i) is chosen in

Line 4 of the algorithm S̃ketch, qi,v be the probability thatRound(F̃reqqfreq (v
(i))) =

v holds, and e(i) = E
[
1/S̃ize(v(i))

∣∣∣S̃ize : δ′-good
]
. For i ∈ [c(G)] and v ∈ N

t(s)
<k ,

define a flow function as follows.

f(i,v) = (1 − δ′)ñp(i)qi,ve
(i)

We show that
∑

i f(i,v) ≤ Sketch(G)(v) for all v and
∑

v
f(i,v) ≤ 1 for

all i. The conditional expectation Sketch can be expressed as Sketch(G)(v) =∑
i ñp

(i)qi,ve
(i). Thus,

∑
i f(i,v) = (1 − δ′)Sketch(G)(v) < Sketch(G)(v) holds.

Further, since p(i)e(i) ≤ (|V (G(i))|/n) · 1/((1− δ′)|V (G(i))|) = 1/(n(1− δ′)) and∑
v
qi,v = 1,

∑
v
f(i,v) ≤ 1 holds. Similarly, we can show that

∑
v
f(i,v) ≥

(1− δ′)/(1 + δ′) ≥ 1− 2δ′ for all i.
We assign values to the remaining part of f so that the condition of the

flow function is satisfied. Here it holds that
∑

v
f(⊥,v) =

∑
v
(Sketch(G)(v) −∑

i f(i,v)) = δ′‖Sketch(G)‖1 and
∑

i f(i,⊥) =
∑

i(1 − ∑
v
f(i,v)) ≤ 2δ′c(G).

From Lemma B.2, we have
∑

v
f(⊥,v) +

∑
i f(i,⊥) ≤ 4δ′c(G).

Let ri =
∑

v∈Bi
qi,v. Set k = kB.8(s, γ, δ

′′) = O(2t(s)t(s)γ/δ′′) and qfreq =

qfreqB.8(s, γ, δ
′′, R) = q3.6(s, 1/(2kR), τ ′) for τ ′ = O(1/(kt(s) ·t(s)γ)). Then from

Lemma 3.6, we have ri ≥ 1− τ ′.
Now, we calculate the value of the flow function. For fixed i ∈ [c(G)],

∑

v

f(i,v) · ‖Freq(G(i))− v‖1 =
∑

v∈Bi

f(i,v) · ‖Freq(G(i))− v‖1 +
∑

v 6∈Bi

f(i,v) · ‖Freq(G(i))− v‖1

≤
∑

v∈Bi

1 · t(s)γB
k

+
∑

v 6∈Bi

(1− ri) · t(s)γB

≤ 2t(s) · 1 · t(s)γB
k

+ kt(s)τ ′ · t(s)γB

≤ δ′′B

4
+

δ′′B

4
=

δ′′B

2
.

Set δ = δB.8(s, γ, δ
′′) = O(δ′′/(kt(s)γ)) so that δ′ = O(1/(kt(s)γ)). Then we

have

∑

i,v

f(i,v) · ‖Freq(G(i))− v‖1 ≤ c(G) · δ
′′B

2
=

δ′′c(G)B

2

∑

v

f(⊥,v)‖v‖1 +
∑

i

f(Freq(G(i)),⊥)‖Freq(G(i))‖1 ≤ 4δ′c(G) · kt(s)γB =
δ′′c(G)B

2
.

Since c(G)B ≤ n, the cost of the flow function is at most δ′′n. ⊓⊔

We can show that the triangle inequality holds for the minimum value of a
flow function M. Combining Lemmas B.7, B.8, and the triangle inequality, we
can prove Lemma B.6.

Lemma B.9. Let Xi = (wi, Si) (i = 1, 2, 3) be weighted point sets with ‖w1‖1 =
‖w2‖1 = ‖w3‖1. Then, the triangle inequality holds for M(·, ·) among them, that
is

M(X1, X3) ≤ M(X1, X2) +M(X2, X3).

Proof. We construct a flow function f13 from X1 to X3 as follows. Let f∗
12 be

the optimal flow function from X1 to X2, and let f∗
23 be the one from X2 to X3.

Let f13(i1, i3) =
∑

i2

f∗

12(i1,i2)f
∗

23(i2,i3)
w2(i2)

. The function f13 satisfies the conditions

of a flow function:

∑

i3

f13(i1, i3) =
∑

i3

∑

i2

f∗
12(i1, i2)f

∗
23(i2, i3)

w2(i2)
=

∑

i2

f∗
12(i1, i2) = w1(i1),

∑

i1

f13(i1, i3) =
∑

i1

∑

i2

f∗
12(i1, i2)f

∗
23(i2, i3)

w2(i2)
=

∑

i2

f∗
23(i2, i3) = w3(i3).

We observe that
∑

i1,i3

f13(i1, i3)‖S1(i1)− S3(i3)‖1

=
∑

i1,i3

∑

i2

f∗
12(i1, i2)f

∗
23(i2, i3)‖S1(i1)− S3(i3)‖1

w2(i2)

≤
∑

i1,i3

∑

i2

f∗
12(i1, i2)f

∗
23(i2, i3)(‖S1(i1)− S2(i2)‖1 + ‖S2(i2)− S3(i3)‖1)

w2(i2)

=
∑

i1,i2

f∗
12(i1, i2)‖S1(i1)− S2(i2)‖1 +

∑

i2,i3

f∗
23(i2, i3)‖S2(i2)− S3(i3)‖1.

Thus, M(X1, X3) ≤ M(X1, X2) +M(X2, X3). ⊓⊔

Proof (Proof of Lemma B.6). Set qfreq = qfreqB.8(s, γ, O(δ′′), R),

δ = min(δB.7(s, γ, O(δ′′)), δB.8(s, γ, O(δ′′))), τ = τ ′/2, and k = kB.8(s, γ, O(δ′′)).
Then with probability at least 1− τ ′/2,

M(FG, S̃G) ≤ M(FG, SG) +M(SG, S̃G) ≤ O(δ′′n) +O(δ′′n) = O(δ′′n).

The same inequality holds for the other graph H . Thus, with probability 1− τ ′,

|M(FG, FH)−M(S̃G, S̃H)|
≤ |M(FG, FH)−M(FH , S̃G)|+ |M(FH , S̃G)−M(S̃G, S̃H)|
≤ M(FG, S̃G) +M(FH , S̃H) ≤ O(δ′′n) +O(δ′′n′) = δ′′ñ.

⊓⊔

B.3 Approximation algorithm

Finally, we show that the distance between two graphs can be well approximated
by the minimum value of a matching between corresponding sketches. First, we
need to show the following.

Lemma B.10. Let G and H be s-rooted forests. Then, d(G,H) ≤ 2s·M(FG, FH).

Proof. Let f∗ be the optimal flow function achievingM(FG, FH). By Lemma B.5,
we assume that every value of f∗ is 0 or 1. Therefore, we regard the flow function
as a matching: Let FG = (1, {⊥,u1, . . . ,uc(G)}) and FH = (1, {⊥,v1, . . . ,vc(H)}).
Then, consider a bipartite graph such that the left part consists of {G(i)}, the
right part consists of {H(j)}, and there is an edge between G(i) and H(j) iff
f∗(ui,vj) = 1. Then, this graph forms a (partial) matching.

Using f∗, we construct a sequence of modifications to transform G to H . For
each G(i) with f(ui,⊥) = 1, we remove all the edges in G(i). For each H(j) with
f(⊥,vj) = 1, we remove all the edges in H(j).

Consider a pair G(i) and H(j) for which f(ui,vj) = 1. Let TG(i) and TH(j)

be the set of subtrees in G(i) and H(j), respectively. From the definition, we can
choose ‖Freq(G(i))−Freq(H(j))‖1 sets of subtrees T ′

G(i) ⊆ TG(i) and T ′
H(j) ⊆ TH(j)

in total so that TG(i) \ T ′
G(i) and TH(j) \ T ′

H(j) are isomorphic.
The total number of edge modifications is bounded by

∑

ui:f(ui,⊥)=1

s deg(root(G(i))) +
∑

vj :f(⊥,vj)=1

s deg(root(H(j)))

+
∑

(ui,vj):f(ui,vj)=1

s‖Freq(G(i))− Freq(H(j))‖1

≤ 2s ·M(FG, FH).

⊓⊔

Now, we prove Lemma 4.1. We show that the following algorithm is a tester
for forest-isomorphism.

Lemma B.11 (Restatement of Lemma 4.1). There exists η = η4.1(s, ε
′, γ)

such that for any input with ñ
n ,

ñ
n′

∈ [1 − η, 1], the procedure TestRootedForest

correctly decides d(G,H) = 0 or d(G,H) ≥ ε′ñ with probability at least 1 − τ ′.
Here η is a polynomial in ε′, γ. Regarding that s is constant, the query complexity

is a polynomial in γ, ε′, τ ′, R. Denote by q4.1random(s, γ, ε
′, τ ′) the number of random

vertex queries the procedure invokes. Then q4.1random is a polynomial in γ, ε′, τ ′.

Proof. Set η = ηB.2(δ). Combining Lemmas B.6 and B.10, the correctness of

TestRootedForest can be proven as follows: If d(G,H) = 0, M̃ ≤ M(FG, FH) +
δ′′ñ = δ′′ñ (with probability 1 − τ ′). On the other hand, if d(G,H) ≥ ε′ñ,

M̃ ≥ M(FG, FH)− δ′′ñ ≥ (ε′/(2s)− δ′′)ñ > δ′′ñ.
The query complexity of TestRootedForest is polynomial in δ, τ, qfreq, R, kt(s).

Since parameters δ, τ, k are polynomials in γ, δ′′ = O(ε′/s), τ ′, and qfreq is a

Algorithm 4 tests whether d(G,H) = 0 or d(G,H) ≥ ε′ñ, with probability
at least 1 − τ ′, given ñ, s, R,B, γ ≥ 1, ε′, τ ′, η ∈ (0, 1) and R-good s-rooted
forest with root degree in (B, γB] with ñ

n ,
ñ
n′

∈ [1 − η, 1] for n = |V (G)| and
n′ = |V (H)|.
1: procedure TestRootedForestε′,s,τ ′,η,γ,R(G,H, ñ, B)
2: Set δ′′ = O(ε′/s).
3: Choose parameters δ, τ, qfreq, k in Lemma B.6 according to parameters

γ, δ′′, τ ′/2, R.

4: Compute S̃G = S̃ketchδ,τ,qfreq ,R,k(G) and S̃H = S̃ketchδ,τ,qfreq,R,k(H).

5: Compute M̃ = M(S̃G, S̃H) by a min-cost flow algorithm.

6: if M̃ < δ′′ñ then

7: return YES
8: else

9: return NO

polynomial in γ, δ′′, τ ′, R, the query complexity is a polynomial in γ, ε′, τ ′, R. We

invoke random vertex queries O(qloop) times for qloop = qB.1
loop (k, s, δ, δ

′
B.2(δ), τ),

and therefore q4.1random is a polynomial in γ, ε′, τ ′. ⊓⊔

C Missing Parts of Section 5

C.1 Missing proofs from Section 5

Proof (of Lemma 5.2). Note that 1+µ
1−µ < γ. For a tree T in G, let pT be the

probability that T is on the (α, γ, µ)-boundary and d′T = deg(root(T)). Note

that T is on the (α, γ, µ)-boundary if and only if α ∈ [γi

d′

T
(1+µ) ,

γi

d′

T
(1−µ)] for some

i. Let fT (x) := |[1, γ]∩[x
d′

T
(1+µ) ,

x
d′

T
(1−µ)]|. Then, pT =

∑
i≥1 fT (γ

i)/(γ−1) since

the intervals {[γi

d′

T
(1+µ) ,

γi

d′

T
(1−µ)]}i≥1 are disjoint as 1+µ

1−µ < γ.

From the definition, if x
d′

T
(1−µ) ≤ 1 or x

d′

T
(1+µ) ≥ γ, then fT (x) = 0 and

otherwise fT (x) > 0. Futher, if fT (x) > 0, then fT (γ
2x) = 0 since this implies

x > d′T (1 − µ) and γ2x > d′T (1 − µ)γ · γ > d′T (1 + µ)γ. It follows that #{i ∈
N<L+1 | fT (γi) > 0} ≤ 2. The value of fT (x) is maximized when x

d′

T
(1−µ) = γ.

Thus, fT (x) ≤ γ − 1−µ
1+µγ ≤ 2γµ, and we have pT ≤ 4γµ.

Therefore, we have Eα[Bα,γ,µ(G)] =
∑

T pT |V (T)| ≤ 4γµn. By Markov’s
inequality, the lemma holds. ⊓⊔

Proof (of Lemma 5.3). For a vertex v ∈ V (G[0]) ∪ · · · ∪ V (G[L]), let T be a tree
with v ∈ T . If T contains no high-degree vertex, the procedure Which decides
that v ∈ G[0]. This output is correct.

Suppose that T contains a high-degree vertex u. Set δ = O(µ/(γ2R)) and
q = q5.3(γ, µ,R, τ) = q3.3(δ, τ). From Lemma 3.3 and the definition of an R-

good tree, |d̃egq(u)−deg(u)| ≤ δR deg(u) holds with probability 1−τ . If v ∈ G[0]

or v ∈ G[1], the output is correct since δR · αγ < 1/2. Suppose that v ∈ G[i] for
i ∈ [2, L]. Since G[i] is the union of trees that are not on the (α, γ, µ)-boundary,

(1 + µ)αγi < deg(u) < (1 − µ)αγi+1 holds. Thus, we obtain αγi < d̃eg(u) <
αγi+1. ⊓⊔

Proof (of Lemma 5.4). The lemma follows from Lemmas 3.4 and 5.2. ⊓⊔

Proof (of Lemma 5.6). Let Ak be the event that when running the procedure
Randomq(G, i), we pick up vertices of (V (G[0])∪ · · · ∪ V (G[L])) \V (G[i]) k times
and pick up a vertex of V (G[i]) and then, the procedure Whichq outputs always
the correct value. Set t = O(log(1/τ)/δ). It is sufficient to show that Pr[A0 ∨
· · · ∨ At] ≥ 1 − τ holds by appropriately choosing parameters. Let τ ′ = O(δτ),
λ = λ5.6(δ, τ) = O(δτ), q = q5.3(γ, µ,R, τ ′). Then,

Pr [A0 ∨ · · · ∨ At] =
t∑

k=0

((1 − λ− δ)(1− τ ′))k · δ(1− τ ′)

≥ δ(1 − τ ′)

t∑

k=0

(1− λ− δ − τ ′)k

≥ δ(1 − τ ′) · (1− τ ′)/(λ+ δ + τ ′) ≥ 1− τ.

⊓⊔

C.2 Tester for isomorphism of s-bounded-degree forests

We consider a forest-isomorphism tester for s-bounded-degree forests. As men-
tioned in Section 4, we need to make a tester for two forests containing different
number of vertices. Using the result in [10], we can construct such a tester.

Lemma C.1. There exists a procedure such that the following holds: For any
ε′, τ ∈ (0, 1) and s ≥ 1, there exists η = ηC.1(ε

′) such that for any s-bounded-

degree forests G and H with ñ
n ,

ñ
n′

∈ [1−η, 1], where n = |V (G)| and n′ = |V (H)|,
the procedure correctly decides d(G,H) = 0 or d(G,H) ≥ ε′ñ with probability at
least 1− τ . The query complexity depends only on ε′ and τ .

Proof. We use the similar notion in [10]. For s, k ≥ 1, let N(s, k) be the number
of rooted graphs whose degree is at most s and radius is at most k. Suppose that
the N(s, k) rooted graphs are numbered from 1. Let Ni(s, k) be the i-th graph.
In addition, for a vertex v in G, let BG(v, k) be the subgraph rooted at v that is
induced by all vertices of G that are at distance at most k from v. Let Distk(G)
be the N(s, k)-dimensional vector whose i-th element is the number of vertices
v in G such that BG(v, k) is isomorphic to Ni(s, k). Let Freqk(G) = Distk(G)/n.
The main result of [10] is as follows.

Theorem C.2 ([10]). For any ε′ ∈ (0, 1) and s ≥ 1, there exists D = DC.1(ε
′, s)

and δ = δ′′C.1(ε
′, s) such that if two forests G and H containing equal vertices

are ε′-far from isomorphic, then ‖FreqD(G)− FreqD(H)‖1 > δ′′ holds. ⊓⊔

Without loss of generality, assume that that n ≥ n′. Let H ′ be a graph
consisting of H and (n−n′) isolated vertices. We will prove the following claim.

Claim. If ñ
n ,

ñ
n′

∈ [1− η, 1], ‖FreqD(H ′)− FreqD(H)‖1 ≤ 4η.

Using the claim, we can prove the lemma as follows. Set η = O(λ). From
the triangle inequality, ‖FreqD(G)− FreqD(H)‖1 ≥ ‖FreqD(G)− FreqD(H ′)‖1 −
‖FreqD(H ′)−FreqD(H)‖1. IfG andH are ε′-far from isomorphic, then ‖FreqD(G)−
FreqD(H)‖1 ≥ λ−O(λ) = λ/2 holds by Theorem C.2 and the above claim. Since
we can approximate Freq by randomly sampling vertices and performing the
BFS, we can test whether FreqD(G) = FreqD(H) or ‖FreqD(G)− FreqD(H)‖1 ≥
λ/2 with high probability.

We prove the claim. By the condition, |1 − n/n′| ≤ 2η. Suppose that an
isolated vertex is indexed one in the N(s,D)-dimensional vector. Let z be the
number of isolated vertices in H . Then,

‖FreqD(H ′)− FreqD(H)‖1
= ‖DistD(H ′)/n− DistD(H)/n′‖1
= |(z + n− n′)/n− z/n′|+

∑

2≤i≤N(s,k)

|DistD(H)[i]/n− DistD(H)[i]/n′|

≤ |1− n′/n|+ z|1/n− z/n′|+ (‖DistD(H)‖1 − z)|1/n− 1/n′|
≤ |1− n′/n|+ |1− n′/n| ≤ 4η.

⊓⊔

We denote the procedure in Lemma C.1 by TestBoundedDegreeForestε′,s,τ,η(G,H).

C.3 Proof of Theorem 1.1

Now, we prove Theorem 1.1. We show a tester for forest-isomorphism for s-
forests in Algorithm 5. Let TestForestOfSameTypeε′,s,τ,η,γ,R(i, G,H, ñ) be the
algorithm that runs TestBoundedDegreeForestε′,s,τ,η(G,H) if i = 0, and runs

TestRootedForestε′,s,τ,η,γ,R(G,H, ñ, αγi) otherwise.
We use the procedure TestIsomorphism in Algorithm 5 as a tester. It is suffi-

cient to show the following theorem.

Theorem C.3. The procedure TestIsomorphismε,τ (G,H) outputs the correct value
with probability 1− τ with query complexity polylog(n).

Proof. We first calculate the probability that the procedure TestIsomorphism

returns the correct value. In Line 7, |V (G
[L+1]
s,α,γ,µ,R)| ≤ λn and |V (H

[L+1]
s,α,γ,µ,R)| ≤

λn hold with probability 1 − O(τ) by Lemma 5.4 and this is assumed in the
following. In Line 10, both |z̃G,i − |V (G[i])|| ≤ δn and |z̃H,i − |V (H [i])|| ≤ δn
hold for all i with probability 1 − O(τ) by Lemma 5.5 and the union bound.
Therefore, if z̃G,i ≥ 2δn, then |V (G[i])| ≥ δn holds. (The same thing holds for
H [i] as well.) Thus, from Lemma 5.6, we can provide the random vertex query to

Algorithm 5 returns YES if d(G,H) = 0 and NO if d(G,H) ≥ εn with high
probability, given two s-forests G,H and ε, τ ∈ (0, 1).

1: procedure TestIsomorphismε,τ (G,H)
2: Let γ = 2s, L = O(log n/ log γ).
3: Let ε′ = O(ε/L), τ ′ = O(τ/L), η = O(min(ηB.2(s, ε

′, γ, τ ′), ηC.1(ε))),

4: δ = O(min(η, ε′)), τ ′′ = O(1/(Lq4.1random(s, γ, ε′, τ ′))), q = q5.6(δ, τ
′′),

5: λ = λ5.6(δ, τ
′′), R = O(s/λ), µ = O(λ/γ),

6: β0 = 1/2, βL+1 = 2λ, β1, · · · , βL = (1− β0 − βL+1)/L.
7: Choose α ∈ [1, γ] uniformly at random.
8: for i = 0, . . . , L do

9: Let qloop = qloop5.5(δ, τ
′) and qwhich = qwhich5.5(δ, τ

′).
10: Compute z̃G,i = Sizeqloop,qwhich(G, i) and z̃H,i = Sizeqloop ,qwhich(H, i).
11: if |z̃G,i − z̃H,i| > 2δn then

12: return NO
13: if z̃G,i + z̃H,i < ε′n then

14: continue

15: Let ñ = max(z̃G,i, z̃H,i) + δn.
16: Invoke the procedure TestForestOfSameType(βiε),s,(βiτ),η,γ,R

(i, G[i],H [i], ñ)
with providing the random vertex query by Randomq(·, i).

17: if the returned value is NO then

18: return NO
19: return YES

G[i] and H [i] correctly in Line 16 for every possible i with probability 1−O(τ).
Here, the procedure Random invokes the procedure Which O(1/(δτ ′′)) times.
Again, in what follows, we assume these happen.

Suppose that d(G,H) = 0. In this case, the procedure returns NO in Line 12
for some i with probability at most O(τ). Further, the procedure returns NO
in Line 18 for some i with probability at most O(τ). Therefore, the procedure
returns YES with probability 1−O(τ).

Next, suppose that d(G,H) ≥ εn. From Lemma 5.1, there exists i ∈ N≤L+1

such that d(G[i], H [i]) ≥ βiεn holds. However, since we assumed that |V (G[L+1])|, |V (H [L+1])| ≤
λn and we set βi = 2λ, d(G[L+1], H [L+1]) ≥ βiεn will never hold. Thus, we can
say that there exists i ∈ N≤L such that one of the following holds: (i) ||V (G[i])|−
|V (H [i])|| > 4δn, or (ii) ||V (G[i])| − |V (H [i])|| ≤ 4δn and d(G[i], H [i]) ≥ βiεn. If
(i) holds, the procedure returns NO in Line 12. If (ii) holds, |V (G[i])|+|V (H [i])| ≥
βiεn holds (otherwise there exists a sequence of modifications from V (G[i]) into
V (H [i])), and thus, z̃G,i + z̃H,i ≥ ε′n with the appropriate choice of constant
factor of the parameters. Thus, the procedure does not pass Line 12. By the
assumption, the condition of Lemma B.11 (i.e., ñ

|V (G[i])|
, ñ
|V (H[i])|

∈ [1 − η, 1])

is satisfied. The procedure TestForestOfSameType returns NO in Line 18 with
probability 1−O(τ).

Applying the union bound for all assumptions stated so far, the procedure
TestForestOfSameType outputs the correct value with probability 1− τ .

Every parameter here is a polynomial in ε and L = O(log n/ε), whose expo-
nent is up to poly(t(s)). Since s = s3.1(ε) is a constant, the query complexity
in Line 10 is polynomial in O(log n). Consider the query complexity in Line 16.
When i = 0, we invoke the procedure TestBoundedDegreeForest with constant
parameters. Thus, the query complexity is constant. When 1 ≤ i ≤ L, the query
complexity of the procedure TestRootedForest is polynomial in the parameters.
Therefore, the query complexity of TestIsomorphism is polylog(n) in total. ⊓⊔

D Proof of Theorem 1.3

In this section, we prove that every property is testable with query complexity
polylog(n).

Proof (of Theorem 1.3). Suppose that we are given an oracle access to the input
graph G. Let F be the family of graphs that satisfy a property P . Consider the
following procedure:

1. Use the parameters defined in Line 2–6,9 of Algorithm 5 and choose α ∈ [1, γ]
uniformly at random.

2. For each i ∈ N≤L, compute z̃G,i = Sizeqloop,qwhich
(G, i). If z̃G,i ≥ O(ε′n) for

1 ≤ i ≤ L, compute S̃ketch(G
[i]
s,α,γ,µ,R). Let S̃

[i]
G = ext(S̃ketch(G[i]),M),

where ext(·) is an extension of a weighted point set and M is a suffi-
ciently large value. Similarly, if z̃G,0 ≥ O(ε′n), compute an approximation
to FreqDC.1

(G[0]).

3. For each H ∈ F and i ∈ N≤L, compute zH,i = |V (H [i])| and F
[i]
H =

ext(Freq(H [i]),M). Note that we know the full information of F , and there-
fore, we do not need to make any query to H ∈ F . Then, test isomorphism
between G and H in the similar manner as in Line 11–18. If |z̃G,i − zH,i| >
2δn, then regard that G and H are far from isomorphic. Otherwise, if
|z̃G,i+zH,i| ≥ ε′n, we test isomorphism by the sketch of G[i] and the weighted

point set of H [i] as follows: If 1 ≤ i ≤ L, compute M(S̃
[i]
G , F

[i]
H). If it is suffi-

ciently large, then regard that G and H are far from isomorphic. We perform
the same thing if i = 0.

4. If there exists H ∈ F such that, for every i ∈ N≤L, we do not regard that G
and H are far from isomorphic, then return YES. Otherwise, return NO.

By the almost same argument as the proof of Theorem C.3, the procedure returns
YES with high probability if G ∈ F . We show that the procedure returns NO

with high probability if G is ε-far from the property P . Let F
[i]
G = Freq(G[i]).

From Lemma B.10 and Lemma 5.1, for every H ∈ F , M(F
[i]
G , F

[i]
H) = Ω(βiεn)

holds for some 1 ≤ i ≤ L (or ‖FreqDC.1(G
[0]) − FreqDC.1

(H [0])‖ is sufficiently

large for i = 0). Assume that M(F
[i]
G , S̃

[i]
G) is sufficiently small. This happens

with high probability. Then, from the triangle inequality, M(S̃
[i]
G , F

[i]
H) is at least

Ω(βiεn). The same argument holds for i = 0. Thus, the procedure will return
NO with high probability.

The query complexity of this procedure is polylog(n). ⊓⊔

E Lower Bounds

In this section, we give an Ω(
√
logn) lower bound for testing forest-isomorphism

and prove Theorem 1.2.
We first mention one technical issue to show lower bounds. SinceH-isomorphism

is a property which is closed under relabeling of vertices, we can assume that a
tester for H-isomorphism does not exploit labels of vertices (see [7] for details).
Instead, we assume that a tester obtains vertices by sampling vertices uniformly
at random and only asks degrees and neighbors of sampled vertices.

We introduce several definitions for probability distributions. For two distri-
butions D1 and D2 over S, the total variation distance between D1 and D2 is
defined as d(D1,D2) =

1
2

∑
i∈S |D1(i)−D2(i)|. For a set of elements S, we define

U(S) as the uniform distribution over S.
We use the following lower bound as our starting point.

Lemma E.1 (Folklore). Suppose that a probability distribution D over [s] is
given as an oracle. That is, upon a query, we can sample an element from the
distribution D. We need Ω(

√
s) queries to distinguish the case that D = U([s])

from the case that D = U(S) for some S ⊆ [s] with |S| = s
2 .

Now, we give a way of constructing a graph from a uniform distribution. To
this end, we introduce a gadget. For an integer k ≥ 2, let Tk be the star graph of
k vertices. That is, the vertex set of Tk consists of a vertex v, called the center
vertex, and vertices u1, . . . , uk−1 connecting to v. For two integers N and k such
that N is a multiple of k, we define TN

k as the (disconnected) graph consisting
of N

k copies of Tk.
In what follows, we fix an integer N to be a huge power of two and s = log2 N

be an integer. From a uniform distribution U over S ⊆ [s], we construct its
associated graph GD by adding a copy of TN

2i to GD for each i ∈ S. Note that
the number of vertices in GD is |S|N , and TN

2i is well-defined since 2i ≤ 2s = N .

Lemma E.2. Suppose that a graph G is given as an oracle in the adjacency list
model. We need Ω(

√
s) queries to distinguish the case that G = GU([s]) from the

case that G = GU(S) for some S ⊆ [s] with |S| = s
2 .

Proof. Given an oracle access to a probability distribution D, which is guaran-
teed to be a uniform distribution over some set, we construct an oracle access
to the graph G as follows.

Random-vertex query: We sample an element fromD and let i be the output.
Then, we construct a graph TN

2i and return a random vertex in it. When we
sample the same element i again, we reuse the same TN

2i .
Degree query: Let v be the specified vertex. Since v is a vertex returned by a

random-vertex query, we know which TN
2i contains the vertex v and how we

have choosen v in TN
2i . Thus, we can return its degree.

Neighbor query: Let v and i be the specified vertex and index, respectively.
From the same reason as the previous case, we can return the i-th neighbor
of v.

Note that the graph G behind the oracle we have designed is equal to GU(S)

when D = U(S). Thus, from Lemma E.1, we have a lower bound of Ω(
√
s) on

the query complexity. ⊓⊔

To obtain a lower bound for testing forest-isomorphism, we need to show that
distinguishing two forests of the same number of vertices is hard. To address this
issue, we use the following auxiliary lemma. For a graph G, we define G⊗2 as
the graph consisting of two copies of G.

Lemma E.3. Suppose that a graph G is given as an oracle in the adjacency list
model. For a subset S ⊆ [s] with |S| = s

2 , we need Ω(
√
s) queries to distinguish

the case that G = GU(S) from the case that G = G⊗2
U(S).

Proof. The query-answer history of an algorithm is the subgraph obtained through
the interaction to the oracle. As long as (the distribution of) the query-answer
history is the same, (the distribution of) the output by the algorithm is the same
(See, e.g., [7]). We can assume that the query-answer history does not have la-
bels on vertices since we are assuming that algorithms do not depend on labels
of vertices.

For each i ∈ S, G⊗2
U(S) contains two copies of TN

2i . It is easy to see that the

distribution of the query-answer history is the same as long as an algorithm does
not hit vertices from both copies of TN

2i . Suppose that we have obtained a vertex
from a copy of TN

2i for some i ∈ S. The only way to obtain a vertex from the
other copy of TN

2i is querying random vertices. Thus from the birthday paradox,
we need Ω(

√
s) queries to obtain vertices from both copies of TN

2i for some i ∈ S.
⊓⊔

Since the number of vertices in GU([s]) and G⊗2
U(S) is sN = s2s, the value s is

bounded from below by logn− log s = Ω(logn), where n = sN . Thus, we have
the following.

Corollary E.4. Suppose that a graph G is given as an oracle in the adjacency
list model. We need Ω(

√
logn) queries to distinguish the case that G = GU([s])

from the case that G = G⊗2
U(S) for some S ⊆ [s] with |S| = s

2 .

Now we show a lower bound for forest isomorphism. From Corollary E.4, we
know that we need Ω(

√
logn) queries to distinguish the case G = GU([s]) from

the case that G = G⊗2
U(S) for some S ⊆ [s] with |S| = s

2 . In the former case, G is

isomorphic to H . We finish the proof of Theorem 1.2 by showing that G and H
are indeed far in the latter case.

The following lemma is useful to bound the distance between two graphs.

Lemma E.5. Let G = (V1, E1) and H = (V2, E2) be two graphs of n vertices.
Then,

d(G,H) ≥ min
φ:V1→V2

1

2

∑

u∈V1

| deg(u)− deg(φ(u))|,

where φ is over a bijection from V1 to V2.

Proof. Let φ∗ be a minimizer. For a vertex u ∈ V1, we define F (u) as the set
of edges (u, v) ∈ E1 incident to u such that (φ∗(u), φ∗(v)) is not an edge of E2.
Clearly, |F (u)| ≥ | deg(u) − deg(φ(u))| holds for every u. The lemma holds as
d(G,H) = 1

2

∑
u∈V1

|F (u)|. ⊓⊔

Lemma E.6 (Lemma 3 of [13]). Let G1 and G2 be graphs. If some connected
component C1 in G1 is isomorphic to a connected component C2 in G2, then we
can assume that C1 is mapped to C2 in an optimal bijection between G1 and G2.

Lemma E.7. Let S be a subset of [s] with |S| = s
2 . Then d(GU([s]), G

⊗2
U(S)) ≥ n

8 .

Proof. For notational simplicity, letG = GU([s]) andH = G⊗2
U(S). From Lemma E.6,

in the optimal bijection from G and H , we can assume that for each i ∈ S, T n
2i in

GU([s]) is mapped to the first copy of T n
2i in G⊗2

U(S). Let G
′ and H ′ be the graph

obtained from G and H by removing these mapped vertices, respectively.
Now we consider the distance from G′ to H ′. We consider the loss caused by

center vertices in stars of G′. Let u be a center vertex of a star in T n
2i for some i.

Then, u should be mapped to a vertex v in H ′ such that degG′(u) ≤ 1
2 degH′(v)

or degG′(u) ≥ 2 degH′(v). From Lemma E.5, we have

d(G,H) ≥ 1

2

∑

u:center vertex in G′

1

2
degG′(u) ≥ n

8
.

We have used the fact that the sum of degrees of center vertices of G′ is n
2 . ⊓⊔

From the previous argument and Lemma E.7, we establish Theorem 1.2.

	Testing Forest-Isomorphism in the Adjacency List Model

