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Abstract

The exact computation of the number of distinct elements (frequency moment
F0) is a fundamental problem in the study of data streaming algorithms. We denote
the length of the stream by n where each symbol is drawn from a universe of size
m. While it is well known that the moments F0, F1, F2 can be approximated by
efficient streaming algorithms [1], it is easy to see that exact computation of F0, F2

requires space Ω(m). In previous work, Cormode et al. [11] therefore considered a
model where the data stream is also processed by a powerful helper, who provides
an interactive proof of the result. They gave such protocols with a polylogarithmic
number of rounds of communication between helper and verifier for all functions in
NC. This number of rounds (O(log2m) in the case of F0) can quickly make such
protocols impractical.

Cormode et al. also gave a protocol with logm + 1 rounds for the exact com-
putation of F0 where the space complexity is O

(
logm log n + log2m

)
but the total

communication O (
√
n logm (log n + logm)). They managed to give logm round

protocols with polylog(m,n) complexity for many other interesting problems in-
cluding F2, Inner product, and Range-sum, but computing F0 exactly with poly-
logarithmic space and communication and O(logm) rounds remained open.

In this work, we give a streaming interactive protocol with logm rounds for
exact computation of F0 using O (logm ( log n + logm log logm )) bits of space and
the communication is O

(
logm

(
log n + log3m(log logm)2

))
. The update time of

the verifier per symbol received is O(log2m).

∗This work is funded by the Singapore Ministry of Education (partly through the Tier 3 Grant
”Random numbers from quantum processes”) and by the Singapore National Research Foundation.
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1 Introduction

In a seminal work [1] Alon, Matias and Szegedy studied the space complexity of both
approximating the frequency moments of a data stream and computing them exactly.
Streaming algorithms are usually designed to handle large data sets, and the algorithm
should be able to process each data element with small time overhead, and should have
small working space as well. For instance one of the striking results of Alon et al. is
that the second frequency moment F2 can be approximated up to a constant factor
using only O(log n+ logm) space by a randomized algorithm, where m is the size of the
universe and n is the stream length. The interested reader is referred to the survey by
Muthukrishnan [23]. Other problems studied in the data stream model include graph
problems like matching and triangle counting [6, 12].

It is known that the frequency moments Fj for integer j > 2 are hard to even approxi-
mate by any streaming algorithm, i.e., any streaming algorithm giving a good approxima-
tion must have large space [5]. Motivated by this and the paradigm of cloud computing
one can study new models where a helper/prover is introduced. The hope is that while
some problems require a lot of space to solve by an unassisted streaming algorithm, a
helper who is not space restricted and sees the stream in the same way as the verifier
might not only be able to compute the result, but be able to convince the client/verifier
of the correctness of that result by providing a proof that can be verified by the client
using small space only. In the past few years, there have been numerous papers [7–11,20]
investigating this idea.

Thus we have the following scenario: both the prover and client observe the stream.
The client, who is severely space restricted, computes a sketch of the data. The prover,
having no space restriction, can store the entire stream, compute the answer, and send it
to the client. But the prover may not be honest, e.g. the prover may have incentives to not
provide the correct answer. The client uses the sketch of the data to reject wrong claims
with high probability. The prover can be thought of as an internet company which offers
cloud computing services and operates huge data warehouses. The only formal restriction
on the prover is that he cannot predict the future parts of the stream. From now on, we
refer to the client as the verifier.

Besides many upper bounds provided in the papers cited above, one can also show
lower bounds against this model of prover assisted data streaming algorithms. Data
streaming protocols can be simulated by Arthur-Merlin communication protocols, where
Merlin is the prover and the data stream input is split across some players, who together
constitute the verifier Arthur. Arthur-Merlin communication complexity was first intro-
duced by Babai, Frankl and Simon [3] and was studied in greater detail by Klauck [18,19].
These lower bounds have been used by Chakrabarti et al. [7] to give non-trivial lower
bounds on approximating and computing exactly the k-th frequency moments for large
enough k, in the setting where the proof provided is noninteractive, i.e., the prover pro-
vides an “annotation” to the data stream that is then verified without further interaction.
Unfortunately analyzing model of interactive proofs with many rounds between prover
and verifier in communication complexity seems to be out of reach for current techniques
in communication complexity.

One of the fundamental problems in data streaming is to compute the number of
distinct elements in a data stream, which is the zeroth frequency moment and is denoted
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by F0. This problem has many application in areas such as query optimization, IP routing
and data mining (See the references cited in [17] for details). By a simple reduction from
the disjointness function [25], it is easy to get a lower bound of Ω(m) (assuming m = θ(n))
on the streaming complexity of computing the exact number of distinct elements by a
data streaming algorithm without a prover. If we require exact F0 and the verifier’s space
to be sublinear, we have to look at the prover-verifier model.

By appealing to Klauck’s [18] result on the MA complexity of disjointness, there is a
lower bound on hv = Ω(m) to compute F0 exactly in the online MA model as defined in [7],
where h is the help cost and v is the space used by the streaming algorithm. Cormode
et al. [11] gave interactive streaming protocols with logm rounds for various interesting
problems like frequency moments, the Index function and computing Inner Products.
They also gave a general purpose protocol that computes every function in NC with
polylogarithmic space, communication and rounds. For the case of exactly computing
F0, the general purpose protocol uses O(log2m) rounds, which can very quickly become
impractical. Hence the authors also describe a protocol using only logm rounds, where
the help cost (i.e., communication) is not polylogarithmic in m and n. We improve their
protocol so that both the communication h and the space v are polylogarithmic in m and
n, while using only logm rounds of interaction.

1.1 Previous Work

Let m be the universe size and n be the length of the stream. Although we later state our
complexity results in terms of m and n, in this subsection, for simplicity, we assume m
and n are roughly of the same order of magnitude, i.e. m = poly(n) following the previous
works in [10,11]. It is known that approximating F0 up to a (1± ε) multiplicative factor
can be done in O(ε−2 + logm) space using randomization, which is optimal as well [17].

Goldwasser, Kalai and Rothblum [14] proposed a delegation general purpose interac-
tive protocol for log-space uniform NC circuits. Their protocol was presented formally
in the streaming setting by Cormode, Mitzenmacher, and Thaler [10]. We state their
results below for easy reference.

Fact 1. [Theorem 3.1 from [10]]
Let f be a function over an arbitrary field F that can be computed by a family of
O(logS(n))-space uniform arithmetic circuits(over F) of fan-in 2, size S(n) and depth
d(n). Then in the streaming model with a prover, there is a protocol which requires
O(d(n) logS(n)) rounds such that the verifier needs O (logS(n) log |F|) bits of space and
the total communication between the prover and the verifier is O (d(n) logS(n) log |F|).

As a result of Fact 1, if we use the general purpose interactive protocol of [14] to
compute F0 exactly, it will require Ω(log2m) rounds of interaction between the prover
and verifier. Cormode, Mitzenmacher, and Thaler [10] gave an alternative interactive
protocol for F0 based on linearization, whereby the prover is more efficient in terms of
running time. Their protocol requires log2m rounds where the verifier’s space isO(log2m)
bits and the total communication is O(log3m).

As far as we know, the only interactive protocol which uses logm rounds to compute
F0 is given in [11]. We note that the results stated in [11] assumed that m = n. We have
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worked out the complexity of their protocol in terms of m and n in Appendix A. Restat-
ing the complexity of the F0 protocol in [11] in terms of m and n, the space of the verifier
is O

(
logm log n+ log2m

)
and the total communication is O (

√
n logm (log n+ logm)).

Compared to the other protocols (e.g. F2 and Index) given in [11], the total commu-
nication is not polylogarithmic in m and n. We briefly explain why the communication
blows up to Õ(

√
n) in Section 1.2.

Chakrabarti et al. [7,9] studied the situation in which the prover provides a (lengthy)
annotation/proof to the verifier after the data stream has ended. The verifier processes
the annotation in a streaming fashion. This corresponds to randomized checking of
noninteractive proofs (in the theory of interactive proofs such systems are called Merlin
Arthur games, because a powerful party that is not trusted (Merlin) sends a single message
to a skeptical and computationally limited verifier (Arthur)). For the exact computation
of F0 in this model, the help cost, h and the verifier’s space, v are both O(m2/3 logm).

In other related work, Gur and Raz [15] gave a Arthur-Merlin-Arthur(AMA) streaming

protocol for computing F0 exactly with both h and v being Õ(
√
m) (where Õ hides a

polylog(m,n) factor). Klauck and Prakash [20] studied a restricted interactive model
where the communication between the prover and verifier has to end once the stream is
already seen. Very recently, Chakrabarti et al. [8] presented constant-rounds streaming
interactive protocols with logarithmic complexity for several query problems, including
the well studied INDEX problem.

1.2 Previous Results and Our Techniques

First, we briefly describe why the protocol of [11] for computing F0 fails to have total
communication polylogarithmic in m and n. It is easy to see that F0 =

∑m
i=1 h (fi) where

fi := |{j | aj = i}| and h : N → {0, 1} is given by h(0) = 0 and h(x) = 1 for 1 ≤ x ≤ n.
Since h depends on n+1 points, the degree the polynomial h̃, obtained via interpolation,
is at most n, where h̃ agree with h on {0, 1, · · · , n}. If one was to naively apply the famous
sum-check protocol of Lund et al. [22], the degree of the polynomial communicated at
each round would be O(n). This is even worse than the trivial protocol in which the
prover either sends the frequency vector f := (f1, · · · , fm) or the sorted stream, with
a cost of Õ (min(m,n)). Since the proof is just a sorted stream, its correctness can be
checked by standard fingerprinting techniques as described in [20]. One obvious way to
rectify this would be to reduce the degree of the polynomial to be communicated at each
round. One way to reduce the degree of h̃ is to remove all heavy hitters1 from the stream,
so that the degree of h̃ can be made small (because h(x) may take any value for large
x), which in turn means that the communication will be low. The heavy hitter protocol
in [11] however uses a lot of communication just to identify all the heavy hitters, which
causes the communication cost in their protocol to be high. In this work, we also reduce
the degree of the polynomial to be communicated at each round. But instead of removing
the heavy hitters, we write F0 as a different formula. Such an approach was first used by
Gur and Raz [15] to obtain an AMA-protocol for exact F0. Here, the main technical point
is to replace the OR function on n variables which has high degree with a approximating
polynomial over a smaller finite field Fq, so that this new polynomial has low degree.
Such approximating polynomials were first constructed in [26, 27] to prove circuit lower

1Those items whose frequencies exceed a fraction of n.
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bounds. The degree of the approximating polynomial p : Fn
q → Fq depends on q. But

choosing q to be small forces us to work inside the field Fq, and the arithmetic will be
correct modulo q. Hence, F0 will be calculated modulo q. Note that we cannot choose
q > m as the approximating polynomial degree will be larger than m. By choosing
the first logm primes, we can compute F0 modulo these logm many primes with the
help and verifier’s cost being polylogarithmic in m and n (see Lemma 3). This does not
increase the number of rounds because all these executions can be done in parallel. The
exact value of F0 can be constructed by the Chinese Remainder Theorem. As a result of
decreasing the degree of the polynomial, our protocol no longer has perfect completeness.
By parallel repetition, the probability that a honest prover succeeds can be made close
to 1.

We now compare our results with previously known non-interactive and interac-
tive protocols that compute F0 exactly. For comparison purposes, we assume that
m = θ(n). The results are collected in Table 1. We note that if we fix the number
of rounds to logm, our work improves the total communication from O

(√
m log2m

)
to

O
(
log4m (log logm)2

)
, while only increasing the the verifier’s space by a multiplicative

factor of log logm. For practical purposes, the authors in [11] argue that the number
of rounds in the general purpose construction of [14], which is Ω(log2m), may be large
enough to be offputting. All the other protocols Cormode et al. [11] devise only require
logm rounds. In an article in Forbes [13] in 2013, it was reported that the National
Security Agency’s data center in Utah will reportedly be capable of storing a yottabyte2

of data. For a yottabyte-sized input, this corresponds to about 80 rounds of interaction
if one uses a protocol with logm rounds. For a protocol with log2m rounds, more than
6000 rounds of interaction are needed.

Recently, Chakrabarti et al. [8] have designed a streaming interactive protocol for
the Index function3 with two messages4 where both space and communication are only
O(log n log log n). Previous work gave a Õ(

√
n) protocol in the this online MA model

[7], whereas in [11], a log n round interactive protocol with O(log n log log n) space and
communication is given. Since for the INDEX function, there is a two message protocol
with only O(log n log log n) complexity5, one may ask whether a similar kind of protocol
is possible for F0 or other frequency moments. It is however easy to see that for k 6= 1,
the k-th frequency moment, Fk is as hard as the Disjointness function. In any online
communication protocol for the Disjointness function with 2 and 3 messages, there is a
lower bound of Ω(n1/2) and Ω(n1/3) respectively [8]. Hence, it is not possible to compute
F0 exactly using only 1, 2 or 3 messages with communication and space polylogarithmic
in m and n. How about using a constant number of r messages, where r ≥ 4, to
get communication and space polylogarithmic in m and n? It is believed that this is
not possible: due to the recent results in [8], if Disjointness on n bits can be solved
with a constant number of rounds and polylogarithmic complexity in the online one-way

2One yottabyte is 1024 bytes.
3The input stream consists of n bits x1, · · · , xn, followed by a integer j ∈ [n].
4The first message is from the verifier to the prover and this message depends on the stream and

the verifier’s private randomness. The second message is from the prover to the verifier, which depends
on the stream and the message received from the verifier. In general, for a k message protocol, Merlin
always sends the last message in the interaction.

5The complexity of a protocol is defined as the sum of the space used and the total communication
needed.

5



Paper Space Total Communication Number of Rounds

[7] m2/3 logm m2/3 logm 1
[10] log2m log3m log2m
[11] log2m

√
m log2m logm

This work log2m log logm log4m (log logm)2 logm

Table 1: Comparison of our protocol to previous protocols for computing the exact
number of distinct elements in a data stream. The results are stated for the case where
m = θ(n). The complexities of the space and the total communication is correct up to a
constant.

communication model, then the (ordinary) AM communication complexity of Disjointness
will also be polylog(n), which is unlikely, since Disjointness is the generic co-NP complete
problem in communication complexity [3]. Hence, constant round protocols (r ≥ 4)
for Fk(k 6= 1) with polylogarithmic complexity probably do not exist, but the current
techniques in communication complexity (i.e., providing strong lower bound on the AM
communication complexity of Disjointness) are not sufficient to prove this.

2 Preliminaries

2.1 Data Streaming Model

In this subsection we define our model of streaming computations with a helper/prover.
We assume that in general the input is given as a data stream σ = 〈a1, . . . , an〉 of

elements from a universe {1, . . . ,m}. The ai are sometimes referred to as symbols.
In our model we consider two parties, the prover, and the verifier. Both parties are

able to access the data stream one element at a time, consecutively, and synchronously,
i.e., no party can look into the future with respect to the other one. The verifier is a
Turing machine that has space bounded by polylog(m,n), and processes each symbol in
time polylog(m,n).

The prover is a Turing machine that has unlimited workspace, and processes each
symbol in some time T (m,n) that will vary from problem to problem. Ideally we want
T (m,n) to be polylog(m,n) as well, but this would imply immediately that the problem
at hand can be solved in quasilinear time which could be too restrictive for some problems
like computing the rank of a matrix.

After the stream has ended, the verifier and prover engage in a conversation to verify
the correctness of some function f(σ). The message that the prover sends to the verifier
is viewed as a stream and the verifier need not store this message. He can do some
computations with the message on the fly. In complexity theory, this is also known as
the interactive proof model, see for instance Chapter 8 in [2]. In the interactive proof
model in complexity theory, the prover is given unlimited power. But in our case, we
want the honest prover to be able to execute our protocols efficiently. We require the
verifier to run in total time min{m,n} · polylog(m,n), and the prover to run in time
min{m,n} · T (m,n). This makes the protocol efficient for practical delegation purposes.

Now, we are ready to define a valid protocol that verifies the correctness of some
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function f(σ). We follow closely from previous works in [10,11].

Definition 1. Before seeing the stream σ, both the prover P and verifier V agree on a
protocol to solve f(σ). This protocol should fix all the variables that are to be used (e.g.
Type of codes, size of finite fields etc.), but should not use randomness to fix these vari-
ables. If they need to choose a object from a given family according to some distribution,
the verifier will choose this object and communicate the result to the prover.

After the stream ends, both P and V exchange some messages between each other.
The message from P to V need not be stored but can be treated and processed as a stream.
We denote the output of V on input σ, given prover P and V’s private randomness R,
by out(V ,P ,R, σ). During any phase of the interaction, V can output ⊥ if V is not
convinced that P’s claim is valid.

We say P is a valid prover if for all streams σ,

PrR [out(V ,P ,R, σ) = f(σ)] ≥ 1− εc.

We say V is a valid verifier for f if there is at least one valid prover P, and for all
provers P ′ and all streams σ,

PrR [out(V ,P ,R, σ) /∈ {f(σ),⊥}] ≤ εs.

εc is known as the completeness error, the probability that the honest prover will fail
even if he follows the protocol. If εc = 0, we say the protocol has perfect completeness.
εs is called the soundness error, that is no prover strategy will cause the verifier to
output a value outside of {f(σ),⊥} with probability larger than εs. In this work, we take
εc = εs = 1

3
. By standard boosting techniques, these probabilities can be made arbitrary

close to 1 [2].
The main complexity measure of the protocol is the space requirement of the verifier

and the total communication between the verifier and the prover. We make the following
definition which takes into account these complexities.

Definition 2. We say there is a (h, v) streaming interactive protocol (SIP) with r rounds
that computes f , if there is a valid verifier V for f such that:

1. V has only access to O(v) bits of working memory.

2. There is a valid prover P for V such that P and V exchange at most 2r messages
in total, and the sum of the length of all messages is O(h) bits.

Given any SIP, we define its complexity to be h+ v.

The online Merlin-Arthur(OMA) model in one where the protocol is non-interactive,
in which a single message is sent from the prover to the verifier after the stream ends.
As before, V is given private randomness. Following definition 2, we define

OMA(f) = min {h+ v | there is a (h, v) online MA protocol that computes f} .
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2.2 Coding Theory

We begin with some brief background from coding theory which we use in this paper. For
more details of standard definitions, the reader is referred to [28]. A q-ary linear code C
of length n is a linear subspace of Fn

q , where q is some prime power. If C has dimension k,
then we call it a [n, k]q code. The (Hamming) distance between two codewords x, y ∈ C,
denoted by d(x, y) is the number of indices i ∈ [n] such that xi 6= yi. The distance of
the code is defined as the minimum distance over all pairs of distinct codewords in C. If
the minimum distance of the code is d, we denote it by [n, k, d]q. The generator matrix
G ∈ Fn×k

q of the code is a n by k matrix where the column span of G gives C. The relative
distance of the code is d/n and the rate of the code is k/n. A linear code is called a good
code if both its relative distance and rate is at most some constant. The Reed-Solomon
code is an example of a good code with alphabet size q = n+ 1. But in our case, we need
the alphabet size to be much smaller than n. Justesen codes [16] is a class of good codes
with a constant alphabet size. We say that a linear code is locally logspace constructible
if the (i, j)-entry of the generator matrix G can be constructed using space O(log n). It
is known that Justesen codes are locally logspace constructible (see Lemma 3.3 of [21]).

3 Our Result

Given a multiset presented as a stream σ = 〈a1, · · · , an〉, where each ai ∈ [m], we give
a interactive protocol with logm rounds which computes F0 exactly. For each j ∈ [m]
and i ∈ [n], we denote χi(j) to be the element indicator of element j at position i of the
stream, i.e. χi : [m] → {0, 1} such that χi(j) = 1 ⇔ ai = j. We can also interpret each
χi : {0, 1}logm → {0, 1} by associating each j ∈ [m] with its binary expansion. It is easy
to see that

F0 =
m∑
j=1

(
n∨
i=1

χi(j)

)
=

∑
x1∈{0,1}

· · ·
∑

xd∈{0,1}

OR (χ(x1, · · · , xd))

where d = logm, χ : {0, 1}d → {0, 1}n is

χ(x1, · · · , xd) := (χ1(x1, · · · , xd), · · · , χn(x1, · · · , xd)) .

and OR : {0, 1}n → {0, 1} is the OR function on n variables.
Following the ideas of [22], we consider the low degree extension of χi over a larger

field. Let q be a prime and λ an integer to be determined later. We extend the domain

of χi from Fd
2 to Fd

qλ
. If we denote θσ : [m] → Fd

2 where θσ(i) =
(
a
(1)
i , · · · , a(d)i

)
is the

binary expansion of ai, then the extension χ̃i : Fd
qλ
→ Fqλ is given by

χ̃i(x1, · · · , xd) :=
d∏
j=1

[(
2a

(j)
i − 1

)
xj +

(
1− a(j)i

)]
. (1)

8



Note that χ̃i(x1, · · · , xd) = χi(x1, · · · , xd) for all x ∈ Fd
2. Similarly, define χ̃ : Fd

qλ
→ Fn

qλ

in the natural way:

χ̃(x1, · · · , xd) := (χ̃1(x1, · · · , xd), · · · , χ̃n(x1, · · · , xd)) .

With this notation,

F0 =
∑

x1∈{0,1}

· · ·
∑

xd∈{0,1}

OR (χ̃(x1, · · · , xd)) . (2)

Running the sum-check protocol naively to (2) would require the prover to send a degree
n polynomial at each round. We replace the OR function in (2) with a low degree
polynomial which approximates the OR function with high probability. This idea was
first introduced in [24,27] and was also used in [15] to obtain an AMA protocol for exact
F0.

Lemma 1. Using O(L log n) bits of randomness, we can construct a polynomial p : Fn
q →

Fq of individual degree at most L(q − 1), such that for every x ∈ {0, 1}d,

Pr [p (χ̃(x1, · · · , xd)) = OR (χ̃(x1, · · · , xd))] ≥ 1− 1

6m logm
,

where L is the least integer such that(
2

3

)L
≤ 1

6m logm
. (3)

Proof. Start with a [ζn, n, 1
3
ζn]q-linear code C, where ζ > 1 is a constant to be chosen

such that C exist6. Let G be the generator matrix of C. Choose uniformly at random
α1, · · · , αL ∈ [ζn] where L is the least integer that satisfies (3) and define

p(x1, · · · , xn) := 1−
L∏
i=1

[
1− ((Gx)αi)

q−1] .
It is easy to see that the individual degree of p is at most L(q − 1). By properties of the
code C, for any x ∈ {0, 1}n,

Pr
α1,··· ,αL

[
p(x) 6=

∨
i

xi

]
≤
(

2

3

)L
≤ 1

6m logm
.

We note that L = O(logm).
Since Fqλ can be viewed as a vector space over Fq, we can view p : Fn

q → Fq as
p̃ : Fn

qλ
→ Fqλ , by applying p componentwise. By the union bound, the probability that

Pr

F0 (mod q) =
∑

x1∈{0,1}

· · ·
∑

xd∈{0,1}

p̃ (χ̃(x1, · · · , xd))

 ≥ 1− 1

6 logm
. (4)

6Justesen codes [16] are one example of a family of codes which have both constant relative distance
and constant rate.
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We first give a interactive protocol to compute F0 (mod q) with high probability. Let
q ≤ 2 logm log logm + 2 be a prime and λ be the smallest integer such that qλ−1 ≥
6Ld logm. Before observing the stream, the prover and verifier agree on the code C as
in Lemma 1. The verifier chooses O(L log n) random bits to define the polynomial p̃
and sends this randomness to the prover. The verifier chooses randomly r ∈ Fd

qλ
and

computes p̃ (χ̃(r1, · · · , rd)) in a streaming fashion. We now illustrate how the verifier
computes p̃ (χ̃(r1, · · · , rd)) given a one-pass over the stream without storing the whole
input.

For 1 ≤ i ≤ n, let yi =
(
y
(1)
i , · · · , y(λ)i

)
where yi = χ̃i(r1, · · · , rd) and each y

(j)
i ∈ Fq.

Each yi can be computed when ai is seen in the stream using (1).
Then

p̃ (χ̃(r1, · · · , rd)) = p̃ (y1, · · · , yn)

=

p
 y

(1)
1
...

y
(1)
n

 , · · · , p

 y
(λ)
1
...

y
(λ)
n




We show how to compute p

 y
(j)
1
...

y
(j)
n

 for any 1 ≤ j ≤ λ in a streaming fashion. For

1 ≤ j ≤ λ and 1 ≤ i ≤ L, V needs to compute

Bij =

G
 y

(j)
1
...

y
(j)
n



αi

(5)

=

G

y
(j)
1

0
...
0



αi

+ · · ·+

G


0
...
0

y
(j)
n



αi

This can be done given a one pass over the stream σ, each time V observes a new entry
ak, he updates

Bij ← Bij + y
(j)
k · gαi,k.

Note that the computation of y
(j)
k depends only on ak and the verifier need not store

matrix G. Upon observing entry ak, only the α1, · · · , αL entries of the k-th column of G
are relevant. Since G is locally logspace constructible, each gαi,k can be constructed in

O(log n) space. After the stream has ended, the verifier computes p

 y
(j)
1
...

y
(j)
n

 using

p

 y
(j)
1
...

y
(j)
n

 = 1−
L∏
i=1

(
1−Bq−1

ij

)
.
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After the stream ends, the verification protocol proceeds in d rounds to compute
F0 (mod q) with probability at least 1 − 1

6 logm
. In the first round, the prover sends a

polynomial g1(X1) which is claimed to be

g1(X1) =
∑

x2∈{0,1}

· · ·
∑

xd∈{0,1}

p̃ (χ̃1 (X1, x2, · · · , xd) , · · · , χ̃n (X1, x2 · · · , xd)) .

The polynomial g1(X1) has degree L(q − 1) which can be described in O(Lq log qλ) bits.
The verifier need not store g1(X1) but just need to compute g1(r1), g1(0) and g1(1), which
can be done in a streaming fashion. Note that if the prover is honest, then

F0 (mod q) = g1(0) + g1(1). (6)

In round 2 ≤ j ≤ d−1, the verifier sends rj−1 to the prover who then sends the polynomial
gj(Xj), which is claimed to be

gj(Xj) =
∑

xj+1∈{0,1}

· · ·
∑

xd∈{0,1}

p̃(χ̃1 (r1, · · · , rj−1, Xj, xj+1, · · · , xd) , · · ·

· · · ,χ̃n (r1, · · · , rj−1, Xj, xj+1, · · · , xd))
(7)

The verifier computes gj(rj), gj(0) and gj(1) and proceeds to the next round only if the
degree of gj is at most L(q − 1) and

gj−1(rj−1) = gj(0) + gj(1).

In the final round, the verifier sends rd−1 to the prover who then sends the polynomial
gd(Xd), which is claimed to be

gd(Xd) = p̃ (χ̃1 (r1, · · · , rd−1, Xd) , · · · , χ̃n (r1, · · · , rd−1, Xd)) .

The verifier only accepts that (6) is computed correctly if gd is of the correct degree,
gd−1(rd−1) = gd(0) + gd(1) and gd(rd) = p̃ (χ̃(r1, · · · , rd)).
Next, we show that if the prover is dishonest, the verifier will reject the claimed value of
F0 (mod q) with high probability.

Lemma 2. In the case of the honest prover, the verifier will accept the wrong value of
F0 (mod q) with probability at most 1

6 logm
. If∑

x1∈{0,1}

· · ·
∑

xd∈{0,1}

p̃ (χ̃(x1, · · · , xd)) (8)

correctly represents F0 (mod q) and if the prover cheats by sending some polynomial which
does not need the requirements of the protocol, the verifier will accept with probability at
most L(q−1)d

qλ
.

Proof. In the case of a honest prover, since the interactive protocol always evaluates (8)
correctly, the prover will fail in the case that the approximating polynomial p̃ does not
represent the OR function. By (4), the probability that the honest prover will fail is at

11



most 1
6 logm

.

For the case of the dishonest prover, the argument proceeds inductively from the d-th
round to the first round. Indeed, if gd is not as claimed, by the Schwartz-Zippel lemma,

Pr [gd(rd) = p̃ (χ̃(r1, · · · , rd))] ≤
L(q − 1)

qλ
.

By induction, suppose for 1 ≤ j ≤ d− 1 that the verifier is convinced that gj+1(Xj+1) is
correct with high probability. He can verify the correctness of gj(Xj) with high proba-
bility; since

gj+1(Xj+1) =
∑

xj+2∈{0,1}

· · ·
∑

xd∈{0,1}

p̃(χ̃1 (r1, · · · , rj, Xj+1, xj+2, · · · , xd) , · · ·

· · · ,χ̃n (r1, · · · , rj, Xj+1, xj+2, · · · , xd)),

it is easy to see by (7) that gj(rj) = gj+1(0) + gj+1(1). By the Schwartz-Zippel lemma,

Pr
[
ĝj(rj) = gj+1(0) + gj+1(1) where

ĝj(Xj) 6=
∑

xj+1∈{0,1}

· · ·
∑

xd∈{0,1}

p̃(χ̃1 (r1, · · · , rj−1, Xj, xj+1, · · · , xd) , · · ·

· · · ,χ̃n (r1, · · · , rj−1, Xj, xj+1, · · · , xd))
]
≤ L(q − 1)

qλ
.

For the cheating prover to succeed, he has to give

ĝ1(X1) 6=
∑

x2∈{0,1}

· · ·
∑

xd∈{0,1}

p̃ (χ̃1 (X1, x2, · · · , xd) , · · · , χ̃n (X1, x2 · · · , xd))

and either that in some round j + 1 (for some 1 ≤ j ≤ d − 1), when the verifier reveals
rj, it should satisfy

ĝj(rj) = gj+1(0) + gj+1(1)

or ĝd(rd) = p̃ (χ̃(r1, · · · , rd)) in the final round. By the union bound,

Pr [ĝ1(X1) 6= g1(X1) and the verifier accepts] ≤ L(q − 1)d

qλ
≤ 1

6 logm
.

Analysis of space and communication. We now analyse the space needed by the
verifier and the total communication between the prover and verifier over the logm
rounds to verify F0 (mod q). First, let us look at the space complexity of the veri-
fier. He needs to store α1, · · · , αL which will take O(logm log n) bits of space. With
O(logm log logm) bits of space, the verifier can compute p̃ (χ̃(r1, · · · , rd)) when observ-
ing the stream. Note during the interaction with the prover after the stream ends, at
each round 1 ≤ j ≤ d, the verifier need not store the polynomial gj(Xj) but only need to
evaluate gj at a constant number of points. Hence, the space complexity of the verifier
is O ( logm [ log n+ log logm ]) bits.
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We now bound the total communication between the prover and verifier. The verifier
needs to communicate α1, · · · , αL and r1, · · · , rd−1 to the prover, with cost O(logm log n)
and O(logm log logm) respectively. The prover, who needs to send g1(X1), · · · , gd(Xd),
uses O(dLq log qλ) = O(q · log2m log logm) bits to communicate all these polynomials.
Hence, the total communication is O ( logm (log n+ q logm log logm)) bits. We summa-
rize our result below.

Lemma 3. There exist an (h, v) SIP with logm rounds with

h = logm (log n+ q logm log logm) ,

v = logm ( log n+ log logm )

that computes F0 (mod q), where the completeness error

εc =
1

6 logm

and the soundness error

εs =
1

3 logm
.

for any prime q ≤ 2 logm log logm+ 2.

Computing F0 exactly. Lemma 3 gives us an streaming interactive protocol to verify
the correctness of F0 (mod q) with high probability for any prime q ≤ 2 logm log logm+2.
Now, we show how the prover can verify F0 with high probability. Let Q = {q1, · · · , qlogm}
be the first logm primes. Note that qlogm ≤ 2 logm log logm+ 2 for all m ≥ 2 [4] and

logm∏
i=1

qi > m.

So, the verifier will compute F0 (mod qi) for i = 1, · · · , logm. Note that this can be done
in parallel and will cause the working space of the verifier and the total communication
to increase, but the number of rounds is still logm. By using the Chinese remainder
theorem, the verifier can compute F0 exactly given F0 (mod qi) for i = 1, · · · , logm. By
the union bound, the completeness and soundness error are 1/6 and 1/3 respectively.

In the preprocessing phase (even before seeing the data), the verifier and prover
agree on a constant ζ > 0 such that the linear code Ci := [ζn, n, 1

3
ζn]qi exists for all

1 ≤ i ≤ logm. Note that the same α1, · · · , αL can be used to define the polyno-
mial p̃i : Fn

qλi
→ Fqλi

for each 1 ≤ i ≤ logm. For each 1 ≤ i ≤ logm, the verifier

needs to choose uniformly at random r(i) ∈ Fd
qλi

and compute p̃
(
χ̃
(
r(i)
))

. This can

be done in space O
(
log2m log logm

)
. Hence, the total space used by the verifier is

O(logm ( log n+ logm log logm )).
To bound the total communication, we need the following fact: Let pn be the nth

prime, then it is known [4] that
∑n

i=1 pi = Θ(n2 log n) for all n ≥ 2. Hence, the total
communication is

O

(
logm log n+ (log2m log logm)

logm∑
i=1

qi

)
= O

(
logm log n+ log4m(log logm)2

)
.
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Running time of the verifier. First, we analyse the processing time of each symbol
seen in the stream. We suppose it takes unit time to add and multiply two field elements
from Fqλ . For each symbol ak seen, the verifier needs to compute χ̃k

(
r(q)
)

where r(q) ∈ Fd
qλ

for each q ∈ Q. From (1), it is easy to see that the verifier needs O(d) = O(logm) time
to compute χ̃k

(
r(q)
)

for each q ∈ Q. Hence the total time taken by the verifier to process

each symbol is O(log2m). After this, the verifier can discard ak and only need to update
matrices B for each q ∈ Q (See (5) for the definition of matrix B). In another workstation,
the verifier can update matrices B using (5) after computing χ̃k

(
r(q)
)

for each q ∈ Q.

Note that after χ̃k
(
r(q)
)

is computed, the updating of B does not require ak anymore.
We summarize our results below.

Theorem 1. There exist an (h, v) SIP with logm rounds with

h = logm
(

log n+ log3m(log logm)2
)
,

v = logm ( log n+ logm log logm )

that computes F0 exactly, where the completeness and soundness error are 1/6 and 1/3
respectively. The update time for the verifier per symbol received is O(log2m).

4 Conclusions and Open Problems

We have shown that there is a streaming interactive protocol with logm rounds to com-
pute F0 exactly using space and communication polylogarithmic in m and n. This im-
proves the previous work in [11] which also gave a logm + 1 protocol but the total

communication of their protocol was Õ(
√
n).

In this section, we assume that m = θ(n), to simplify the statement of bounds. An
open problem that remains is whether we can obtain an interactive protocol with logm
rounds and polylog(m) space and communication for F∞, the number of times the most
frequent item appears in the data stream. It is known that a constant approximation
of F∞ requires Ω(m) space in the standard model where there is no prover. So even
approximating F∞ with logm rounds and polylog(m) complexity is interesting. Again
computing F∞ in in NC and polylogarithmic rounds can be achieved. The authors of
[11] describe an interactive protocol for exactly computing F∞ with logm rounds with

communication Õ(
√
m) and polylogarithmic space.

Another interesting theoretical problem would be to obtain non-trivial lower bounds
on the Arthur-Merlin(AM) communication complexity of the Disjointness function (refer
to [19] for the definition of the AM model in communication complexity). Proving any su-
perlogarithmic lower bounds on the AM complexity of Disjointness will rule out constant
round streaming interactive protocols for Fk(k 6= 1) with polylogarithmic complexity.

For the online MA model, we conjecture that the protocol given in [7] for exact F0 with
complexity O(m2/3 logm) is tight, up to logarithmic factors. In this restricted online MA
model, it might be easier to prove lower bounds larger than

√
m, as compared to proving

lower bounds in the general Merlin-Arthur model. Also, in the online MA model, any
protocol that approximates Fk up to a constant factor requires hv = Ω(m1−5/k) [7]. Since
it is known that for k ≥ 3, approximating Fk in the standard model requires Ω(mα) space
for some constant α > 0 [5], it is an interesting open problem whether approximating
F3, F4 and F5 is easy or hard in the online MA model.
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A F0 protocol of [11]

We note that the protocol given in [11] assumes that n = O(m). We present their protocol
for completeness sake, stating the complexity results in terms of m and n.

Theorem 2. There is a (
√
n logm(logm+log n) , logm(logm+log n) ) SIP with logm+1

rounds to compute F0.

Following the discussion in Section 1.2, we remove the heavy hitters from the stream
to reduce the degree of the polynomial. The φ-heavy hitter protocol described below lists
all the items i ∈ [m] such that fi > T := φn. The verifier need not store all the heavy
hitters in his memory.

Lemma 4. There is a (φ−1 logm(logm+log n) , logm(logm+log n) ) SIP with logm+1
rounds that identifies all the φ-heavy hitters in a data stream.

Proof. Consider a binary tree T of depth logm where the value of the i-th leaf is fi. For
any node v ∈ VT , denote L(v) to be the set of leaves of the subtree rooted at v and let p(v)

to be the parent of v. For every node v ∈ VT , we denote its value by f̂(v) :=
∑

i∈L(v) fi.

We denote the witness set W ⊆ VT which consists of all leaves l with f̂(l) > T and all

nodes v which satisfy f̂(v) ≤ T and f̂(p(v)) > T . This witness set ensures that no heavy
hitters are omitted by the prover. Label the nodes of T in some canonical order from
{1, 2, · · · , 2m − 1}. Let x ∈ {0, 1}2m−1 be the indicator vector for W , i.e. xj = 1 if and
only if the j-th node of T belongs to W . The prover gives the set W together with the
claimed frequency f ∗(w) for each w ∈ W . If w /∈ W , then define f ∗(w) = 0. The verifier

needs to check that the set W does cover the whole universe and that f ∗(w) = f̂(w) for
all w ∈ W . This is equivalent to checking that

2m−1∑
j=1

xj

(
f ∗(j)− f̂(j)

)2
= 0. (9)

Running the sum-check protocol of [22] to (9) will require logm+1 rounds of interaction.
We have to choose a prime q > (2m − 1)n2 which will require O(log n + logm) bits
to represent q. At each level of the binary tree, there can be at most 2φ−1 nodes that
belong to W , which implies that |W | = O(φ−1 logm). In each round of the sum-check
protocol, the prover communicates a polynomial of degree at most 3. Hence the total
communication is dominated by O(φ−1 log2m+ φ−1 logm log n).

The verifier need to pick a random point r ∈ Flogm+1
q and needs to evaluate x̃(r), f̃ ∗(r)

and
˜̂
f(r), where x̃, f̃ ∗ and

˜̂
f are the multilinear extensions of x, f ∗ and f̂ respectively. As

described in [11], x̃(r), f̃ ∗(r) and
˜̂
f(r) can be calculated in a single pass over the stream.

Hence the space complexity of the verifier is O(logm(logm+ log n)).
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The protocol of F0 proceeds as follows: The verifier removes all the φ-heavy hitters
in the stream with the help of the prover. This gives rise to a new stream σ̃ where the
frequency of each element is at most φn. The sum check protocol [22] is then applied to

F0 =
m∑
i=1

h (f ′i) (10)

where f ′i is the frequency of item i in the derived stream σ̃ and h : N → {0, 1} is given
by h(0) = 0 and h(x) = 1 for 1 ≤ x ≤ φn. We can work over the finite field Fp,
where p ≥ max{m,n}. Running the sum check protocol on (10) requires logm rounds
of interaction which will give a total communication of O(φn(logm + log n) logm). The
space required by the verifier is O(logm(logm + log n)). Note that the heavy hitter
protocol and the sum check protocol of (10) can be carried out in parallel. By choosing
φ = 1√

n
, we get Theorem 2.
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