Skip to main content

On Learning, Lower Bounds and (un)Keeping Promises

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Abstract

We extend the line of research initiated by Fortnow and Klivans [6] that studies the relationship between efficient learning algorithms and circuit lower bounds. In [6], it was shown that if a Boolean circuit class \(\mathcal{C}\) has an efficient deterministic exact learning algorithm, (i.e. an algorithm that uses membership and equivalence queries) then \(\mathsf{EXP}^{\mathsf{NP}} \not \subseteq \mathsf{P/poly}[\mathcal{C}]\). Recently, in [14] EXP NP was replaced by DTIME(n ω(1)). Yet for the models of randomized exact learning or Valiant’s PAC learning, the best result so far is a lower bound against BPEXP (the exponential-time analogue of BPP). In this paper, we derive stronger lower bounds as well as some other consequences from randomized exact learning and PAC learning algorithms, answering an open question posed in [6] and [14]. In particular, we show that

  1. 1

    If a Boolean circuit class \(\mathcal{C}\) has an efficient randomized exact learning algorithm or an efficient PAC learning algorithm then \(\mathsf{BPTIME}(n^{\omega(1)})/1 \not \subseteq \mathsf{P/poly}[\mathcal{C}]\).

  2. 2

    If a Boolean circuit class \(\mathcal{C}\) has an efficient randomized exact learning algorithm then no strong pseudo-random generators exist in \(\mathsf{P/poly}[\mathcal{C}]\).

We note that in both cases the learning algorithms need not be proper. The extra bit of advice comes to accommodate the need to keep the promise of bounded away probabilities of acceptance and rejection. The exact same problem arises when trying to prove lower bounds for BPTIME or MA [3,7,16,20]. It has been an open problem to remove this bit. We suggest an approach to settle this problem in our case. Finally, we slightly improve the result of [5] by showing a subclass of MAEXP that requires super-polynomial circuits. Our results combine and extend some of the techniques previously used in [6,14] and [20].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

  3. Barak, B.: A probabilistic-time hierarchy theorem for slightly non-uniform algorithms. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 194–208. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Buhrman, H., Fortnow, L.: One-sided versus two-sided error in probabilistic computation. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 100–109. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: Proceedings of the 13th Annual IEEE Conference on Computational Complexity (CCC), pp. 8–12 (1998)

    Google Scholar 

  6. Fortnow, L., Klivans, A.R.: Efficient learning algorithms yield circuit lower bounds. J. Comput. Syst. Sci. 75(1), 27–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic polynomial time. In: FOCS, pp. 316–324 (2004)

    Google Scholar 

  8. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In: Proceedings of the 52nd Annual FOCS, pp. 107–109 (2011)

    Google Scholar 

  9. Goldreich, O., Zuckerman, D.: Another proof that bpp ⊆ ph (and more). In: Studies in Complexity and Cryptography, pp. 40–53 (2011)

    Google Scholar 

  10. Harkins, R.C., Hitchcock, J.M.: Exact learning algorithms, betting games, and circuit lower bounds. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 416–423. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Impagliazzo, R., Wigderson, A.: Randomness vs. time: De-randomization under a uniform assumption. In: FOCS, pp. 734–743 (1998)

    Google Scholar 

  12. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean formulae and finite automata. J. ACM 41(1), 67–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klivans, A., Kothari, P., Oliveira, I.: Constructing hard functions from learning algorithms. In: Proceedings of the 28th Annual IEEE Conference on Computational Complexity (CCC), pp. 86–97 (2013)

    Google Scholar 

  15. Klivans, A.R., Sherstov, A.A.: Cryptographic hardness for learning intersections of halfspaces. J. Comput. Syst. Sci. 75(1), 2–12 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. van Melkebeek, D., Pervyshev, K.: A generic time hierarchy with one bit of advice. Computational Complexity 16(2), 139–179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miltersen, P.B., Vinodchandran, N.V., Watanabe, O.: Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 210–220. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Razboeov, A.A., Rudich, S.: Natural proofs. J. of Computer and System Sciences 55(1), 24–35 (1997)

    Article  Google Scholar 

  20. Santhanam, R.: Circuit lower bounds for merlin–arthur classes. SIAM J. Comput. 39(3), 1038–1061 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shamir, A.: IP=PSPACE. In: Proceedings of the Thirty First Annual Symposium on Foundations of Computer Science, pp. 11–15 (1990)

    Google Scholar 

  22. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4), 331–364 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Volkovich, I. (2014). On Learning, Lower Bounds and (un)Keeping Promises. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics