
Toward a Structure Theory of Regular Infinitary
Trace Languages?

Namit Chaturvedi??

RWTH Aachen University, Lehrstuhl für Informatik 7, D-52056 Aachen
chaturvedi@automata.rwth-aachen.de

Abstract. The family of regular languages of infinite words is struc-
tured into a hierarchy where each level is characterized by a class of
deterministic ω-automata – the class of deterministic Büchi automata
being the most prominent among them. In this paper, we analyze the
situation of regular languages of infinite Mazurkiewicz traces that model
non-terminating, concurrent behaviors of distributed systems. Here, a
corresponding classification is still missing. We introduce the model of
“synchronization-aware asynchronous automata”, which allows us to ini-
tiate a classification of regular infinitary trace languages in a form that
is in nice correspondence to the case of ω-regular word languages.

1 Introduction

In the theory of ω-regular word languages, a natural classification is induced
by various forms of deterministic ω-automata. The three fundamental cases are
given by (a) deterministic Muller automata, capturing the class of ω-regular word
languages; (b) deterministic Büchi automata, capturing recurrence properties
of infinite words; and (c) weak automata, capturing reachability properties of
infinite words. In this paper, we concentrate on the first two automata models,
on which fundamental facts can be summarized as follows (see e.g. [8]):

1. A language is deterministically Büchi recognizable if and only if it can be
expressed as lim(K) := {α ∈ Σω | α has infinitely many prefixes in K} for
some regular language K ⊆ Σ∗.

2. An ω-regular language is deterministically Büchi recognizable if and only if
this language is recognized by a Muller automaton whose acceptance com-
ponent is closed under supersets.

3. The class of Boolean combinations of deterministically Büchi recognizable
languages coincides with the class of Muller recognizable languages.

? This is a preliminary version of the paper that appears in ICALP 2014: the 41st
International Colloquium on Automata, Languages, and Programming.

?? Supported in part by the DFG Research Training Group-1298 AlgoSyn, and in part
by the CASSTING Project funded by the European Commission’s 7th Research
Framework Programme.

We consider the question of defining corresponding classes in the framework
of Mazurkiewicz traces [4] that model infinite, concurrent behaviors of a finite
sets of interacting processes. The concept of “ω-regular trace language” can
be introduced in close correspondence to the case of ω-regular word languages,
for example, in terms of finite partially-commutative monoids, asynchronous
automata, concurrent regular expressions, or MSO logic (cf. [4]).

However, it is remarkable that there does not yet exist a definition of Büchi
automaton over traces that allows for results analogous to items 1–3 above. The
objective of the present paper is to fill this gap.

Muscholl [7] took a major step toward establishing such structural results
by introducing a parameterized lim operator for trace languages. She showed
that the class of Boolean combinations of parameterized lim-languages is pre-
cisely the class of ω-regular trace languages, and also characterized the class of
linearizations of these parameterized languages in terms of “I-diamond” Büchi
(word) automata with “extended” acceptance condition. The respective family
of I-diamond automata characterizing Boolean combinations of linearizations of
reachability languages (where an infinite trace is in the language if it contains
a certain finite prefix) is studied in [2]. However, I-diamond word automata do
not offer a proper modeling of concurrency as realized over traces.

We introduce a new concept of asynchronous automata, viz. synchronization-
aware asynchronous automata (over traces rather than their linearizations).
These, when equipped with Büchi and Muller acceptance conditions, estab-
lish not only item 1, but also items 2 and 3 above. At the same time, the
synchronization-aware Muller automata are equivalent in expressive power to
the standard deterministic asynchronous Muller automata for infinitary trace
languages. Thus we provide a new framework that prepares – at least in impor-
tant parts – a structure theory for ω-regular trace languages that is compatible
with that of deterministic ω-automata over words.

Synchronization-aware automata are “aware” of the fact that during a run
over an infinite trace, the set of processes may be partitioned in a manner that
each part is minimal and, after a finite prefix, a process belonging to one part
never interacts directly or indirectly with a process belonging to another part.
The processes infer this partition by observing their infinitely recurring inter-
actions. Although infinite traces induce such partitions in all asynchronous au-
tomata, current models cannot perform such inferencing.

Another aspect of infinite runs is that while some processes may remain live
ad infinitum, others may halt after finitely many steps. However, the set of live
processes can be explicitly coded in the Büchi acceptance condition since this
directly corresponds to Muscholl’s parameterized lim operation mentioned above.

By combining both these aspects, we obtain the family of synchronization-
aware Büchi automata corresponding to item 1 above (see Thm. 13). We also
introduce synchronization-aware Muller automata recognizing precisely the class
of ω-regular trace languages (see Thm. 18). Finally, Theorems 20 and 21 respec-
tively demonstrate a characterization à la item 2 and the equivalence result of
item 3. We conclude with a discussion of a number of open problems.

2 Preliminaries

2.1 Finite and Infinite Traces

Over a finite alphabet Σ, let D ⊆ Σ2 be a binary, reflexive, and symmetric
dependence relation. We also refer to the corresponding independence relation
I = Σ2 \ D, and to the independence alphabet (Σ, I). Given an independence
alphabet, a finite trace is an isomorphism class of directed acyclic graphs t =
[V,l, λ] where V is a finite set of events; λ : V → Σ is a labeling function; and
for events e, e′ ∈ V : λ(e)Dλ(e′)⇔ el e′ or e′ l e or e = e′. The concatenation
of two finite traces t1 = [V1,l1, λ1] and t2 = [V2,l2, λ2] is given by t1 � t2 =
[V1]V2,l′, λ1]λ2], where l′ = l1]l2]{(e1, e2) ∈ V1×V2 | λ1(e1)Dλ2(e2)}.
We denote the set of all finite traces over an alphabet (Σ, I) with M(Σ, I).

For convenience, we work with “simplified” traces t = [V,l, λ] where we
remove all edges that may be inferred from others, i.e. by l we mean l \ l2

(see Fig. 1a). We also refer to the partial order < obtained from the transitive
closure of this edge relation; and define relations ≤, m, ≥, and > in the natural
manner. We use the abbreviation e ∈ t to convey t = [V,l, λ] and e ∈ V .

An infinite trace is a directed acyclic graph θ = [V,l, λ] where V is a count-
able set of events, and λ and l are like above except l satisfies an additional
requirement, namely, for each e ∈ θ, the set {e′ ∈ θ | e′ ≤ e} is finite. Denote the
set of all infinite traces with R(Σ, I). For traces t ∈ M(Σ, I), θ ∈ R(Σ, I), we
refer to sets alph(t), alph(θ) of letters occurring in them, and to the set alphinf(θ)
of letters occurring infinitely often in θ.

We say t1 is a prefix of t2, i.e. t1 v t2 :⇔ ∃t′ : t2 = t1 � t′, and t1 @ t2
iff t1 v t2 and t1 6= t2. We also refer to prefixes t of some θ ∈ R(Σ, I) in a
similar way. If E ⊆ t is a set of events, then t[E] = [V ′,l′, λ′] is a prefix of t
with the set V ′ := {f ∈ t | f ≤ e for some e ∈ E} and l′ and λ′ are obtained
by restricting the corresponding entities in t to V ′. The least upper bound of
two traces t1, t2, whenever it exists, denoted t1 t t2 is the smallest trace s such
that t1 v s∧ t2 v s. Similarly, if it exists, the greatest lower bound of t1 and t2,
denoted t1 u t2, is the largest trace s such that s v t1 ∧ s v t2.

2.2 Asynchronous Transition Systems

We refer to a deterministic asynchronous automaton as a pair A = (T,F), where
T is a deterministic asynchronous transition system and F is an appropriate
acceptance condition. We discuss these components separately.

For a fixed alphabet (Σ, I), an asynchronous transition system consists of a
set P of processes, a mapping dom : Σ → 2P assigning the domain of each letter
such that

⋃
a∈Σ dom(a) = P and a I b ⇔ dom(a) ∩ dom(b) = ∅. Naturally, for

Σ′ ⊆ Σ, we also refer to dom(Σ′) :=
⋃
a∈Σ′ dom(a). Moreover for an event e ∈ t,

we refer to dom(e) instead of referring to dom(λ(e)). Similarly, for E ⊆ t.
Processes p have sets Xp of local p-states. Introducing a symbol $ /∈

⋃
p∈P Xp,

for a set P ⊆ P the set XP of P -states is a defined as XP := {(xp)p∈P | xi ∈
Xpi if pi ∈ P, otherwise xi = $}. We find it convenient to assume an order over

a a a

b

c c

e1 e2 e3 e4 e5 e6

(a) Trace prefix t = [V,l, λ].

p

q

(x
0
,y

0
)

($
,y

1
)

(x
2
,y

2
)

($
,y

3
)

(x
3
,$

) ($
,y

4
)

(x
4
,y

5
)

e⊥ e1 e2 e3 e4 e5 e6

(b) Run ρ = [V ∪ {e⊥},l′, λ′, Λ].

Fig. 1: For Σ = {a, b, c}, a I b, a finite trace (prefix) t ∈M(Σ, I) and the run ρ
of an ATS, with dom(a) = {q}, dom(b) = {p}, and dom(c) = {p, q}.

P and view a P -state as a tuple. So we refer to a state as a tuple π ∈ XP for
some P ⊆ P. A state is a global state if P = P. We always distinguish between
a {p}-state π and a local p-state x; and for a state π, define the p-state in π as
π|p := xp ∈ Xp ∪ {$}, and similarly the P -state π|P in π. Also, dom(π) := {p ∈
P | π|p 6= $}. Finally, we denote the set of all states X2P :=

⋃
P⊆P XP .

We now define a deterministic asynchronous transition system (an ATS) as
a tuple T = ((Xp)p∈P , (δa)a∈Σ , π0), where Xp are sets of local p-states; transi-
tion functions δa : Xdom(a) → Xdom(a) define how processes jointly perform state
transitions on input letters a; and π0 ∈ XP is the global initial state of T.

Given a trace t = [V,l, λ] ∈ M(Σ, I), or θ = [V,l, λ] ∈ R(Σ, I), we define
the corresponding run ρ = [V ′,l′, λ′, Λ] of T on the trace where V ′ := V ∪{e⊥}
contains a fictional, minimum event e⊥. The relation l′ is identical to the edge
relation l, except that e⊥ is the unique minimum event.

During the run ρ of an ATS T over a trace, each process p makes state
transitions on events e ∈ dom−1(p). Each such event may be called a p-event as
well as a P -event where P = dom(e). All p-events in the run are totally ordered,
and this order <′p can be defined with the help of the order < of the trace. The
maximum p-event in ρ according to the ordering <′p is denoted as maxp(ρ) ≥ e⊥.
If it exists, the p-predecessor f of an event e is denoted by fl′p e. The labeling λ′

is defined similarly except λ′(e⊥) := ε; and Λ : V ′ → X2P is defined inductively:

– Λ(e⊥) := (π0),
– for any e >′ e⊥, if 1. a = λ(e), and 2. for ep l′p e, if xp = Λ(ep)|p are the

most recent p-states just before e, then Λ(e) := δa((yp)p∈P), where yp = xp
if p ∈ dom(e), yp = $ otherwise.

Fig. 1 shows the labeled events of a trace and the corresponding run; but λ′

is omitted in ρ for readability. The processes are assumed to be lexicographically
ordered, hence the representation of states as tuples. Note that, in Fig. 1b, the
edges are shown as per the relations l′p, p ∈ P. Importantly, although e⊥ <

′ e2
and e⊥ l′p e2, it is not the case that e⊥ l′ e2.

Analogous to trace prefixes, we refer to run prefixes, and to prefixes ρ[e], ρ[E]
for e ∈ ρ and E ⊆ ρ respectively. For e ∈ ρ, we also refer to the label Λ(e) as
the state of T at e. Similarly, if ρ is a finite run, then the state of T at ρ is given

by Λ(ρ) = (xp)p∈P where xp := Λ(maxp(ρ))|p is the p-state of T at maxp(ρ);
xp = π0|p if maxp(ρ) = e⊥. Obviously, Λ(ρ) is always a global state.

Finally, a deterministic asynchronous automaton (a DAA) over finite traces
is a pair A = (T, F), where T is an ATS and F ⊆ XP is a set of global states of
T. A finite trace t ∈M(Σ, I) is said to be accepted by A if, for the run ρ of T on
t, Λ(ρ) ∈ F . The set L(A) ⊆M(Σ, I) denotes the set of all finite traces accepted
by the DAA A. A language T ⊆M(Σ, I) is called recognizable or regular if there
exists a DAA A such that T = L(A).

2.3 Regular Infinitary Languages

The definition of regular languages of infinite traces, ω-regular trace languages,
was first provided by Gastin-Petit using monoid morphisms [5]. We use as defini-
tion, a characterization of the same family in terms of deterministic asynchronous
(cellular) Muller automata [3, 7]. The notion of acceptance of an infinite trace
θ ∈ R(Σ, I) by an ATS T is defined by referring to the local infinity sets Infp(ρ)
of local p-states that occur infinitely often during the run ρ of T over θ, with

Infp(ρ) :=

{
x ∈ Xp | ∃∞e ∈ ρ : Λ(e)|p = x

}
if p ∈ dom(alphinf(θ)),{

x ∈ Xp ∃e ∈ ρ : e = maxp(ρ)

and Λ(e)|p = x

}
otherwise.

Let F = {F1, F2, . . . } be a table where each Fi = (F pi)p∈P is a tuple of sets
of local states of the processes. A deterministic asynchronous Büchi automaton
(a DABA) is a pair A = (T,F). A DABA is said to accept a trace θ ∈ R(Σ, I) if,
on the run ρ of A on θ, there exists a tuple Fi ∈ F such that for each process p,
F pi ⊆ Infp(ρ) [5, 3]. A deterministic asynchronous Muller automaton (a DAMA)
is a pair A = (T,F), and is said to accept a trace θ if there exists a tuple Fi ∈ F
such that for each process p, F pi = Infp(ρ) [3].

Definition 1. A language Θ ⊆ R(Σ, I) is said to be a regular infinitary lan-
guage (or an ω-regular trace language) if it is recognized by a DAMA.

Definition 2 ([3]). For a language T ⊆ M(Σ, I) finite traces, the infinitary
limit of T , denoted lim(T), is the language containing traces θ ∈ R(Σ, I) such
that there exists a sequence (ti)i∈N, ti ∈ T satisfying ti @ ti+1 and

⊔
i∈N ti = θ.

Fig. 2 illustrates the definition of lim(T) with the help of an infinite run of
an asynchronous automaton recognizing T . Fig. 2a illustrates an induced run if
the trace θ /∈ lim(T), whereas Fig. 2b illustrates the contrary.

Muscholl studies infinitary limits that are parameterized by a set of letters.
This set governs which letters from the alphabet must occur infinitely often in
the traces, and which letters may not.

Definition 3 ([7]). For T ⊆ M(Σ, I) and some A ⊆ Σ, the A-infinitary limit
of T is defined as limA(T) := {θ ∈ lim(T) | D(alphinf(θ)) = D(A)}.

(a) ti ∈ T and ti @ ti+1, but θ /∈ lim(T)
since

⊔
i∈N ti 6= θ.

(b) θ ∈ lim(T) since each event is eventu-
ally covered by an accepting prefix.

Fig. 2: Illustrating Def. 2. Shaded regions constitute sequences of accepting runs.

Definition 4 ([7]). An ω-regular trace language is called a deterministic trace
language if it can be expressed as a finite union

⋃
i limAi

(Ti) for regular trace
languages Ti ⊆M(Σ, I) and sets Ai ⊆ Σ.

Clearly, the language lim(T) is a deterministic trace language since lim(T) =⋃
A⊆Σ limA(T). However, not every deterministic trace language can be ex-

pressed in the form lim(T) for any T .
It is still open whether there exists a DABA recognizing the language lim(T)

for any given regular trace language T ⊆ M(Σ, I). Furthermore, there exist
deterministic trace languages that are not accepted by any DABA [7]. In this
regard the term “deterministic trace language” [7] is not well founded, since it
has no equivalent in any of the classes of deterministic asynchronous ω-automata
known so far. The results of this paper justify this term by providing a matching
class of deterministic, “synchronization-aware” Büchi automata.

2.4 Secondaries and Frontiers

During a run ρ of an ATS, the processes can be thought of as “possessing and
updating information” regarding other processes [6]. If ρ is finite and p, q ∈ P,
the first-hand information that p has about q at ρ, denoted by latestp→q(ρ), is
the maximal q-event in the prefix ρ[maxp(ρ)]. Trivially, latestp→p(ρ) = maxp(ρ).
Similarly, for p, q, r ∈ P, the second-hand information that p has about r via q at
ρ, denoted by latestp→q→r(ρ), is the maximal r-event in the prefix ρ[latestp→q(ρ)].
Trivially, latestp→p→q(ρ) = latestp→q(ρ).

The primary information of p at ρ is defined as the ordered set Prip(ρ) :=
{latestp→q(ρ) | q ∈ P}. The secondary information of p at ρ is given by the set
Secp(ρ) := {latestp→q→r(ρ) | q, r ∈ P}. It is easy to see that on the one hand
Prip(ρ) ⊆ Secp(ρ), on the other hand the events of Secp(ρ) may be ordered as
per the partial order < of ρ. This gives us a view of the secondary graph of p
at ρ, which we identify with secondary information itself. In this paper, we are
mainly interested in secondary information of the form Secp(ρ[e]) for p ∈ dom(e).
Since, Secp(ρ[e]) = Secq(ρ[e]) for all p, q ∈ dom(e), for convenience we denote
this information simply as Sec(e).

There exists a distributed gossip algorithm that enables processes to update
their secondary graphs at the points of synchronization (cf. [6]). When pro-
cesses synchronize at an event e, the gossip algorithm takes the secondary sets

p

q
r

s

e⊥ e1 e2 e3 e4 e5 e6 e7 e8 e9

Partial frontiers for ρ: {e5}, {e9}, {e5, e9}, {e8, e9}, and {e5, e8, e9}.
At e4, ρu = ρ[e1]; and at e9, ρu = ρ[e6]. Note that e5 /∈ ρ[e9].

Fig. 3: Partial frontiers (see below); and illustration of Lemma 6 (see Ex. 7).

Sec(fp), fp lp e, for each p ∈ dom(e), and outputs the updated secondary set
Sec(e) reflecting the consistent, most recent information available within dom(e).

While referring to finite runs ρ over finite traces, or over finite prefixes of
infinite traces, it is useful to refer to their maximum p-events as a set. Define
frontier of ρ as Hρ := {e ∈ ρ | ∃p ∈ P, e = maxp(ρ)}. Any upward closed subset
H ⊆ Hρ is called a partial frontier. E.g., the set {e5, e8} in Fig. 3 is not a partial
frontier of ρ since it is not an upward closed subset of the frontier {e5, e8, e9}.

Finally, for event e ∈ ρ, define the top of e in ρ as >ρ(e) := {f ∈ ρ | e ≤
f ∧ ∃p ∈ P : f = maxp(ρ)}. Of course for any e1, . . . , en ∈ ρ,

⋃n
i=1>ρ(ei) is a

partial frontier of ρ. If Λ(ρ) is the global state of an automaton, and if H is a
(partial) frontier of ρ, then we define Λ(H) := Λ(ρ)|dom(H). Roughly speaking,
identifying a reasonable set of partial frontiers is necessary and sufficient for
computing the global state at the end of a finite run.

3 A New Model of Asynchronous Automata

Any infinite run ρ of an ATS T over a trace θ ∈ R(Σ, I) yields a partition
Ψ = (P1, . . . , Pn) of set P of processes such that each part Pi ⊆ P is minimal,
and after finite prefixes ρi @ ρ, the processes p ∈ Pi no longer interact directly
or indirectly with another process p′ ∈ Pj , i 6= j. We wish to obtain a family of
ATS’s where each process can infer during a run the part to which it belongs.
Owing to space restrictions, we present a concise discussion here, and refer the
reader to [1] for details and for proofs of all the claims made in this section.

3.1 Degrees of Synchronization

For an ATS T and a run ρ of T over any trace, we associate with each event
e ∈ ρ a measure of how much information is exchanged among the processes in
dom(e). We use sets P ⊆ P of processes as the gauge for this measure.

Definition 5. For a run ρ of an ATS and an event e ∈ ρ, let the secondary up-
date at e be the set Ue := {g ∈ ρ[e] | ∃p, q, r ∈ P,∃fplpe : g = latestp→q→r(fp) 6=
latestp→q→r(e)}. Then, the degree of synchronization at e is defined as as the
set ds(e) :=

⋃
g∈Ue dom(>ρ[e](g)). By default, ds(e⊥) := P.

The set ds(e) implies that there must exist prefixes ρ′ v ρ[e] with partial
frontiers H, dom(H) = ds(e), such that for some process p ∈ dom(e) with a
predecessor fp lp e, H * ρ[fp]. The following lemma illustrates this point, and
demonstrates the importance of the set Ue.

Lemma 6. For e ∈ ρ, e > e⊥, let ρu :=
d
fplpe

ρ[fp] be the greatest lower bound

of all its p-prefixes. For every prefix ρ′ v ρ[e] with ρ′ 6v ρu, there exist H ⊆ ρ′

and U ⊆ Ue such that 1. H is a partial frontier in ρ′ with dom(H) = ds(e); and
2.
⋃
g∈U >ρ′(g) = H.

Example 7. Referring to Fig. 3, at e4, we have e2 lq e4 and e3 lr e4. Then,
ds(e4) = P because Ue4 = {e⊥, e1, e2, e3}. For instance e⊥ = latestq→r→s(e2) 6=
latestq→r→s(e4). Since ρu = ρ[e1], we have four possibilities of ρ′, viz. ρ′1 = ρ[e4],
ρ′2 = ρ[e2, e3], ρ′3 = ρ[e3], and ρ′4 = ρ[e2]. For ρ′4, H = {e⊥, e1, e2} and we can
choose U = e⊥ ⊆ Ue4 . Symmetrically for ρ′3. Also verify that, for ρ′2, H = U =
{e2, e3}; and for ρ′1, H = {e2, e3, e4} and U = {e⊥}.

Considering e9 next, we have e8 lq e9, e6 lr e9, and Ue9 = {e2, e4, e6, e8}.
For instance, e2 = latestr→q→p(e6) 6= latestr→q→p(e9) = e8. Clearly, ds(e9) =
{p, q, r}. And since ρu = ρ[e6], we have three possibilities of ρ′ v ρ[e9] s.t.
ρ′ 6v ρu, the most interesting one being ρ′ = ρ[e7]. Now H = {e4, e6, e7} is the
partial frontier of ρ[e7] with dom(H) = ds(e9), so we choose U = {e2} ⊆ Ue9 . �

Remark 8. If Me is the set of the (mutually concurrent) minimal events of Ue,
then it suffices to always consider U =Me in Lemma 6.

Why we are interested in precisely these frontiers will be clear from Lemma 9
and Remark 10 below. Presently, with respect to the partial frontiers H that are
revealed by Lemma 6 at an event e, we refer to the set Ye of states Λ(H) as the
yield at e. Clearly, for each π1, π2 ∈ Ye : dom(π1) = dom(π2) = ds(e). We say
that the yield Ye is bigger than yield Yf if ds(f) (ds(e).

Lemma 9. For an infinite run ρ and p ∈ P, if p ∈ dom(alphinf(ρ)) then there
exists a unique maximal P ⊆ P such that ∃∞e ∈ ρ : p ∈ dom(e) ∧ ds(e) = P .

We call the set P from Lemma 9 the max-degree of p-synchronizations in
ρ, denoted by ddsp(ρ)e. For processes p /∈ dom(alphinf(ρ)) that eventually halt,
we define ddsp(ρ)e := {p} regardless of the value of ds(maxp(ρ)) The following
remark follows immediately from Lemma 9, and demonstrates the “symmetric”
nature of max-degree of synchronizations.

Remark 10. For an infinite run ρ and p, q ∈ P, either ddsp(ρ)e = ddsq(ρ)e or
ddsp(ρ)e ∩ ddsq(ρ)e = ∅.

In particular, for each part Pi ∈ Ψ : q ∈ Pi ⇔ ddsq(ρ)e = Pi. This concretizes
our observation that every run ρ induces a partition Ψ of the set of states, where
each part is minimal.

Definition 11. A synchronization-aware transition system (an SATS) is a pair
(T,D) where T = ((Xp)p∈P , (δa)a∈Σ , π0) is an ATS and D = (Dp)p∈P is a
collection of mappings Dp : Xp → 2P such that 1. Dp(π0|p) = P, and 2. for
every run ρ of T and every event e ∈ ρ, if Λ(e) = π and p ∈ dom(e) then
ds(e) = P ⇔ Dp(π|p) = P .

This definition implies that the local p-states of an SATS always match the
degrees of synchronization of events where they occur. It is easy to see that
property 2 therein is in fact decidable, whence the definition is “syntactic”.

3.2 Synchronization-aware Asynchronous Büchi Automata

A set X ⊆ Xp of local p-states is called homosynchronous if for all local p-
states x, y ∈ X : Dp(x) = Dp(y). For an infinite run ρ of an SATS, we define the
homosynchronous maximal local infinity sets dInfp(ρ)e as follows.

dInfp(ρ)e :=

{
x ∈ Xp Dp(x) = ddsp(ρ)e and

∃∞e ∈ ρ : Λ(e)|p = x

}
if p ∈ dom(alphinf(θ)),{

x ∈ Xp ∃e ∈ ρ : e = maxp(ρ)

and Λ(e)|p = x

}
otherwise.

Definition 12. A deterministic, synchronization-aware asynchronous Büchi au-
tomaton (a D-SABA) is a tuple A = (T,D,F), where (T,D) is an SATS, and
the acceptance table F = {(Q1, F1), . . . (Qk, Fk)} is such that each Qi ⊆ P and
Fi = (F pi)p∈P is a tuple of homosynchronous sets F pi . A D-SABA A accepts a
trace θ ∈ R(Σ, I) if, for the run ρ of A on θ, there exists a pair (Qi, Fi) ∈ F s.t.
dom(alphinf(θ)) = Qi and for each process p ∈ P : F pi ∩ dInfp(ρ)e 6= ∅.

The above definition essentially requires that processes p ignore all of their
infinitely occurring local p-states except those whose image under Dp matches
the maximal degree of p-synchronizations. One of our main results is as follows.

Theorem 13. A language Θ ⊆ R(Σ, I) is recognized by a D-SABA iff Θ is a de-
terministic trace language, i.e. Θ can be expressed as a finite union of languages
of the form limA(T) for regular languages T ⊆M(Σ, I) and sets A ⊆ Σ.

We prove this claim by breaking it up into Lemmas 14 and 15, and Prop. 16.

Lemma 14. Given a regular trace language T ⊆ M(Σ, I) and a set A ⊆ Σ,
there exists a D-SABA accepting Θ = limA(T).

To prove Lemma 14, we start with a DAA A = (T, F) recognizing T and
construct a D-SABA A′ = (T′,D,F) with such an SATS (T′,D) that (a) it
mimics the run ρ of T on every trace; and (b) at each event e in its own run ρ′,
it computes the yield Ye for the corresponding event e in the run ρ of T.

p

q

r

s
s′

e⊥

f
g

e1

e2

e3

e4

e5

Fig. 4: Processes eventually halt, or settle in maximally interacting sets.

Fig. 4 illustrates a run ρ induced by a trace θ ∈ limA(T) on A. The shaded
regions represent the partition Ψ of P induced by ρ. Note that f = maxs(ρ) and
ddss(ρ)e = {s} even though ds(f) = P. It is easy to see here that all partial
frontiers H ′ in the top region are concurrent to all partial frontiers H ′′ in the
bottom region. This means that H ′ ∪ H ′′ ∪ {f} are partial frontiers of some
prefixes t @ ρ. In particular, if dom(H ′), dom(H ′′) ∈ Ψ then H := H ′ ∪H ′′ ∪{f}
is a frontier, and Λ(H) is the global state at t.

Lemma 6 helps in retroactively computing partial frontiers. One can verify
that ds(e5) = {p, q, r} and H ′′ = {e1, e2, e3} is one of the partial frontiers com-
puted at e5. Then Λ(H ′′) belongs to the yield Ye5 at e5. Similarly, at g we have
Yg = {Λ(g)}. Lastly, if πs = Λ(f)|{s} is the {s}-state at f , then by “joining” the
yields Ye5 and Yg with πs, we obtain a set Π of global states which contains the
state Λ(H) at prefix ρ[H] @ ρ, for H = {e1, e2, e3, f, g}.

However, such computations of global states are only required at the “end”
of the infinite run ρ. By joining πs with the maximal yields that occur infinitely
often (as guaranteed by Lemma 9 and Remark 10), T′ can compute precisely
the set of global states occurring infinitely often in the run ρ of A.

Consequently, a local p-state of the SATS T′ is of the form x = (x,Sec, Y),
where x is a local p-state of T, Sec is a finite data structure to help compute the
yields, and Y is a yield. T′ ensures that for each e ∈ ρ′ of T′, Λ(e)|p = (x, Sec, Y)
iff for the corresponding e ∈ ρ of T, Λ(e)p = x and Y = Ye is the yield at e.

Since the set Q := dom(A) of “live” processes is given, T′ can distinguish
between the cases, e.g., that p ∈ dom(alphinf(θ)) and s /∈ dom(alphinf(θ)) as
shown in Fig. 4. By observing the sets dInfp(ρ′)e, p ∈ P in its run ρ′, T′ can ex-
tract (a) the infinitely recurring maximal yields Yp of T, from infinitely recurring
maximal p-states x of live processes p; and (b) the final {p}-states πp of T, from
the final p-states x for processes p that halt.

Thus, T′ computes the set Π of global states occurring infinitely often in the
run ρ of A. The run ρ′ of T′ is accepting if Π has a non-empty intersection with
the acceptance set F of A. The Büchi acceptance table F = {(Q,F1), . . . (Q,Fk)}
is defined accordingly. For precise construction and proofs, see [1].

Lemma 15. If A = (T,D,F) is a D-SABA with |F| = 1 and L(A) = Θ, then
there exists a set A ⊆ Σ and T ⊆M(Σ, I) regular such that Θ = limA(T).

The proof of this lemma relies on constructing a non-deterministic asyn-
chronous automaton recognizing the language T such that if F = {(Q,F)} then
for A := dom−1(Q) \ dom−1(P \Q) it holds that Θ = limA(T) (cf. [1]).

Proposition 16. The family of D-SABA-recognizable languages is closed under
finite unions.

Hence, Thm. 13 follows. Lastly, following the result established for the class
of deterministic trace languages in [7], one obtains that the family of D-SABA-
recognizable languages is also closed under finite intersections.

3.3 Synchronization-aware Asynchronous Muller Automata

We now define the class of synchronization-aware asynchronous Muller automata
that accept precisely the ω-regular trace languages.

Definition 17. A deterministic synchronization-aware asynchronous Muller au-
tomaton (a D-SAMA) is a tuple A = (T,D,F), where (T,D) is an SATS and the
acceptance table F = {F1, . . . Fk} is s.t. Fi = (F pi)p∈P are tuples of homosyn-
chronous sets F pi . A D-SAMA A accepts a trace θ ∈ R(Σ, I) if, for the run ρ of
A on θ, there exists a tuple Fi ∈ F s.t. for each process p ∈ P : dInfp(ρ)e = F pi .

Theorem 18. Any language Θ ⊆ R(Σ, I) of infinite traces is recognized by a
D-SAMA if and only if Θ is recognized by a DAMA.

The proofs of this theorem and of the result that the family of D-SAMAs is
closed under Boolean operations may be found in [1].

4 Characterization of Deterministic Büchi Recognizability

A prominent result on ω-regular word languages, due to Landweber [8], states
that a language L ⊆ Σω is deterministically Büchi recognizable iff for some
(in fact, for each) deterministic Muller automaton recognizing L the acceptance
component is closed under supersets. The stronger (bracketed) version supplies
a decision procedure for Büchi recognizability of ω-regular languages. Here we
present a weaker existential characterization over infinite traces (see appendix for
proofs). We define supersets in a manner that retains the essence of acceptance
tables. Consider F1 = (F p1)p∈P and F2 = (F p2)p∈P from F where both F1 and
F2 are tuples of homosynchronous sets F p1 and F p2 , p ∈ P. We say that F1 is a
superset of F2 denoted F1 ⊇ F2 if for each p ∈ P, F p1 ⊇ F p2 . A table F is said
to be closed under supersets if

(
(F ∈ F) ∧ (F ′ ⊇ F)

)
⇒ (F ′ ∈ F).

While discussing the closure under supersets, we must exempt the acceptance
tuples that guarantee the halting of some processes. Let F ∈ F be a realizable
acceptance tuple with F p = {x} ⊆ Xp for some p ∈ P. Process p is guaranteed to
halt during any run ρ that is accepted by referring to F only if it is the case that
during two successive visits to x, p must visit another state y ∈ Xp such that
Dp(y) 6(Dp(x). Then p must halt because otherwise, either ddsp(ρ)e) Dp(x) or
dInfp(ρ)e) {x}. Such a singleton F p is referred to as a finitary acceptance set.

Definition 19. A Muller acceptance table F is said to be closed under supersets
modulo finitary acceptance sets if (a) whenever F ∈ F does not contain any
finitary acceptance sets and F ′ ⊇ F , then F ′ ∈ F ; and (b) whenever F ∈ F
contains a finitary acceptance set F p and F ′ ⊇ F with F ′p = F p, then F ′ ∈ F .

Theorem 20. A language Θ is recognized by a D-SABA B = (T′,D′,F ′) if and
only if Θ is recognized by a D-SAMA A = (T,D,F) whose acceptance table F is
closed under supersets modulo finitary acceptance sets.

As mentioned previously, every ω-regular trace language can be written as a
finite Boolean combination of A-infinitary limit languages [3]. Our results allow
us to state an equivalent claim by referring to classes of automata.

Theorem 21. For any language Θ ⊆ R(Σ, I) of infinite traces, Θ is D-SAMA
recognizable if and only if Θ can be expressed as a finite Boolean combination of
D-SABA recognizable languages.

5 Conclusion

We introduced synchronization-aware asynchronous transition systems that al-
low us to define for the first time the family of deterministic Büchi automata that
matches the expressive power of the lim operator for trace languages. Not only is
this definition a generalization of that for the word case but, more importantly,
the corresponding languages are closed under finite unions and intersections –
analogous to the deterministically Büchi recognizable word languages. In this
sense, our results have further justified Muscholl’s definition of “deterministic
trace languages” as finite unions of parameterized lim-languages. Finally, we
have also characterized deterministically Büchi recognizable trace languages in
terms of recognition via a special subset of deterministic Muller automata.

The results of this paper uncover a clear path for completing a structure
theory of regular infinitary trace languages. In ongoing work, we address the issue
of weak recognizability, leading to a definition of weak D-SAMA’s recognizing the
languages that can be expressed as Boolean combinations of reachability trace
languages. A next step is concerned with conceivable characterization of these
weak trace languages as those that are recognized by both D-SABA’s and D-
SAcBA’s (the latter equipped with the co-Büchi acceptance condition). Finally,
it would be interesting to establish decidability of membership in each of these
subclasses, for instance, by showing a strong Landweber theorem as indicated
at the beginning of Section 4.

Acknowledgement I am grateful to Wolfgang Thomas for encouragement and
numerous suggestions for improving this paper, to Marcus Gelderie and Christof
Löding for many fruitful discussions. I also thank anonymous referees of a pre-
vious conference to which a prior version of this paper was submitted.

References

1. Namit Chaturvedi. Languages of infinite traces and deterministic asynchronous
automata. Technical Report AIB-2014-04, RWTH Aachen University, Feb 2014.

2. Namit Chaturvedi and Marcus Gelderie. Weak ω-Regular Trace Languages.
arXiv.org, Feb 2014. arXiv:1402.3199 [cs.FL].

3. Volker Diekert and Anca Muscholl. Deterministic asynchronous automata for infi-
nite traces. Acta Informatica, 31(4):379–397, 1994.

4. Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scien-
tific Publishing Co., Inc., River Edge, NJ, USA, 1995.

5. Paul Gastin and Antoine Petit. Asynchronous cellular automata for infinite traces.
In W. Kuich, editor, Automata, Languages and Programming, volume 623 of Lecture
Notes in Computer Science, pages 583–594. Springer, 1992.

6. Mukund Madhavan. Automata on distributed alphabets. In Deepak D’Souza and
Preeti Shankar, editors, Modern Applications of Automata Theory, volume 2 of IISc
Research Monographs Series, pages 257–288. World Scientific, May 2012.

7. Anca Muscholl. Über die Erkennbarkeit unendlicher Spuren. PhD thesis, 1994.
8. Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic

and Games, volume 141 of Pure and Applied Mathematics, chapter Automata and
Infinite Words. Elsevier, 2004.

A Proofs from Section 4

A.1 Discussion and proof of Theorem 20

Theorem. A language Θ is recognized by a D-SABA B = (T′,D′,F ′) if and
only if Θ is recognized by a D-SAMA A = (T,D,F) whose acceptance table F is
closed under supersets modulo finitary acceptance sets.

For the proof of this theorem, we would like to recall the data structure called
latest appearance record. Over a finite set X = {x1, . . . xN}, we define the latest
appearance record LAR := X! × [1, N]. Any M =

(
(xi1xi2 . . . xiN),m

)
∈ LAR

is a pair containing a permutation (xi1xi2 . . . xiN) of X and 1 ≤ m ≤ N . The
number m is usually called the hit value, and the set {xi1 , . . . xim} of the first
m elements in the permutation is referred to as the hit set of M . We also refer
to an update function υ : LAR×X → LAR is given by υ :

(
(xi1 , . . . xiN),m

)
, x 7→(

(xi` , xi1 , . . . xi`−1
, xi`+1

, . . . xiN), `
)

where x = xi` .
Now, for the set Xp of local p-states of T, let Xp,Q1

, Xp,Q2
, . . . Xp,Qnp

be
the maximal homosynchronous subsets of Xp. That is, ∀x ∈ Xp : x ∈ Xp,Qi

⇔
Dp(x) = Qi. For each i, 1 ≤ i ≤ np, we now define the latest appearance record
LARp,Qi

:= (Xp,Qi
)!× [1, Ni] where Ni := |Xp,Qi |. Note that it may be the case

that np 6= nq for p, q ∈ P.

Proof (Theorem 20). For one direction of the theorem, let A = (T,D,F) be a
D-SAMA such that F is closed under supersets modulo finitary acceptance sets.

Construct a D-SABA B = (T′,D′,F ′) where the local p-state sets X ′p of T′

are given by X ′p := Xp × LARp,Q1 × LARp,Q2 × . . .× LARp,Qnp
. The initial local

p-state in T′ is (π0|p,Mp,1, . . . ,Mp,np) where π0 is the global initial state of T
and Mp,i are arbitrarily chosen initial records. The transition functions are given
by δ′a :

(
(xp,Mp,1, . . . ,Mp,np

)
)
p∈dom(a)

7→
(
(yp, Lp,1, . . . , Lp,np

)
)
p∈dom(a)

where:

– (yp)p∈dom(a) = δa
(
(xp)p∈dom(a)

)
, and

– if Dp(yp) = Qip then Lp,j :=

{
Mp,j if j 6= ip

υ(Mp,j , yp) otherwise.

The mapping D′p for T′ is defined as D′p
(
(xp, . . . ,Mp,i, . . .)

)
:= Dp(xp).

In order to define the Büchi acceptance table, consider any Muller acceptance
tuple F ∈ F and a set R (P such that if r ∈ R then |F r| = 1, and if F r is a
finitary acceptance set then r ∈ R. Intuitively, the processes in R are earmarked
as precisely the ones that will halt. Create a Büchi acceptance tuple (P \R,F ′R)
where for each p ∈ P, assuming Dp(F p) = Qk,:

– if p /∈ R then F ′pR := {(x,Mp,1, . . . ,Mp,k, . . . ,Mp,np) ∈ X ′p | Dp(x) = Qk and
the hit set Hp,k of Mp,k is a superset of F p}; otherwise

– if p ∈ R then F ′pR := {(x,Mp,1, . . .Mp,np
) ∈ X ′p | Dp(x) = Qk and x ∈ F p}.

Note that for a given Muller acceptance tuple F ∈ F , we may obtain multiple
Büchi acceptance tuples (P \R1, F

′
R1

), (P \R2, F
′
R2

), . . . where each Ri contains

(some of) the processes r for which the corresponding Muller set F r is singleton.
Ri may be empty only if there are no finitary acceptance sets in F .

Now, a trace θ ∈ R(Σ, I) is accepted by the D-SABA B:

iff for the run ρ′ of A′ on θ there exists (Q,F ′) ∈ F ′ such that for each p ∈
P, F ′p ∩ dInfp(ρ′)e 6= ∅; and this holds

iff for each processes p ∈ P
• if p ∈ Q, then p witnesses a state (x,Xp

1 , . . . , X
p
ip
, . . .) ∈ F ′p infinitely

often, where ddsp(ρ′)e = D′p
(
(x,Xp

1 , . . . , X
p
ip
, . . .)

)
= Dp(Xp

ip
∪ {x}); and

• if p /∈ Q, then p halts at a state (x,Xp
1 , . . .) ∈ F ′p – and in this case, let

Xp
ip

:= {x};
and, by construction, this holds

iff (Xp
ip

)p∈P ⊇ F for some Muller tuple F ∈ F , satisfying ∀p /∈ Q : F p = Xp
ip

;
and this holds

iff (Xp
ip

)p∈P = G for some G ∈ F satisfying ∀p /∈ Q : Gp = F p (since F is closed

under supersets modulo finitary acceptance sets); and this holds
iff θ induces a run ρ on the D-SAMA A such that for each process p ∈ P, Gp =
dInfp(ρ)e; and this holds

iff the D-SAMA A accepts θ.

For the other direction of the theorem, let us assume that Θ is recognized
by a D-SABA B = (T′,D′,F ′). We define a D-SAMA A = (T,D,F) whose
acceptance table F is closed under supersets modulo finitary acceptance sets as
follows:

– for each p ∈ P, define Xp := X ′p × {0, 1}(2
|P|−1);

– for each (x,B) ∈ Xp, Dp((x,B)) := D′p(x);
– for a ∈ Σ and π ∈ X ′dom(a), if δ′a(π) = π′ then define the new mapping

δa
((

(π|p,Bp)
)
p∈dom(a)

)
:=
(
(π′|p,B

′
p)
)
p∈dom(a)

, where the new bit-vector is

assigned1 as B′p[Q] :=

{
1− Bp[Q] if Q = D′p(π|p)
Bp[Q] otherwise

;

– if π0 is the initial state of B, then the initial state of A is ((π0|p,B0))p∈P ,
where B0 = (0, . . . 0).

Every time a process p moves out of a local p-state (x,B) with D′p(x) = Q
and arrives in a new local state (y,B′), it ensures that B[Q] 6= B′[Q]. By this
construction, during a run ρ of A, a process p halts after finitely many transitions
if and only if dInfp(ρ)e is a singleton. In particular, if a processes p loops infinitely
often on the same state x in B, then in A it will alternate between (x,B) and
(x,B′) ad infinitum where B and B′ must differ at index D′p(x). This immediately
provides a mechanism for defining the Muller acceptance table F of A.

For each acceptance pair (Q,F ′) ∈ F ′ of B, we define a number of Muller
acceptance tuples F ∈ F for A such that

1 Since the number of bits in a bit-vector B is equal to the number of non-empty
subsets of P, we refer to the bit corresponding to a subset Q as B[Q].

– for each p /∈ Q, F p = {(x,B)} for some x ∈ F ′p and B ∈ {0, 1}(2|P|−1); and
– for each p ∈ Q, |F p| ≥ 2 and there exists a state (x,B) ∈ F p such that
x ∈ F ′p, and there exists at least one pair of states (y,B1), (z,B2) ∈ F p such
that B1 and B2 differ (at the least) at index D′p(x).

Clearly, the acceptance table F is closed under supersets modulo singletons,
that is, it is closed under supersets modulo finitary acceptance sets.

Now it is trivial to show that L(A) = L(B). �

A.2 Proof of Theorem 21

Theorem. For any language Θ ⊆ R(Σ, I) of infinite traces, Θ is D-SAMA
recognizable if and only if Θ can be expressed as a finite Boolean combination of
D-SABA recognizable languages.

Proof. One direction of this theorem follows trivially from the facts that for
each D-SABA there exists a D-SAMA (cf. Theorem 20) and that the family of
D-SAMAs is closed under finite Boolean operations (cf. [1]).

We only need to show how a language recognized by a D-SAMA A = (T,D,F)
can be expressed as a finite Boolean combination of D-SABA recognizable lan-
guages. For any Fi ∈ F , with Fi = (F pi)p∈P ,

– let Y pi ⊆ Xp consist of all the p-states y such that for x ∈ F pi , Dp(x) = Dp(y);
– let Πi ⊆ XP be a set of global states satisfying ∀p ∈ P :

⋃
π∈Πi

π|p = F pi ;
– let Qi ⊆ P consist of all processes p such that |F pi | = 1.

For each π ∈ Πi define a D-SABA Ai,π := (T,D,Fi,π) whose acceptance
table Fi,π :=

⋃
R⊆Qi

{
(
P \R, ({π|p})p∈P

)
}. If a trace θ is accepted by Ai,π then

there exists some R ⊆ Qi that processes q /∈ R visit local q-states π|q infinitely
often process q ∈ R eventually stall at states π|q. It is nowhere required that the
global state π ever occurs. We only use π as an easy reference to local states
that are drawn from the Muller acceptance tuple Fi.

Referring to languages L(Ai,π), we define the language L+
i :=

⋂
π∈Πi

L(Ai,π)
of traces inducing runs that, for some R ⊆ Qi, result in processes p ∈ R halting
in p-states x ∈ F pi , and processes p /∈ R visiting all the states (and maybe more)
from sets F pi .

Next, we define languages that will prevent the processes from visiting any
more than their respective acceptance sets F pi . For each p ∈ P, we define a
D-SABA Ai,p := (T,D,Fi,p) with Fi,p :=

⋃
Q⊆P{

(
Q, (F qi,p)q∈P

)
} where the sets

F qi,p :=

{
Y qi \ F

q
i if q = p

Y qi otherwise
. The language L(Ai,p) consists of traces which,

irrespective of the set Q of live processes, ensure that either p halts in a state
outside of F pi (i.e. if p /∈ Q) or p infinitely often visits states outside of F pi (i.e. if
p ∈ Q). In this sense, L(Ai,p) consists of all traces on whose runs at least process
p “misbehaves”. Thus, the language L−i :=

⋃
p∈P L(Ai,p), comprises of traces on

whose runs at least one process misbehaves.

Finally, we can express L(A) =
⋃
Fi∈F

(
L+
i ∩ L

−
i

)
. �

