
ar
X

iv
:1

40
3.

05
09

v1
 [

cs
.F

L
]

 3
 M

ar
 2

01
4

Unary Pushdown Automata

and Straight-Line Programs

Dmitry Chistikov and Rupak Majumdar

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

{dch,rupak}@mpi-sws.org

Abstract. We consider decision problems for deterministic pushdown
automata over a unary alphabet (udpda, for short). Udpda are a sim-
ple computation model that accept exactly the unary regular languages,
but can be exponentially more succinct than finite-state automata. We
complete the complexity landscape for udpda by showing that emptiness
(and thus universality) is P-hard, equivalence and compressed member-
ship problems are P-complete, and inclusion is coNP-complete. Our
upper bounds are based on a translation theorem between udpda and
straight-line programs over the binary alphabet (SLPs). We show that
the characteristic sequence of any udpda can be represented as a pair
of SLPs—one for the prefix, one for the lasso—that have size linear in
the size of the udpda and can be computed in polynomial time. Hence,
decision problems on udpda are reduced to decision problems on SLPs.
Conversely, any SLP can be converted in logarithmic space into a udpda,
and this forms the basis for our lower bound proofs. We show coNP-
hardness of the ordered matching problem for SLPs, from which we derive
coNP-hardness for inclusion. In addition, we complete the complexity
landscape for unary nondeterministic pushdown automata by showing
that the universality problem is Π2P-hard, using a new class of inte-
ger expressions. Our techniques have applications beyond udpda. We
show that our results imply Π2P-completeness for a natural fragment of
Presburger arithmetic and coNP lower bounds for compressed matching
problems with one-character wildcards.

1 Introduction

Any model of computation comes with a set of fundamental decision questions:
emptiness (does a machine accept some input?), universality (does it accept all
inputs?), inclusion (are all inputs accepted by one machine also accepted by
another?), and equivalence (do two machines accept exactly the same inputs?).
The theoretical computer science community has a fairly good understanding
of the precise complexity of these problems for most “classical” models, such as
finite and pushdown automata, with only a few prominent open questions (e. g.,
the precise complexity of equivalence for deterministic pushdown automata).

In this paper, we study a simple class of machines: deterministic pushdown
automata working on unary alphabets (unary dpda, or udpda for short). A clas-
sic theorem of Ginsburg and Rice [7] shows that they accept exactly the unary

http://arxiv.org/abs/1403.0509v1

2

regular languages, albeit with potentially exponential succinctness when com-
pared to finite automata. However, the precise complexity of most basic decision
problems for udpda has remained open.

Our first and main contribution is that we close the complexity picture for
these devices. We show that emptiness is already P-hard for udpda (even when
the stack is bounded by a linear function of the number of states) and thus
P-complete. By closure under complementation, it follows that universality is
P-complete as well. Our main technical construction shows equivalence is in P
(and so P-complete). Somewhat unexpectedly, inclusion is coNP-complete. In
addition, we study the compressed membership problem: given a udpda over the
alphabet {a} and a number n in binary, is an in the language? We show that
this problem is P-complete too.

A natural attempt at a decision procedure for equivalence or compressed
membership would go through translations to finite automata (since udpda only
accept regular languages, such a translation is possible). Unfortunately, these
automata can be exponentially larger than the udpda and, as we demonstrate,
such algorithms are not optimal. Instead, our approach establishes a connection
to straight-line programs (SLPs) on binary words (see, e. g., Lohrey [20]). An
SLP P is a context-free grammar generating a single word, denoted eval(P),
over {0, 1}. Our main construction is a translation theorem: for any udpda, we
construct in polynomial time two SLPs P ′ and P ′′ such that the infinite sequence
eval(P ′) · eval(P ′′)ω ∈ {0, 1}ω is the characteristic sequence of the language of
the udpda (for any i ≥ 0, its ith element is 1 iff ai is in the language). With this
construction, decision problems on udpda reduce to decision problems on com-
pressed words. Conversely, we show that from any pair (P ′,P ′′) of SLPs, one can
compute, in logarithmic space, a udpda accepting the language with characteris-
tic sequence eval(P ′) ·eval(P ′′)ω . Thus, as regards the computational complexity
of decision problems, lower bounds for udpda may be obtained from lower bounds
for SLPs. Indeed, we show coNP-hardness of inclusion via coNP-hardness of
the ordered matching problem for compressed words (i. e., is eval(P1) ≤ eval(P2)
letter-by-letter, where the alphabet comes with an ordering ≤), a problem of
independent interest.

As a second contribution, we complete the complexity picture for unary non-
deterministic pushdown automata (unpda, for short). For unpda, the precise
complexity of most decision problems was already known [14]. The remaining
open question was the precise complexity of the universality problem, and we
show that it is Π2P-hard (membership in Π2P was shown earlier by Huynh [14]).
An equivalent question was left open in Kopczyński and To [18] in 2010, but the
question was posed as early as in 1976 by Hunt III, Rosenkrantz, and Szy-
manski [12, open problem 2], where it was asked whether the problem was in
NP or PSPACE or outside both. Huynh’s Π2P-completeness result for equiv-
alence [14] showed, in particular, that universality was in PSPACE, and our
Π2P-hardness result reveals that membership in NP is unlikely under usual
complexity assumptions. As a corollary, we characterize the complexity of the

3

∀bounded ∃∗-fragment of Presburger arithmetic, where the universal quantifier
ranges over numbers at most exponential in the size of the formula.

To show Π2P-hardness, we show hardness of the universality problem for
a class of integer expressions. Several decision problems of this form, with the
set of operations {+,∪}, were studied in the classic paper of Stockmeyer and
Meyer [31], and we show that checking universality of expressions over {+,∪,×2,×N}
is Π2P-complete (the upper bound follows from Huynh [14]).

Related work. Table 1 provides the current complexity picture, including the
results in this paper. Results on general alphabets are mostly classical and in-
cluded for comparison. Note that the complexity landscape for udpda differs
from those for unpda, dpda, and finite automata. Upper bounds for emptiness
and universality are classical, and the lower bounds for emptiness are originally
by Jones and Laaser [17] and Goldschlager [9]. In the nondeterministic unary
case, NP-completeness of compressed membership is from Huynh [14], rediscov-
ered later by Plandowski and Rytter [25]. The PSPACE-completeness of the
compressed membership problem for binary pushdown automata (see definition
in Section 7) is by Lohrey [22].

The main remaining open question is the precise complexity of the equiva-
lence problem for dpda. It was shown decidable by Sénizergues [29] and primitive
recursive by Stirling [30] and Jančar [15], but only P-hardness (from empti-
ness) is currently known. Recently, the equivalence question for dpda when the
stack alphabet is unary was shown to be NL-complete by Böhm, Göller, and
Jančar [4]. From this, it is easy to show that emptiness and universality are also
NL-complete. Compressed membership, however, remains PSPACE-complete
(see Caussinus et al. [5] and Lohrey [21]), and inclusion is, of course, already
undecidable. When we additionally restrict dpda to both unary input and unary
stack alphabet, all five decision problems are L-complete.

We discuss corollaries of our results and other related work in Section 7.
While udpda are a simple class of machines, our proofs show that reasoning
about these machines can be surprisingly subtle.

Acknowledgements. We thank Joshua Dunfield for discussions.

2 Preliminaries

Pushdown automata. A unary pushdown automaton (unpda) over the al-
phabet {a} is a finite structure A = (Q,Γ,⊥, q0, F, δ), with Q a set of (control)
states, Γ a stack alphabet, ⊥ ∈ Γ a bottom-of-the-stack symbol, q0 ∈ Q an initial
state, F ⊆ Q a set of final states, and δ ⊆ (Q× ({a}∪{ε})×Γ)× (Q×Γ∗) a set
of transitions with the property that, for every (q1, σ, γ, q2, s) ∈ δ, either γ 6= ⊥
and s ∈ (Γ \ {⊥})∗, or γ = ⊥ and s ∈ {ε} ∪ (Γ \ {⊥})∗⊥. Here and everywhere
below ε denotes the empty word.

The semantics of unpda is defined in the following standard way. The set
of configurations of A is Q × (Γ \ {⊥})∗⊥. Suppose (q1, s1) and (q2, s2) are
configurations; we write (q1, s1) ⊢σ (q2, s2) and say that a move to (q2, s2) is
available to A at (q1, s1) iff there exists a transition (q1, σ, γ, q2, s) ∈ δ such that,

4

Table 1. Complexity of decision problems for pushdown automata.

unary binary
dpda npda dpda npda

Emptiness P
l

P P P

Universality P
l Π2P

l
P undecidable

Equivalence P
u,l Π2P P.. pr.rec. undecidable

Inclusion coNP
u,l Π2P undecidable undecidable

Compressed membership P
u,l

NP PSPACE PSPACE

Legend: “dpda” and “npda” stand for deterministic and possibly nondetermin-
istic pushdown automata, respectively; “unary” and “binary” refer to their in-
put alphabets. Names of complexity classes stand for completeness with respect
to logarithmic-space reductions; abbreviation “pr.rec.” stands for “primitive
recursive”. Superscripts u and l denote new upper and lower bounds shown in
this paper.

if γ 6= ⊥ or s 6= ε, then s1 = γs′ and s2 = ss′ for some s′ ∈ Γ∗, or, if γ = ⊥ and
s = ε, then s1 = s2 = ⊥. A unary pushdown automaton is called deterministic,
shortened to udpda, if at every configuration at most one move is available.

A word w ∈ {a}∗ is accepted by A if there exists a configuration (qk, sk) with
qk ∈ F and a sequence of moves (qi, si) ⊢σi

(qi+1, si+1), i = 0, . . . , k − 1, such
that s0 = ⊥ and σ0 . . . σk−1 = w; that is, the acceptance is by final state. The
language of A, denoted L(A), is the set of all words w ∈ {a}∗ accepted by A.

We define the size of a unary pushdown automaton A as |Q| · |Γ|, provided
that for all transitions (q1, σ, γ, q2, s) ∈ δ the length of the word s is at most 2
(see also [24]). While this definition is better suited for deterministic rather than
nondeterministic automata, it already suffices for the purposes of Section 6,
where we handle unpda, because it is always the case that |δ| ≤ 2 |Q|2 |Γ|4.

Decision problems. We consider the following decision problems: emptiness
(L(A) =? ∅), universality (L(A) =? {a}∗), equivalence (L(A1) =? L(A2)), and
inclusion (L(A1) ⊆? L(A2)). The compressed membership problem for unary
pushdown automata is associated with the question an ∈? L(A), with n given
in binary as part of the input. In the following, hardness is with respect to
logarithmic-space reductions. Our first result is that emptiness is already P-
hard for udpda.

Proposition 1. UDPDA-Emptiness and UDPDA-Universality are P-complete.

Proof. Emptiness is in P for non-deterministic pushdown automata on any al-
phabet, and deterministic automata can be complemented in polynomial time.
So, we focus on showing P-hardness for emptiness.

We encode the computations of an alternating logspace Turing machine using
an udpda. We assume without loss of generality that each configuration c of the
machine has exactly two successors, denoted cl (left successor) and cr (right

5

successor), and that each run of the machine terminates. The udpda encodes a
successful run over the computation tree of the TM. The states of the udpda are
configurations of the Turing machine and an additional context, which can be a
(“accepting”), r (“rejecting”), or x (“exploring”). The stack alphabet consists
of pairs (c, d), where c is a configurations of the machine and the direction
d ∈ {l, r}, together with an additional end-of-stack symbol. The alphabet has
just one symbol 0. The initial state is (c0, x), where c0 is the initial configuration
of the machine, and the stack has the end-of-stack symbol.

Suppose the current state is (c, x), where c is not an accepting or rejecting
configuration. The udpda pushes (c, l) on to the stack and updates its state to
(cl, x), where cl is the left successor of c. The invariant is that in the exploring
phase, the stack maintains the current path in the computation tree, and if the
top of the stack is (c, l) (resp. (c, r)) then the current state is the left (resp. right)
successor of c.

Suppose now the current state is (c, x) where c is an accepting configuration.
The context is set to a, and the udpda backtracks up the computation tree using
the stack. If the top of the stack is the end-of-stack symbol, the machine accepts.
If the top of the stack (c′, d) consists of an existential configuration c′, then the
new state is (c′, a) and recursively the machine moves up the stack. If the top
of the stack (c′, d) consists of a universal configuration c′, and d = l, then the
new state is (c′r, x), the right successor of c′, and the top of stack is replaced
by (c′, r). If the top of the stack (c′, d) consists of a universal configuration c′,
and d = r, then the new state is (c′, a), the stack is popped, and the machine
continues to move up the stack.

Suppose now the current state is (c, x) where c is a rejecting configuration.
The context is set to r, and the udpda backtracks up the computation tree using
the stack. If the top of the stack is the end-of-stack symbol, the machine rejects.
If the top of the stack (c′, d) consists of an existential configuration c′, and d = l,
then the new state is (c′r, x) and the top of stack is replaced with (c′, r). If the
top of the stack (c′, d) consists of an existential configuration c′, and d = r, then
the new state is (c′, r), the stack is popped, and the machine continues to move
up the stack. The top of stack is replaced with (c′, r). If the top of the stack
(c′, d) consists of a universal configuration c′, then the new state is (c′, r), the
stack is popped, and the machine continues to move up the stack.

It is easy to see that the reduction can be performed in logarithmic space.
If the TM has an accepting computation tree, the udpda has an accepting run
following the computation tree. On the other hand, any accepting computation
of the udpda is a depth-first traversal of an accepting computation tree of the
TM.

Finally, since udpda can be complemented in logarithmic space, we get the
corresponding results for universality. This completes the proof. ⊓⊔

Straight-line programs. A straight-line program [20], or an SLP, over an
alphabet Σ is a context-free grammar that generates a single word; in other
words, it is a tuple P = (S,Σ,∆, π), where Σ and ∆ are disjoint sets of terminal
and nonterminal symbols (terminals and nonterminals), S ∈ ∆ is the axiom,

6

and the function π : ∆ → (Σ∪∆)∗ defines a set of productions written as “N →
w”, w = π(N), and satisfies the property that the relation {(N,D) | N →
w and D occurs in w} is acyclic. An SLP P is said to generate a (unique) word
w ∈ Σ∗, denoted eval(P), which is the result of applying substitutions π to S.

An SLP is said to be in Chomsky normal form if for all productions N → w
it holds that either w ∈ Σ or w ∈ ∆2. The size of an SLP is the number of
nonterminals in its Chomsky normal form.

3 Indicator pairs and the translation theorem

We say that a pair of SLPs (P ′,P ′′) over an alphabet Σ generates a sequence
c ∈ Σω if eval(P ′) · (eval(P ′′))ω = c. We call an infinite sequence c ∈ {0, 1}ω,
c = c0c1c2 . . . , the characteristic sequence of a unary language L ⊆ {a}∗ if, for
all i ≥ 0, it holds that ci is 1 if ai ∈ L and 0 otherwise. One may note that the
characteristic sequence is eventually periodic if and only if L is regular.

Definition 1. A pair of straight-line programs (P ′,P ′′) over {0, 1} is called an
indicator pair for a unary language L ⊆ {a}∗ if it generates the characteristic
sequence of L.

A unary language can have several different indicator pairs. Indicator pairs form
a descriptional system for unary languages, with the size of (P ′,P ′′) defined as
the sum of sizes of P ′ and P ′′. The following translation theorem shows that
udpda and indicator pairs are polynomially-equivalent representations for unary
regular languages. We remark that Theorem 1 does not give a normal form for
udpda because of the non-uniqueness of indicator pairs.

Theorem 1 (translation theorem). For a unary language L ⊆ {a}∗:

(1) if there exists a udpda A of size m with L(A) = L, then there exists an
indicator pair for L of size O(m);

(2) if there exists an indicator pair for L of size m, then there exists a udpda A
of size O(m) with L(A) = L.

Both statements are supported by polynomial-time algorithms, the second of
which works in logarithmic space.

Proof idea. We only discuss part 1, which presents the main technical challenge.
The starting point is the simple observation that a udpda A has a single infi-
nite computation, provided that the input tape supplies A with as many input
symbols a as it needs to consume. Along this computation, events of two types
are encountered: A can consume a symbol from the input and can enter a final
state.

The crucial technical task is to construct inductively, using dynamic program-
ming, straight-line programs that record these events along finite computational
segments. These segments are of two types: first, between matching push and
pop moves (“procedure calls”) and, second, from some starting point until a
move pops the symbol that has been on top of the stack at that point (“exits

7

from current context”). Loops are detected, and infinite computations are asso-
ciated with pairs of SLPs: in such a pair, one SLP records the initial segment,
or prefix of the computation, and the other SLP records events within the loop.

After constructing these SLPs, it remains to transform the computational
“history”, or transcript, associated with the initial configuration of A into the
characteristic sequence. This transformation can easily be performed in poly-
nomial time, without expanding SLPs into the words that they generate. The
result is the indicator pair for A. ⊓⊔

The full proof of Theorem 1 is given is Section 5. Note that going from indi-
cator pairs to udpda is useful for obtaining lower bounds on the computational
complexity of decision problems for udpda (Theorems 2 and 5). For this pur-
pose, it suffices to model just a single SLP, but taking into account the whole
pair is interesting from the point of view of descriptional complexity (see also
Section 7).

4 Decision problems for udpda

4.1 Compressed membership and equivalence

For an SLP P , by |P| we denote the length of the word eval(P), and by P [n]
the nth symbol of eval(P), counting from 0 (that is, 0 ≤ n ≤ |P| − 1). We write
P1 ≡ P2 if and only if eval(P1) = eval(P2).

The following SLP-Query problem is known to be P-complete (see Lifshits
and Lohrey [19]): given an SLP P over {0, 1} and a number n in binary, decide
whether P [n] = 1. The problem SLP-Equivalence is only known to be in P
(see, e. g., Lohrey [20]): given two SLPs P1, P2, decide whether P1 ≡ P2.

Theorem 2. UDPDA-Compressed-Membership is P-complete.

Proof. The upper bound follows from Theorem 1. Indeed, given a udpda A and
a number n, first construct an indicator pair (P ′,P ′′) for L(A). Now compute
|P ′| and |P ′′| and then decide if n ≤ |P ′| − 1. If so, the answer is given by
P ′[n], otherwise by P ′′[r], where r = (n− |P ′|) mod |P ′′| and in both cases 1 is
interpreted as “yes” and 0 as “no”.

To prove the lower bound, we reduce from the SLP-Query problem. Take
an instance with an SLP P and a number n in binary. By transforming the
pair (P ,P0), with P0 any fixed SLP over {0, 1}, into a udpda A using part 2 of
Theorem 1, this problem is reduced, in logspace, to whether an ∈ L(A). ⊓⊔

Recall that emptiness and universality of udpda areP-complete by Proposition 1.
Our next theorem extends this result to the general equivalence problem for
udpda.

Theorem 3. UDPDA-Equivalence is P-complete.

8

Proof. Hardness follows from Proposition 1. We show how Theorem 1 can be
used to prove the upper bound: given udpda A1 and A2, first construct indicator
pairs (P ′

1,P
′′
1) and (P ′

2,P
′′
2) for L(A1) and L(A2), respectively. Now reduce the

problem of whether L(A1) = L(A2) to SLP-Equivalence. The key observation
is that an eventually periodic sequence that has periods |P ′′

1 | and |P ′′
2 | also has

period t = gcd(|P ′′
1 |, |P

′′
2 |). Therefore, it suffices to check that, first, the initial

segments of the generated sequences match and, second, that P ′′
1 and P ′′

2 generate
powers of the same word up to a certain circular shift.

In more detail, let us first introduce some auxiliary operations for SLP.
For SLPs P1 and P2, by P1 · P2 we denote an SLP that generates eval(P1) ·
eval(P2), obtained by “concatenating” P1 and P2. Now suppose that P gener-
ates w = w[0] . . . w[|P|−1]. Then the SLP P [a .. b) generates the word w[a .. b) =
w[a] . . . w[b − 1], of length b − a (as in P [n], indexing starts from 0). The SLP
Pα generates wα, with the meaning clear for α = 0, 1, 2, . . . , also extended to
α ∈ Q with α · |P| ∈ Z≥0 by setting wk+n/|w| = wk · w[0 ..n), n < |w|. Finally,
P x s denotes cyclic shift and evaluates to w[s .. |w|) · w[0 .. s). One can easily
demonstrate that all these operations can be implemented in polynomial time.

So, assume that |P ′
1| ≥ |P ′

2|. First, one needs to check whether P ′
1 ≡ P ′

2 ·
(P ′′

2)
α, where α = (|P ′

1| − |P ′
2|)/|P

′′
2 |. Second, note that an eventually periodic

sequence that has periods |P ′′
1 | and |P ′′

2 | also has period t = gcd(|P ′′
1 |, |P

′′
2 |).

Compute t and an auxiliary SLP P ′′ = P ′′
1 [0 .. t), and then check whether P ′′

1 ≡
(P ′′)|P

′′

1 |/t and P ′′
2 x s ≡ (P ′′)|P

′′

2 |/t with s = (|P ′
1| − |P ′

2|) mod |P ′′
2 |. It is an

easy exercise to show that L(A1) = L(A2) iff all the checks are successful. This
completes the proof. ⊓⊔

4.2 Inclusion

A natural idea for handling the inclusion problem for udpda would be to extend
the result of Theorem 3, that is, to tackle inclusion similarly to equivalence. This
raises the problem of comparing the words generated by two SLPs in the com-
ponentwise sense with respect to the order 0 ≤ 1. To the best of our knowledge,
this problem has not been studied previously, so we deal with it separately. As
it turns out, here one cannot hope for an efficient algorithm unless P = NP.

Let us define the following family of problems, parameterized by partial order
R on the alphabet of size at least 2, and denoted SLP-Componentwise-R. The
input is a pair of SLPs P1, P2 over an alphabet partially ordered by R, generating
words of equal length. The output is “yes” iff for all i, 0 ≤ i < |P1|, the relation
R(P1[i],P2[i]) holds. By SLP-Componentwise-(0 ≤ 1) we mean a special case
of this problem where R is the partial order on {0, 1} given by 0 ≤ 0, 0 ≤ 1,
1 ≤ 1.

Theorem 4. SLP-Componentwise-R is coNP-complete if R is not the equal-
ity relation (that is, if R(a, b) holds for some a 6= b), and in P otherwise.

Proof. We first prove that SLP-Componentwise-(0 ≤ 1) is coNP-hard. We
show a reduction from the complement of Subset-Sum: suppose we start with

9

an instance of Subset-Sum containing a vector of naturals w = (w1, . . . , wn) and
a natural t, and the question is whether there exists a vector x = (x1, . . . , xn) ∈
{0, 1}n such that x ·w = t, where x ·w is defined as the inner product

∑n
i=1 xiwi.

Let s = (1, . . . , 1) · w be the sum of all components of w.

We use the construction of so-called Lohrey words. Lohrey shows [22, The-
orem 5.2] that given such an instance, it is possible to construct in logarith-
mic space two SLPs that generate words W1 =

∏
x∈{0,1}n ax·wbas−x·w and

W2 = (atbas−t)2
n

, where the product in W1 enumerates the xes in the lexi-
cographic order. Now W1 and W2 share a symbol b in some position iff the
original instance of Subset-Sum is a yes-instance. Substitute 0 for a and 1 for
b in the first SLP, and 0 for b and 1 for a in the second SLP. The new SLPs
P1 and P2 obtained in this way form a no-instance of SLP-Componentwise-

(0 ≤ 1) iff the original instance of Subset-Sum is a yes-instance, because now
the “distinguished” pair of symbols consists of a 1 in P1 and 0 in P2. Therefore,
SLP-Componentwise-(0 ≤ 1) is coNP-hard.

Now observe that, for any R, membership of SLP-Componentwise-R in
coNP is obvious, and the hardness is by a simple reduction from SLP-Compo-

nentwise-(0 ≤ 1): just substitute a for 0 and b for 1 (recall that by the def-
inition of partial order, R(b, a) would entail a = b, which is false). In the
last special case in the statement, R is just the equality relation, so deciding
SLP-Componentwise-R is the same as deciding SLP-Equivalence, which is
in P (see Section 4). This concludes the proof. ⊓⊔

A corollary of Theorem 4 on a problem of matching for compressed partial words
is demonstrated in Section 7.

Remark. An alternative reduction showing hardness of SLP-Componentwise-

(0 ≤ 1), this time from Circuit-SAT, but also making use of Subset-Sum

and Lohrey words, can be derived from Bertoni, Choffrut, and Radicioni [3,
Lemma 3]. They show that for any Boolean circuit with NAND-gates there
exists a pair of straight-line programs P1, P2 generating words over {0, 1} of the
same length with the following property: the function computed by the circuit
takes on the value 1 on at least one input combination iff both words share a 1 at
some position. Moreover, these two SLPs can be constructed in polynomial time.
As a result, after flipping all terminal symbols in the second of these SLPs, the
resulting pair is a no-instance of SLP-Componentwise-(0 ≤ 1) iff the original
circuit is satisfiable.

Theorem 5. UDPDA-Inclusion is coNP-complete.

Proof. First combine Theorem 4 with part 2 of Theorem 1 to prove hardness.
Indeed, Theorem 4 shows that SLP-Componentwise-(0 ≤ 1) is coNP-hard.
Take an instance with two SLPs P1, P2 and transform indicator pairs (P1,P0)
and (P2,P0), with P0 any fixed SLP over {0, 1}, into udpda A1, A2 with the
help of part 2 of Theorem 1. Now the characteristic sequence of L(Ai), i = 1, 2,
is equal to eval(Pi) · (eval(P0))

ω. As a result, it holds that eval(P1) ≤ eval(P2)

10

in the componentwise sense if and only if L(A1) ⊆ L(A2). This concludes the
hardness proof.

It remains to show that UDPDA-Inclusion is in coNP. First note that
for any udpda A there exists a deterministic pushdown automaton (DFA) that
accepts L(A) and has size at most 2O(m), where m is the size of A (see discussion
in Section 7 or Pighizzini [24, Theorem 8]). Therefore, if L(A1) 6⊆ L(A2), then
there exists a witness an ∈ L(A2)\L(A1) with n at most exponential in the size
of A1 and A2. By Theorem 2, compressed membership is in P, so this completes
the proof. ⊓⊔

5 Proof of Theorem 1

Let us first recall some standard definitions and fix notation. In a udpda A, if
(q1, s1) ⊢σ (q2, s2) for some σ, we also write (q1, s1) ⊢ (q2, s2). A computation
of a udpda A starting at a configuration (q, s) is defined as a (finite or infinite)
sequence of configurations (qi, si) with (q1, s1) = (q, s) and, for all i, (qi, si) ⊢σi

(qi+1, si+1) for some σi. If the sequence is finite and ends with (qk, sk), we also
write (q1, s1) ⊢∗

w (qk, sk), where w = σ1 . . . σk−1 ∈ {a}∗. We can also omit the
word w when it is not important and say that (qk, sk) is reachable from (q1, s1);
in other words, the reachability relation ⊢∗ is the reflexive and transitive closure
of the move relation ⊢.

5.1 From indicator pairs to udpda

Going from indicator pairs to udpda is the easier direction in Theorem 1. We
start with an auxiliary lemma that enables one to model a single SLP with a
udpda. This lemma on its own is already sufficient for lower bounds of Theorem 2
and Theorem 5 in Section 4.

Lemma 1. There exists an algorithm that works in logarithmic space and trans-
forms an arbitrary SLP P of size m over {0, 1} into a udpda A of size O(m)
over {a} such that the characteristic sequence of L(A) is 0 · eval(P) · 0ω. In A,
it holds that (q0,⊥) ⊢∗

w (q̄0,⊥) for w = a|eval(P)|, q0 the initial state, and q̄0 a
non-final state without outgoing transitions.

Proof. The main part of the algorithm works as follows. Assume that P is given
in Chomsky normal form. With each nonterminal N we associate a gadget in
the udpda A, whose interface is by definition the entry state qN and the exit
state q̄N , which will only have outgoing pop transitions. With a production of
the form N → σ, σ ∈ {0, 1}, we associate a single internal transition from qN to
q̄N reading an a from the input tape. The state qN is always non-final, and the
state q̄N is final if and only if σ = 1. With a production of the form N → AB
we associate two stack symbols γ1

N , γ2
N and the following gadget. At a state qN ,

the udpda pushes a symbol γ1
N onto the stack and goes to the state qA. We add

a pop transition from q̄A that reads γ1
N from the stack and leads to an auxiliary

state q′N . The only transition from this state pushes γ2
N and leads to qB , and

11

another transition from q̄B pops γ2
N and goes to q̄N . Here all three states qN ,

q′N , and q̄N are non-final, and the four introduced incident transitions do not
read from the input. Finally, if a nonterminal N is the axiom of P , make the
state qN initial and non-final and make q̄N a non-accepting sink that reads a
from the input and pops ⊥. The reader can easily check that the characteristic
sequence of the udpda A constructed in this way is indeed 0 · eval(P) · 0ω, and
the construction can be performed in logarithmic space.

Now note that while the udpda A satisfies |Q| = O(m), we may have also
introduced up to 2 stack symbols per nonterminal. Therefore, the size of A
can be as large as Ω(m2). However, we can use a standard trick from circuit
complexity to avoid this blowup and make this size linear in m. Indeed, first
observe that the number of stack symbols, not counting ⊥, in the construction
above can be reduced to k, the maximum, over all nonterminalsN , of the number
of occurrences of N in the right-hand sides of productions of P . Second, recall
that a straight-line program naturally defines a circuit where productions of
the form N → AB correspond to gates performing concatenation. The value of
k is the maximum fan-out of gates in this circuit, and it is well-known how to
reduce it to O(1) with just a constant-factor increase in the number of gates (see,
e. g., Savage [26, Theorem 9.2.1]). The construction can be easily performed in
logarithmic space, and the only building block is the identity gate, which in our
case translates to a production of the form N → A. Although such productions
are not allowed in Chomsky normal form, the construction above can be adjusted
accordingly, in a straightforward fashion. This completes the proof. ⊓⊔

Now, to model an entire indicator pair, we apply Lemma 1 twice and combine
the results.

Lemma 2. There exists an algorithm that works in logarithmic space and, given
an indicator pair (P ′,P ′′) of size m for some unary language L ⊆ {a}∗, outputs
a udpda A of size O(m) such that L(A) = L.

Proof. We shall use the same notation as in Subsection 4.1 of Section 4. First
compute the bit b = P ′[0] and construct an SLP P ′

1 of size O(m) such that
eval(P ′) = b · eval(P ′

1). Note that this can be done in logarithmic space, even
though the general SLP-Query problem is P-complete. Now construct, accord-
ing to Lemma 1, two udpda A′ and A′′ for P ′

1 and P ′′, respectively. Assume that
their sets of control states are disjoint and connect them in the following way.
Add internal ε-transitions from the “last” states of both to the initial state of
A′′. Now make the initial state of A′ the initial state of A; make it also a final
state if b = 1. It is easily checked that the language of the udpda A constructed
in this way has characteristic sequence eval(P ′) ·(eval(P ′′))ω and, hence, is equal
to L. ⊓⊔

Lemma 2 proves part 2 in Theorem 1.

12

5.2 From udpda to indicator pairs

Going from udpda to indicator pairs is the main part of Theorem 1, and in this
subsection we describe our construction in detail. The proof of the key technical
lemma is deferred until the following Subsection 5.3.

Assumptions and notation. We assume without loss of generality that the
given udpda A satisfies the following conditions. First, its set of control states,
Q, is partitioned into three subsets according to the type of available moves.
More precisely, we assume1 Q = Q0 ⊔ Q+1 ⊔ Q−1 with the property that all
transitions (q, σ, γ, q′, s) with states q from Qd, d ∈ {0,−1,+1}, have |s| = 1+d;
moreover, we assume that s = γ whenever d = 0, and s = γ′γ for some γ′ ∈ Γ
whenever d = 1.

Second, for convenience of notation we assume that there exists a subset
R ⊆ Q such that all transitions departing from states from R read a symbol
from the input tape, and transitions departing from Q \R do not.

Third, we assume that δ is specified by means of total functions δ0 : Q0 → Q,
δ+1 : Q+1 → Q×Γ, and δ−1 : Q−1×Γ → Q. We write δ0(q) = q′, δ+1(q) = (q′, γ),
and δ−1(q, γ) = q′ accordingly; associated transitions and states are called inter-
nal, push, and pop transitions and states, respectively. Note that this assumption
implies that only pop transitions can “look” at the top of the stack.

Claim 1. An arbitrary udpda A′ = (Q′,Γ,⊥, q′0, F
′, δ′) of size m can be trans-

formed into a udpda A = (Q,Γ,⊥, q0, F, δ) that accepts L(A′), satisfies the
assumptions of this subsubsection, and has |Q| = O(m) control states.

The proof is easy and left to the reader.
Note that since A is deterministic, it holds that for any configuration (q, s) of

A there exists a unique infinite computation (qi, si)
∞
i=0 starting at (q, s), referred

to as the computation in the text below. This computation can be thought of as
a run of A on an input tape with an infinite sequence aω. The computation of
A is, naturally, the computation starting from (q0,⊥). Note that it is due to the
fact that A is unary that we are able to feed it a single infinite word instead of
countably many finite words.

In the text below we shall use the following notation and conventions. To
refer to an SLP (S,Σ,∆, π), we sometimes just use its axiom, S. The generated
word, w, is denoted by eval(S) as usual. Note that the set of terminals is often
understood from the context and the set of nonterminals is always the set of
left-hand sides of productions. This enables us to use the notation eval(S) to
refer to the word generated by the implicitly defined SLP, whenever the set of
productions is clear from the context.

Transcripts of computations and overview of the algorithm. Recall that
our goal is to describe an algorithm that, given a udpda A, produces an indicator
pair for L(A). We first assemble some tools that will allow us to handle the

1 Here and further in the text we use the symbol ⊔ to denote the union of disjoint
sets.

13

computation of A per se. To this end, we introduce transcripts of computations,
which record “events” that determine whether certain input words are accepted
or rejected.

Consider a (finite or infinite) computation that consists of moves (qi, si) ⊢σi

(qi+1, si+1), for 1 ≤ i ≤ k or for i ≥ 1, respectively. We define the transcript of
such a computation as a (finite or infinite) sequence

µ(q1)σ1 µ(q2)σ2 . . . µ(qk)σk or µ(q1)σ1 µ(q2)σ2 . . . , respectively,

where, for any qi, µ(qi) = f if qi ∈ F and µ(qi) = ε if qi ∈ Q \ F . Note that in
the finite case the transcript does not include µ(qk+1) where qk+1 is the control
state in the last configuration. In particular, if a computation consists of a single
configuration, then its transcript is ε. In general, transcripts are finite words and
infinite sequences over the auxiliary alphabet {a, f}.

The reader may notice that our definition for the finite case basically treats
finite computations as left-closed, right-open intervals and lets us perform their
concatenation in a natural way. We note, however, that from a technical point
of view, a definition treating them as closed intervals would actually do just as
well.

Note that any sequence s ∈ {a, f}ω containing infinitely many occurrences
of a naturally defines a unique characteristic sequence c ∈ {0, 1}ω such that if s
is the transcript of a udpda computation, then c is the characteristic sequence
of this udpda’s language. The following lemma shows that this correspondence
is efficient if the sequences are represented by pairs of SLPs.

Lemma 3. There exists a polynomial-time algorithm that, given a pair of straight-
line programs (T ′, T ′′) of size m that generates a sequence s ∈ {a, f}ω and such
that the symbol a occurs in eval(T ′′), produces a pair of straight-line programs
(P ′,P ′′) of size O(m) that generates the characteristic sequence defined by s.

Proof. Observe that it suffices to apply to the sequence generated by (T ′, T ′′)
the composition of the following substitutions: h1 : af 7→ 1, h2 : a 7→ 0, and
h3 : f 7→ ε. One can easily see that applying h2 and h3 reduces to applying them
to terminal symbols in SLPs, so it suffices to show that the application of h1

can also be done in polynomial time and increases the number of productions in
Chomsky normal form by at most a constant factor.

We first show how to apply h1 to a single SLP. Assume Chomsky normal form
and process the productions of the SLP inductively in the bottom-up direction.
Productions with terminal symbols remain unchanged, and productions of the
form N → AB are handled as follows: if eval(A) ends with an a and eval(B)
begins with an f , then replace the production with N → (Aa−1) · 1 · (f−1B),
otherwise leave it unchanged as well. Here we use auxiliary nonterminals of the
form Na−1 and f−1N with the property that eval(Na−1) · a = eval(N) and
f ·eval(f−1N) = eval(N). These nonterminals are easily defined inductively in a
straightforward manner, just after processing N . At the end of this process one
obtains an SLP that generates the result of applying h1 to the word generated
by the original SLP.

14

We now show how to handle the fact that we need to apply h1 to the entire
sequence eval(T ′) ·(eval(T ′′))ω . Process the SLPs T ′ and T ′′ as described above;
for convenience, we shall use the same two names for the obtained programs.
Then deal with the junction points in the sequence eval(T ′) · (eval(T ′′))ω as
follows. If eval(T ′′) does not start with an f , then there is nothing to do. Now
suppose it does; then there are two options. The first option is that eval(T ′′)
ends with an a. In this case replace T ′′ with (f−1T ′′) · 1 and T ′ with (T ′a−1) · 1
or with (T ′f) according to whether it ends with an a or not. The second option
is that T ′′ does not end with an a. In this case, if T ′ ends with an a, replace it
with (T ′a−1) ·1 ·(f−1T ′′), otherwise do nothing. One can easily see that the pair
of SLPs obtained on this step will generate the image of the original sequence
eval(T ′) · (eval(T ′′))ω under h1. This completes the proof. ⊓⊔

Note that we could use a result by Bertoni, Choffrut, and Radicioni [3] and apply
a four-state transducer (however, the underlying automaton needs to be ε-free,
which would make us figure out the last position “manually”).

Now it remains to show how to efficiently produce, given a udpda A, a pair
of SLPs (T ′, T ′′) generating the transcript of the computation of A. This is the
key part of the entire algorithm, captured by the following lemma.

Lemma 4. There exists a polynomial-time algorithm that, given a udpda A of
size m, produces a pair of straight-line programs (T ′, T ′′) of size O(m) that
generates the transcript of the computation of A.

The proof of Lemma 4 is given in the next subsection. Put together, Lemmas 3
and 4 prove the harder direction (that is, part 1) of Theorem 1. The only caveat
is that if eval(T ′′) ∈ {f}∗, then one needs to replace T ′′ with a simple SLP
that generates a and possibly adjust T ′ so that f be appended to the generated
word. This corresponds to the case where A does not read the entire input and
enters an infinite loop of ε-moves (that is, moves that do not consume a from
the input).

5.3 Details: proof of Lemma 4

Returning and non-returning states. The main difficulty in proving Lemma 4
lies in capturing the structure of a unary deterministic computation. To reason
about such computations in a convenient manner, we introduce the following
definitions.

We say that a state q is returning if it holds that (q,⊥) ⊢∗ (q′,⊥) for some
state q′ ∈ Q−1 (recall that states from Q−1 are pop states). In such a case the
control state q′ of the first configuration of the form (q′,⊥), q′ ∈ Q−1, occurring
in the infinite computation starting from (q,⊥) is called the exit point of q, and
the computation between (q,⊥) and this (q′,⊥) the return segment from q. For
example, if q ∈ Q−1, then q is its own exit point, and the return segment from
q contains no moves.

Intuitively, the exit point is the first control state in the computation where
the bottom-of-the-stack symbol in the configuration (q,⊥) may matter. One can

15

formally show that if q′ is the exit point of q, then for any configuration (q, s)
it holds that (q, s) ⊢∗ (q′, s) and, moreover, the transcript of the return segment
from q is equal, for any s, to the transcript of the shortest computation from
(q, s) to (q′, s).

If a control state is not returning, it is called non-returning. For such a state
q, it holds that for every configuration (q′, s′) reachable from (q,⊥) either s′ 6= ⊥
or q′ 6∈ Q−1. One can show formally that infinite computations starting from
configurations (q, s) with a fixed non-returning state q and arbitrary s have
identical transcripts and, therefore, identical characteristic sequences associated
with them. As a result, we can talk about infinite computations starting at a
non-returning control state q, rather than in a specific configuration (q, s).

Now consider a state q 6∈ Q−1, an arbitrary configuration (q, s) and the
infinite computation starting from (q, s). Suppose that this computation enters
a configuration of the form (q̄, s) after at least one move. Then the horizontal
successor of q is defined as the control state q̄ of the first such configuration, and
the computation between these configurations is called the horizontal segment
from q. In other cases, horizontal successor and horizontal segment are undefined.
It is easily seen that the horizontal successor, whenever it exists, is well-defined
in the sense that it does not depend upon the choice of s ∈ (Γ\{⊥})∗⊥. Similarly,
the choice of s only determines the “lower” part of the stack in the configurations
of the horizontal segment; since we shall only be interested in the transcripts,
this abuse of terminology is harmless.

Equivalently, suppose that q 6∈ Q−1 and (q, s) ⊢ (q′, s′). If s′ = s then
the horizontal successor of q is q′. Otherwise it holds that δ+1(q) = (q′, γ) for
some γ ∈ Γ, so that s′ = γs. Now if q′ is returning, q′′ is the exit point of
q′, and δ−1(q

′′, γ) = q̄ for the same γ, then q̄ is the horizontal successor of
q. The horizontal segment is in both cases defined as the shortest non-empty
computation of the form (q, s) ⊢∗ (q̄, s).

General approach and data structures. Recall that our goal in this sub-
section is to define an algorithm that constructs a pair of straight-line programs
(T ′, T ′′) generating the transcript of the infinite computation of A. The ap-
proach that we take is dynamic programming. We separate out intermediate
goals of several kinds and construct, for an arbitrary control state q ∈ Q, SLPs
and pairs of SLPs that generate transcripts of the infinite computation starting
at q (if q is non-returning), of the return segment from q (if q is returning), and
of the horizontal segment from q (whenever it is defined).

Our algorithm will write productions as it runs, always using, on their right-
hand side, only terminal symbols from {a, f} and nonterminals defined by pro-
ductions written earlier. This enables us to use the notation eval(A) for non-
terminals A without referring to a specific SLP. Once written, a production is
never modified.

The main data structures of the algorithm, apart from the productions it
writes, are as follows: three partial functions E ,H,W : Q → Q and a subset
NonRet ⊆ Q. Associated with E and H are nonterminals Eq and Hq, and with
NonRet nonterminals N ′

q and N ′′
q .

16

Note that the partial functions from Q to Q can be thought of as digraphs
on the set of vertices Q. In such digraphs the outdegree of every vertex is at
most 1. The algorithm will subsequently modify these partial functions, that is,
add new edges and/or remove existing ones (however, the outdegree of no vertex
will ever be increased to above 1). We can also promise that E will only increase,
i. e., its graph will only get new edges, W will only decrease, and H can go both
ways.

During its run the algorithm will maintain the following invariants:

(I1) Q = domE ⊔ domH ⊔ domW ⊔ NonRet, where ⊔ denotes union of disjoint
sets.

(I2) Whenever E(q) = q′, it holds that q is returning, q′ is the exit point of q,
and eval(Eq) is the transcript of the return segment from q.

(I3) Whenever H(q) = q′, it holds that q′ is the horizontal successor of q and
eval(Hq) is the transcript of the horizontal segment from q.

(I4) Whenever W(q) = q′, it holds that δ+1(q) = (q′, γ) for some γ ∈ Γ.
(I5) Whenever q ∈ NonRet, it holds that q is non-returning and the sequence

eval(N ′
q) · (eval(N

′′
q))

ω is the transcript of the infinite computation starting
at q.

Description of the algorithm: computing transcripts. Our algorithm has
three stages: the initialization stage, the main stage, and the ⊥-handling stage.
The initialization stage of the algorithm works as follows:

— for each q ∈ Q, write Vq → µ(q)σ(q), where µ(q) is f if q ∈ F and ε otherwise,
and σ(q) is a if q ∈ R (that is, if transitions departing from q read a symbol
from the input) and ε otherwise;

— for all q ∈ Q−1, set E(q) = q and write Eq → ε;
— for all q ∈ Q0, set H(q) = q′ where δ0(q) = q′ and write Hq → Vq;
— for all q ∈ Q+1, set W(q) = q′ where δ+1(q) = (q′, γ) for some γ ∈ Γ;
— set NonRet = ∅.

It is easy to see that in this way all invariants (I1)–(I5) are initially satisfied
(recall that the transcript of an empty computation is ε).

For convenience, we also introduce two auxiliary objects: a partial function
G : Q → Q and nonterminals Gq, defined as follows. The domain of G is domG =
domH ⊔ domW ; note that, according to invariant (I1), this union is disjoint.
We assign G(q) = q′ iff H(q) = q′ or W(q) = q′. We shall assume that G is
recomputed as H and W change. Now for every q ∈ domG, we let Gq stand for
Hq if q ∈ domH and for Vq if q ∈ domW .

At this point we are ready to describe the main stage of the algorithm.
During this stage, the algorithm applies the following rules until none of them
is applicable (if at some point several rules can be applied, the choice is made
arbitrarily; the rules are well-defined whenever invariants (I1)–(I5) hold):

(R1) If G(q) = q′ where q′ ∈ NonRet and q ∈ Q: remove q from either domH or
domW , add q to NonRet, write N ′

q → GqN
′
q′ and N ′′

q → N ′′
q′ .

17

(R2) If H(q) = q′ where q′ ∈ dom E and q ∈ Q: remove q from domH, define
E(q) = E(q′), write Eq → HqEq′ .

(R3) If W(q) = q′ where q′ ∈ domE and q ∈ Q: remove q from domW , define
H(q) = q̄ where E(q′) = q′′, δ−1(q

′′, γ) = q̄, and δ+1(q) = (q′, γ) (that is, γ
is the symbol pushed by the transition leaving q, and q̄ is the state reached
by popping γ at q′′, the exit point of q′). Finally, write Hq → VqEq′Vq′′ .

(R4) If G contains a simple cycle, that is, if G(qi) = qi+1 for i = 1, . . . , k − 1
and G(qk) = q1, where qi 6= qj for i 6= j, then for each vertex qi of the
cycle remove it from either domH or domW and add it to NonRet; in
addition, write N ′

qk
→ Gqk , N

′′
qk

→ Gq1 . . .Gqk , and, for each i = 1, . . . , k−1,
N ′

qi → GqiN
′
qi+1

and N ′′
qi → N ′′

qi+1
.

We shall need two basic facts about this stage of the algorithm.

Claim 2. Application of rules (R1)–(R4) does not violate invariants (I1)–(I5).

The proof of Claim 2 is easy and left to the reader.

Claim 3. If no rule is applicable, then domG = ∅.

Proof. Suppose domG 6= ∅. Consider the graph associated with G and observe
that all vertices in domG have outdegree 1. This implies that G has either a cycle
within domG or an edge from domG to Q \ domG. In the first case, rule (R4)
is applicable. In the second case, we conclude with the help of the invariant (I1)
that the edge leads from a vertex in domH ⊔ domW to a vertex in NonRet ⊔
dom E . If the destination is in NonRet, then rule (R1) is applicable; otherwise
the destination is in dom E and one can apply rule (R2) or rule (R3) according
to whether the source is in domH or in domW . ⊓⊔

Now we are ready to describe the ⊥-handling stage of the algorithm. By the
beginning of this stage, the structure of deterministic computation of A has
already been almost completely captured by the productions written earlier,
and it only remains to account for moves involving ⊥. So this last stage of the
algorithm takes the initial state q0 of A and proceeds as follows.

If q0 ∈ NonRet, then take N ′
q0 as the axiom of T ′ and N ′′

q0 as the axiom of
T ′′. By invariant (I5), these nonterminals are defined and generate appropriate
words, so the pair (T ′, T ′′) indeed generates the transcript of the computation
of A.

Since at the beginning of the ⊥-handling stage domG = ∅, it remains to
consider the case q0 ∈ domE . Define a partial function E⊥ : Q → Q by setting, for
each q ∈ dom E , its value according to E⊥(q) = q̄ if E(q) = q′ and δ−1(q

′,⊥) = q̄.
Write productions E⊥

q → EqVq′ accordingly. Now associate E⊥ with a graph,

as earlier, and consider the longest simple path within domE⊥ starting at q0.
Suppose it ends at a vertex qk, where E⊥(qi) = qi+1 for i = 0, . . . , k. There are
two subcases here according to why the path cannot go any further.

The first possible reason is that it reaches Q \ dom E⊥ = NonRet, that is,
that qk+1 belongs to NonRet. In this subcase write N ′

q0 → E⊥
q0 . . . E

⊥
qk
N ′

qk+1
and

18

N ′′
q0 → N ′′

qk+1
. The second possible reason is that qk+1 = qi where 0 ≤ i ≤ k. In

this subcase write N ′
q0 → E⊥

q0 . . . E
⊥
qi−1

and N ′′
q0 → E⊥

qi . . . E
⊥
qk
.

In any of the two subcases above, take N ′
q0 and N ′′

q0 as axioms of T ′ and T ′′,
respectively. The correctness of this step follows easily from the invariants (I2)
and (I5). This gives a polynomial algorithm that converts a udpda A into a pair
of SLPs (T ′, T ′′) that generates the transcript of the infinite computation of A,
and the only remaining bit is bounding the size of (T ′, T ′′).

Claim 4. The size of (T ′, T ′′) is O(|Q|).

Proof. There are three types of nonterminals whose productions may have grow-
ing size: N ′′

qk in rule (R4), and N ′
q0 and N ′′

q0 in the ⊥-handling stage. For all three
types, the size is bounded by the cardinality of the set of states involved in a
cycle or a path. Since such sets never intersect, all such nonterminals together
contribute at most |Q| productions to the Chomsky normal form. The contribu-
tion of other nonterminals is also O(|Q|), because they all have fixed size and
each state q is associated with a bounded number of them. ⊓⊔

Combined with Claim 1 in Subsection 5.2, this completes the proof of Lemma 4
and Theorem 1.

6 Universality of unpda

In this section we settle the complexity status of the universality problem for
unary, possibly nondeterministic pushdown automata. While Π2P-completeness
of equivalence and inclusion is shown by Huynh [14], it has been unknown
whether the universality problem is also Π2P-hard.

For convenience of notation, we use an auxiliary descriptional system. Define
integer expressions over the set of operations {+,∪,×2,×N} inductively: the
base case is a non-negative integer n, written in binary, and the inductive step
is associated with binary operations +, ∪, and unary operations ×2, ×N. To
each expression E we associate a set of non-negative integers S(E): S(n) = {n},
S(E1 + E2) = {s1 + s2 : s1 ∈ S(E1), s2 ∈ S(E2)}, S(E1 ∪ E2) = S(E1) ∪ S(E2),
S(E × 2) = S(E + E), S(E×N) = {sk : s ∈ S(E), k = 0, 1, 2, . . .}.

Expressions E1 and E2 are called equivalent iff S(E1) = S(E2); an expression
E is universal iff it is equivalent to 1×N. The problem of deciding universality
is denoted by Integer-{+,∪,×2,×N}-Expression-Universality.

Decision problems for integer expressions have been studied for more than
40 years: Stockmeyer and Meyer [31] showed that for expressions over {+,∪}
compressed membership is NP-complete and equivalence is Π2P-complete (uni-
versality is, of course, trivial). For recent results on such problems with opera-
tions from {+,∪,∩,×, }, see McKenzie and Wagner [23] and Glaßer et al. [8].

Lemma 5. Integer-{+,∪,×2,×N}-Expression-Universality is Π2P-hard.

19

Proof. The reduction is from the Generalized-Subset-Sum problem, which is
defined as follows. The input consists of two vectors of naturals, u = (u1, . . . , un)
and v = (v1, . . . , vm), and a natural t, and the problem is to decide whether for
all y ∈ {0, 1}m there exists an x ∈ {0, 1}n such that x · u+ y · v = t, where the
middle dot · once again denotes the inner product. This problem was shown to
be hard by Berman et al. [1, Lemma 6.2].

Start with an instance of Generalized-Subset-Sum and let M be a big
number, M >

∑n
i=1 ui+

∑m
j=1 vj . Assume without loss of generality that M > t.

Consider the integer expression E defined by the following equations:

E = E′ ∪ E′′,

E′ = (2mM + 1×N) ∪ (M×N+ ([0, t− 1] ∪ [t+ 1,M − 1])),

E′′ =

m∑

j=1

(0 ∪ (2j−1M + vj)) +

n∑

i=1

(0 ∪ ui),

[a, b] = a+ [0, b− a],

[0, t] = [0, ⌊t/2⌋]× 2 + (0 ∪ (t mod 2)),

[0, 1] = 0 ∪ 1,

[0, 0] = 0.

Note that the size of E is polynomial in the size of the input, and E can be
constructed in logarithmic space. We show that E is universal iff the input is a
yes-instance of Generalized-Subset-Sum.

It is immediate that E is universal if and only if S(E) contains 2m numbers
of the form kM + t, 0 ≤ k < 2m. We show that every such number is in S(E)
if and only if for the binary vector y = (y1, . . . , ym) ∈ {0, 1}m, defined by
k =

∑m
j=1 yj 2

j−1, there exists a vector x ∈ {0, 1}n such that x · u+ y · v = t.
First consider an arbitrary y ∈ {0, 1}m and choose k as above. Suppose that

for this y there exists an x ∈ {0, 1}n such that x · u + y · v = t. One can easily
see that appropriate choices in E′′ give the number kM + y · v+ x · u = kM + t.
Conversely, suppose that kM + t ∈ S(E) for some k, 0 ≤ k < 2m; then kM + t ∈
S(E′′). Since (1, . . . , 1) · u + (1, . . . , 1) · v < M , it holds that t = y · v + x · u for
binary vectors y ∈ {0, 1}m and x ∈ {0, 1}n that correspond to the choices in the
addends. Moreover, the same inequality also shows that kM is equal to the sum
of some powers of two in the first sum in E′′, and so k =

∑m
j=1 yj 2

j−1. This
completes the proof. ⊓⊔

Remark. With circuits instead of formulae (see also [23] and [8]) we would not
need doubling. Furthermore, we only use ×N on fixed numbers, so instead we
could use any feature for expressing an arithmetic progression with fixed common
difference.

Theorem 6. Unary-PDA-Universality is Π2P-complete.

Proof. A reduction from Integer-{+,∪,×2,×N}-Expression-Universality,
which is Π2P-hard by Lemma 5, shows hardness. Indeed, an integer expression

20

over {+,∪,×2,×N} can be transformed into a unary CFG in a straightfor-
ward way. Binary numbers are encoded by poly-size SLPs, summation is mod-
eled by concatenation, and union by alternatives. Doubling is a special case
of summation, and ×N gives rise to productions of the form N ′ → ε and
N ′ → NN ′. The obtained CFG is then transformed into a unary PDA A by
a standard algorithm (see, e. g., Savage [26, Theorem 4.12.1]). The result is that
L(A) = {1s : s ∈ S(E)}, and A is computed from E in logarithmic space. This
concludes the proof. ⊓⊔

Remark. We give a simple proof of the Π2P upper bound. Let ϕA(x) be an
existential Presburger formula of size polynomial in the size of A that charac-
terizes the Parikh image of L(A) (see Verma, Seidl, and Schwentick [32, The-
orem 4]). To show that an udpda A is non-universal, we find an n ≥ 0 such
that ¬ϕA(n) holds. Now we note that for any udpda A of size m, there is a
deterministic finite automaton of size 2O(m) accepting L(A) (see discussion in
Section 7 and Pighizzini [24]). Thus, n is bounded by 2O(m). Therefore, check-
ing non-universality can be expressed as a predicate: ∃n ≤ 2O(m).¬ϕA(n). This
is a Σ2P-predicate, because the ∃∗-fragment of Presburger arithmetic is NP-
complete [33].

Corollary 1. Universality, equivalence, and inclusion are Π2P-complete for
(possibly nondeterministic) unary pushdown automata, unary context-free gram-
mars, and integer expressions over {+,∪,×2,×N}.

Another consequence of Theorem 6 is that deciding equality of a (not neces-
sarily unary) context-free language, given as a context-free grammar, to any
fixed context-free language L0 that contains an infinite regular subset, is Π2P-
hard and, if L0 ⊆ {a}∗, Π2P-complete. The lower bound is by reduction due
to Hunt III, Rosenkrantz, and Szymanski [12, Theorem 3.8], who show that de-
ciding equivalence to {a}∗ reduces to deciding equivalence to any such L0. The
reduction is shown to be polynomial-time, but is easily seen to be logarithmic-
space as well. The upper bound for the unary case is by Huynh [14]; in the
general case, the problem can be undecidable.

7 Corollaries and discussion

Descriptional complexity aspects of udpda. Theorem 1 can be used to
obtain several results on descriptional complexity aspects of udpda proved ear-
lier by Pighizzini [24]. He shows how to transform a udpda of size m into an
equivalent deterministic finite automaton (DFA) with at most 2m states [24,
Theorem 8] and into an equivalent context-free grammar in Chomsky normal
form (CNF) with at most 2m + 1 nonterminals [24, Theorem 12]. In our con-
struction m gets multiplied by a small constant, but the advantage is that we
now see (the slightly weaker variants of) these results as easy corollaries of a
single underlying theorem. Indeed, using an indicator pair (P ′,P ′′) for L, it is
straightforward to construct a DFA of size |eval(P ′)| + |eval(P ′′)| accepting L,

21

as well as to transform the pair into a CFG in CNF that generates L and has at
most thrice the size of (P ′,P ′′).

Another result which follows, even more directly, from ours is a lower bound
on the size of udpda accepting a specific language L1 [24, Theorem 15]. To obtain
this lower bound, Pighizzini employs a known lower bound on the SLP-size of the
word W = W[0] . . .W[K − 1] ∈ {0, 1}K such that an ∈ L1 iff W[n mod K] = 1.
To this end, a udpda A accepting L1 is intersected (we are glossing over some
technicalities here) with a small deterministic finite automaton that “captures”
the end of the word W . The obtained udpda, which only accepts aK , is trans-
formed into an equivalent context-free grammar. It is then possible to use the
structure of the grammar to transform it into an SLP that produces W (note
that such a transformation in general is NP-hard). While the proof produces
from a udpda for L1 a related SLP with a polynomial blowup, this construc-
tion depends crucially on the structure of the language L1, so it is difficult to
generalize the argument to all udpda and thus obtain Theorem 1. Our proof of
Theorem 1 therefore follows a very different path.

Relationship to Presburger arithmetic. An alternative way to prove the
upper bound in Theorem 5 is via Presburger arithmetic, using the observation
that there is a poly-time computable existential Presburger formula that ex-
presses the membership of a word an in L(¬A1) and L(A2). This technique
distills the arguments used by Huynh [13,14] to show that the compressed mem-
bership problem for unary pushdown automata is in NP. It is used in a purified
form by Plandowski and Rytter [25, Theorems 4 and 8], who developed a much
shorter proof of the same fact (apparently unaware of the previous proof). The
same idea was later rediscovered and used in a combination with Presburger
arithmetic by Verma, Seidl, and Schwentick [32, Theorem 4].

Another application of this technique provides an alternative proof of the
Π2P upper bound for unpda inclusion (Theorem 6): to show that L(A) is uni-
versal, we check that L(A) accepts all words up to length 2O(m) (this bound is
sufficient because there is a deterministic finite automaton for the language with
this size—see the discussion above). The proof known to date, due to Huynh [14],
involves reproving Parikh’s theorem and is more than 10 pages long. Reduction
to Presburger formulae produces a much simpler proof.

Also, our Π2P-hardness result for unpda shows that the ∀bounded ∃∗-fragment
of Presburger arithmetic is Π2P-complete, where the variable bound by the uni-
versal quantifier is at most exponential in the size of the formula. The upper
bound holds because the ∃∗-fragment is NP-complete [33]. In comparison, the
∀ ∃∗-fragment, without any restrictions on the domain of the universally quan-

tified variable, requires co-nondeterministic 2n
Ω(1)

time, see Grädel [10]. Previ-
ously known fragments that are complete for the second level of the polyno-
mial hierarchy involve alternation depth 3 and a fixed number of quantifiers, as
in Grädel [11] and Schöning [28]. Also note that the ∀s ∃t-fragment is coNP-
complete for all fixed s ≥ 1 and t ≥ 2, see Grädel [11].

Problems involving compressed words. Recall Theorem 4: given two SLPs,
it is coNP-complete to compare the generated words componentwise with re-

22

spect to any partial order different from equality. As a corollary, we get precise
complexity bounds for SLP equivalence in the presence of wildcards or, equiv-
alently, compressed matching in the model of partial words (see, e. g., Fischer
and Paterson [6] and Berstel and Boasson [2]). Consider the problem SLP-

Partial-Word-Matching: the input is a pair of SLPs P1, P2 over the alpha-
bet {a, b, ?}, generating words of equal length, and the output is “yes” iff for
every i, 0 ≤ i < |P1|, either P1[i] = P2[i] or at least one of P1[i] and P2[i] is ?
(a hole, or a single-character wildcard).

Schmidt-Schauß [27] defines a problem equivalent to SLP-Partial-Word-

Matching, along with another related problem, where one needs to find occur-
rences of eval(P1) in eval(P2) (as in pattern matching), P2 is known to contain no
holes, and two symbols match iff they are equal or at least one of them is a hole.
For this related problem, he develops a polynomial-time algorithm that finds (a
representation of) all matching occurrences and operates under the assumption
that the number of holes in eval(P1) is polynomial in the size of the input. He
also points out that no solution for (the general case of) SLP-Partial-Word-

Matching is known—unless a polynomial upper bound on the number of ?s in
eval(P1) and eval(P2) is given. Our next proposition shows that such a solution
is not possible unless P = NP. It is an easy consequence of Theorem 4.

Proposition 2. SLP-Partial-Word-Matching is coNP-complete.

Proof. Membership in coNP is obvious, and the hardness is by a reduction
from SLP-Componentwise-(0 ≤ 1). Given a pair of SLPs P1, P2 over {0, 1},
substitute ? for 0 and a for 1 in P1, and b for 0 and ? for 1 in P2. The resulting
pair of SLPs over {a, b, ?} is a yes-instance of SLP-Partial-Word-Matching

iff the original pair is a yes-instance of SLP-Componentwise-(0 ≤ 1). ⊓⊔

The wide class of compressed membership problems (deciding eval(P) ∈ L) is
studied and discussed in Jeż [16] and Lohrey [20]. In the case of words over the
unary alphabet, w ∈ {a}∗, expressing w with an SLP is poly-time equivalent
to representing it with its length |w| written in binary. An easy corollary of
Theorem 2 is that deciding w ∈ L(A), where A is a (not necessarily unary)
deterministic pushdown automaton and w = an with n given in binary, is P-
complete.

Finally, we note that the precise complexity of SLP equivalence remains
open [20]. We cannot immediately apply lower bounds for udpda equivalence,
since we do not know if the translation from udpda to indicator pairs in Theo-
rem 1 can be implemented in logarithmic (or even polylogarithmic) space.

References

1. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. JCSS
65(2), 332–350 (2002)

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. TCS 218(1),
135–141 (1999)

23

3. Bertoni, A., Choffrut, C., Radicioni, R.: Literal shuffle of compressed words. In:
Ausiello, G., Karhumki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273,
pp. 87–100. Springer, Boston (2008)

4. Böhm, S., Göller, S., Jančar, P.: Equivalence of deterministic one-counter automata
is NL-complete. In: STOC’13, pp. 131–140. ACM (2013)

5. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC
1

computation. JCSS 57(2), 200–212 (1998)
6. Fischer, M.J., Paterson, M.S.: String-matching and other products. In: Karp, R.

(ed.) SIAM-AMS proceedings, vol. 7. AMS (1974)
7. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. Journal of

the ACM 9(3), 350–371 (1962)
8. Glaßer, C., Herr, K., Reitwießner, C., Travers, S., Waldherr, M.: Equivalence prob-

lems for circuits over sets of natural numbers. Theory of Computing Systems 46(1),
80–103 (2010)

9. Goldschlager, L.M.: ε-productions in context-free grammars. Acta Informatica,
16(3), 303–308 (1981)

10. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Annals
of Pure and Applied Logic 43(1), 1–30 (1989)

11. Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy.
TCS 56(3), 289–301 (1988)

12. Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, contain-
ment, and covering problems for the regular and context-free languages. JCSS
12(2), 222–268 (1976)

13. Huynh, D.T.: Commutative grammars: the complexity of uniform word problems.
Information and Control 57, 21–39 (1983)

14. Huynh, D.T.: Deciding the inequivalence of context-free grammars with 1-letter
terminal alphabet is Σp

2
-complete. TCS 33(2–3), 305–326 (1984)

15. Jančar, P.: Decidability of DPDA language equivalence via first-order grammars.
In: LICS 2012, pp. 415–424. IEEE (2012)

16. Jeż, A.: The complexity of compressed membership problems for finite automata.
Theory of Computing Systems, 1–34 (2013)

17. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time.
TCS 3(2), 105–117 (1976)

18. Kopczyński, E., To, A.W.: Parikh images of grammars: complexity and applica-
tions. In: LICS 2010, pp. 80–89. IEEE Computer Society (2010)

19. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In:
MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer (2006)

20. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complexity
Cryptology 4(2), 241–299 (2012)

21. Lohrey, M.: Leaf languages and string compression. Information and Computation
209(6), 951–965 (2011)

22. Lohrey, M.: Word problems and membership problems on compressed words. SIAM
Journal on Computing 35(5), 1210–1240 (2006)

23. McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits
over sets of natural numbers. Computational Complexity 16(3), 211–244 (2007)

24. Pighizzini, G.: Deterministic pushdown automata and unary languages. Interna-
tional Journal of Foundations of Computer Science 20(4), 629–645 (2009)

25. Plandowski, W., Rytter, W.: Complexity of language recognition problems for
compressed words. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.)
Jewels are Forever, pp. 262–272. Springer (1999)

24

26. Savage, J.E.: Models of computation: Exploring the power of computing. Addison-
Wesley (1998)

27. Schmidt-Schauß, M.: Matching of compressed patterns with character variables.
In: RTA 2012. LIPIcs, vol. 15, pp. 272–287. Dagstuhl (2012)

28. Schöning, U.: Complexity of Presburger arithmetic with fixed quantifier dimension.
Theory of Computing Systems 30(4), 423–428 (1997)

29. Sénizergues, G.: L(A) = L(B)? A simplified decidability proof. TCS 281(1–2),
555-608 (2002)

30. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: ICALP 2002.
LNCS, vol. 2380, pp. 821–832. Springer (2002)

31. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: STOC 1973, pp. 1–9. ACM, New York (1973)

32. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn
clauses. In: CADE 2005. LNAI, vol. 3632, pp. 337–352. Springer (2002)

33. Von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities
and inequalities. Proceedings of the AMS 72(1), 155–158 (1978)

	Unary Pushdown Automataand Straight-Line Programs

