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Abstract

Understanding the dynamics of evolving social or infrastructure networks is a chal-
lenge in applied areas such as epidemiology, viral marketing, or urban planning. During
the past decade, data has been collected on such networks but has yet to be fully ana-
lyzed. We propose to use information on the dynamics of the data to find stable par-
titions of the network into groups. For that purpose, we introduce a time-dependent,
dynamic version of the facility location problem, that includes a switching cost when a
client’s assignment changes from one facility to another. This might provide a better
representation of an evolving network, emphasizing the abrupt change of relationships
between subjects rather than the continuous evolution of the underlying network. We
show that in realistic examples this model yields indeed better fitting solutions than
optimizing every snapshot independently. We present an O(log nT )-approximation al-
gorithm and a matching hardness result, where n is the number of clients and T the
number of time steps. We also give an other algorithms with approximation ratio
O(log nT ) for the variant where one pays at each time step (leasing) for each open
facility.

1 Introduction

During the past decade, a massive amount of data has been collected on diverse networks
such as web links, nation- or world-wide social networks, online social networks (Facebook
or Twitter for example), social encounters in hospitals, schools, companies, or conferences
(e.g. [18, 21]), and other real-life networks. Those networks evolve with time, and their
dynamics have a considerable impact on their structure and effectiveness (e.g. [19, 14]). Un-
derstanding the dynamics of evolving networks is a central question in many applied areas
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- IXXI, École normale supérieure de Lyon (France)

1

ar
X

iv
:1

40
3.

67
58

v1
  [

cs
.S

I]
  2

6 
M

ar
 2

01
4

http://www.di.ens.fr/ClaireMathieu.html
http://www.liafa.univ-paris-diderot.fr/\protect \unhbox \voidb@x \penalty \@M \ {}nschaban/


such as epidemiology, vaccination planning, anti-virus design, management of human re-
sources, viral marketing, “facebooking”, etc. Obtaining a relevant clustering of the data is
often a key to the design informative representations of massive data sets. Algorithmic ap-
proaches have for instance been successful in yielding useful insights on several real networks
such as zebras social interaction networks [22].

But the dynamics of real-life evolving networks are not yet well understood, partly be-
cause it is difficult to observe and analyze such large networks sparsely connected over time.
Some basic facts have been observed (such as the preferential attachment or copy-paste
mechanisms) but more specific structures remain to be discovered. In this article, we pro-
pose a new formulation of the facility location problem adapted to these evolving networks.
We show that requiring the solution to be stable over time yields in many realistic situations
better fitting solutions than optimizing independently various snapshots of the network.

The problem. We focus on the facility location problem where clients are moving in some
space: we look for the best connections of clients to facilities (sometimes called centers) over
time minimizing a tradeoff between three objectives. The two first objectives are classically:
the distance cost of the connections (the sum of the connection lengths), so that each client
gets connected to a facility representative of its position; and the opening cost, a price paid
for opening each open facility, so that only the most meaningful facilities (and as few of them
as possible) get open. The third and new objective is the instability of the connections over
time, measured as the number of clients switching from one facility to another over time,
so that only the changes responding to significative and lasting changes in the metrics get
authorized. We argue that incorporating this stability requirement in the objective function
helps in many realistic situations to obtain more desirable solutions (see Section 2.1).

Related work. Facility location problem has been studied extensively in the offline, online
and incremental settings, see [12] for a survey. The offline version of the problem was a case
study accompanying the development of techniques for approximation algorithms: primal-
dual and dual fitting methods and local search for example. A series of papers, [20, 16,
13, 2, 5, 3, 15], obtained (almost) matching upper and lower bounds on the polynomially
achievable approximation ratio in this setting: Θ(log n) in the non-metric case, and within
[1.463, 1.488] in the metric case, when the client-to-facility connection cost is a distance in a
metric space.

The online setting, where clients arrive over time and the algorithm gradually buys more
and more facilities to serve them, was first addressed by [17] who obtained Θ(log n/ log log n)
upper and lower bounds on the competitive ratio of any online algorithm. This later led to
developments for various cases, e.g. analyzed when clients are drawn from some distribu-
tion [1] and in other cases [11]. In order to allow more flexibility in the solution (as required in
many clustering application), incremental approaches, which allow reconsidering the assign-
ment of clients to facilities over time, were also considered. Such variants may allow better
(O(1)) competitive ratios, see e.g. in the metric case but with streaming constraints [10],
and in the special case in the Euclidian setting when facilities may be moved as new clients
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arrive [8]. We also mention the related clustering problem in which clusters may be merged
but not split, e.g. [4].

Our approach differs from the existing algorithmic approaches to dynamic settings be-
cause we focus on settings where distances may vary over time, and where it is desirable to
achieve a tradeoff between the stability of the solution — clusters of clients tend not to flip-
flop constantly — and its adaptability — the assignment ought to be modified if distance
change too much. We show that offline static algorithms that construct an independent
optimal solution for each snapshot of the network yield results that, in a large variety of
realistic situations, are not only unstable (and thus arbitrarily bad for our objective), but
also undesirable with respect to network dynamics analysis. Online solutions such as the
clustering of Charikar et al. [4] are also unnecessarily pessimistic in this setting: we have
access to the whole evolution of the network over time (as given by experiments such as [21])
and we can thus anticipate future changes.

As far as we know, the case where the distance between points vary overtime is still
largely unexplored.

Our results. After defining the problem formally in section 2.1 and giving examples show-
ing the benefits one can expect from solving this problem in the context of metrics evolving
with time, we give in Section 2.2 a O(log nT )-approximation algorithm for this problem,
where n is the number of clients and T the number of time steps.

Theorem 1 (Fixed opening cost). There is a polynomial time randomized algorithm which
outputs a solution to the dynamic facility location problem with fixed opening cost whose cost
verifies:

Pr
{
cost 6 4 log(2nT ) ·OPT

}
> Pr

{
cost 6 4 log(2nT ) · LP

}
> 1/4.

Repeating this algorithm O(log 1
ε
) times and outputing the best solution increases the

success probability to 1− ε for arbitrarily small ε > 0. We then show in Section 2.3 that this
approximation ratio is asymptotically optimal, even if one assume that the distance verifies
the triangle inequality at every time step and if the input consists in only one client and two
possible positions for the client and the facilities.

Theorem 2 (Hardness for fixed opening cost). Unless P 6= NP , there is no o(log T )-
approximation, even for the metric case with one client and two possible positions.

This new problem differs then significantly from the classic facility location problem
which admits no o(log n)-approximation for non-metric distances but a 1.488-approximation
when the distance satisfy the triangle inequality [15]. We then show in Section 3 how to
extend our approximation algorithm to the setting where facilities can be open and closed
at any time step and where one pays f for each facility open at each time step.

Theorem 3 (Hourly opening cost). There is a polynomial time randomized algorithm which
outputs a solution to the dynamic facility location problem with hourly opening cost whose
cost verifies:

Pr
{
cost 6 4 log(2nT ) ·OPT

}
> Pr

{
cost 6 4 log(2nT ) · LP

}
> 1/4.
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This article concludes with several open questions and possible extension of this work.

2 Facility Location in Evolving Metrics

2.1 Definition

Dynamic Facility Location problem with fixed opening cost. We are given a set F
of m facilities and a set C of n clients together with a finite sequence of distances (dt)16t6T
over F × C, a non-negative facility opening cost f and a non-negative client switching cost
g. The goal is to output a subset A ⊆ F of facilities and, for each time step t ∈ [T ], an
assignment φt : C → A of facilities to clients, so as to minimize:

f ·#A+
∑

16t6T,j∈C

dt(φt(j), j) + g ·
∑

16t<T

∑
j∈C

11{φt(j) 6= φt+1(j)},

that is to say the sum of the opening cost (f for each open facility), of the total distance
cost to connect each client to its assigned facility at every time step, and of the switching
cost for each client (g per change of facility per client).

Examples. The two examples in Figure 1 show how facility location in the dynamic setting
is quite different from the static setting and yields more desirable partitions of the clients.
In both examples, a facility can be opened at every client (so that electing a facility consists
in electing a representative for every significantly different behavior).

In example 1(a), we see a classroom with students split into five groups and a teacher
moving from group to group in cyclic order. When the number of students is large, static
facility location isolates the five groups and moves the teacher from one group to the next
between snapshots; whereas dynamic facility location isolates every group of students and
puts the teacher in a sixth group.

In example 1(b) we see two groups of people crossing each other (on a street for instance):
a static facility location would first output the two groups, then merge them into a single
group, then split it into two groups again; whereas a dynamic facility location would keep
the same groups for the whole time period, with the same representatives.

Assuming in both examples that the distances between individuals are either very small
or very large, then the ratio of the (dynamic) cost between the dynamic solution and the
sequence of static solutions can be made arbitrary large because the switching cost grows
for the sequence of static solutions as Ω(T ) and Ω(n) respectively.

Fact 4. The ratio between the cost of an optimal dynamic facility location solution and the
(dynamic) cost of a sequence of optimal static facility location solutions for each snapshot
can be as large as Ω(T ) and Ω(n).
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A linear relaxation. For an integer programming formulation, we define indicator 0-1
variables yi, x

t
ij, and ztij for i ∈ F , j ∈ C, and t ∈ [T ]: yi = 1 iff facility i is open; xtij = 1 iff

client j is connected to facility i at time t; and ztij = 1 iff client j is connected to facility i at
time t but no more at time t + 1. The dynamic facility location problem is then equivalent
to finding an integer solution to the following linear programming relaxation.

Minimize f ·
∑
i∈F

yi +
∑
j∈C

∑
16t6T

∑
i∈F

xtij · dt(i, j) + g ·
∑
j∈C

∑
16t<T

∑
i∈F

ztij

such that: (∀ijt) xtij 6 yi

(∀jt)
∑
i∈F

xtij = 1

(∀ij, ∀t < T ) ztij > xtij − xt+1
ij

yi, x
t
ij, z

t
ij > 0

(1)

2.2 Approximation algorithm

Algorithm 1 Fixed opening cost

• Solve the linear program LP (1). Let (x, y, z) be the solution obtained.
• Draw a facility at random Γ = 2 log(2nT )

∑
i∈F yi times independently, with distribution

proportional to y; let A be the resulting multiset of facilities.
for For each client j do
• Determine when it should change from one facility to another using the z-variables, and
assign it to the cheapest selected facility between each change:

(a) Partition time greedily into `j intervals [tjk, t
j
k+1) such that tj1 = 1 and where tjk+1

is inductively defined as the largest t ∈ (tjk, T + 1] such that
∑
i∈F

(
min
tjk6u<t

xuij

)
> 1/2, and

tj`j+1 = T + 1;

(b) For each time interval [tjk, t
j
k+1), connect j to the facility in A that is cheapest for j

for that time interval.
end for

Theorem 1 (page 3) states that Algorithm 1 outputs a O(log nT )-approximation with
positive constant probability. The next section will show that this is asymptotically optimal
(unless P 6= NP ).

Proof of Theorem 1. The expected facility opening cost is obviously at most
2f log(2nT )

∑
i∈F yi. In order to bound the switching and distance costs, let us now

fix a client j and show the following fact:

Fact 5. For all clients j and time intervals [tjk, t
j
k+1) with k < `j:∑

tjk6t<t
j
k+1

∑
i∈F

ztij > 1/2.
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This fact yields an easy bound on the switching cost: the switching cost for client j is g
times the number of its intervals minus 1. But according to the fact above, for every interval
except the last one, the ztij’s sum to at least 1/2, so LP (1) pays at least g/2 for that interval.
The switching cost of the solution is then at most twice the corresponding term in the LP.

Proof of Fact 5. For all t,
∑

i∈F x
t
ij = 1, in particular at time tjk. Now,

since k < `j, we have
∑

i∈F

(
mintjk6t6t

j
k+1

xtij

)
< 1/2. Let ti ∈ [tjk, t

j
k+1] such

that xtiij = mintjk6t6t
j
k+1

xtij. We have
∑

i∈F x
ti
ij < 1/2. Now, as ztij > 0,∑

tjk6t<t
j
k+1

ztij >
∑

tjk6t<ti
ztij >

∑
tjk6t<ti

(xtij − xt+1
ij ) = x

tjk
ij − x

ti
ij. It follows that∑

tjk6t<t
j
k+1

∑
i∈F z

t
ij >

∑
i∈F x

tjk
ij −

∑
i∈F x

ti
ij > 1− 1/2 = 1/2.

Let us now bound the expected distance cost for client j within each interval I = [tjk, t
j
k+1).

Let xIij = mint∈I x
t
ij and x̂Iij = xIij/

∑
i∈A x

I
ij. We want to argue that the facility selection

process (which is according to the yi’s) can be simulated, to within a factor of 2, by selecting
a facility according to x̂Iij. Then the expected distance is correct up to a factor of 2.

We know that xtij 6 yi. We can view sampling proportionally to (yi) as: with proba-

bility pIj =
∑

i x
I
ij∑

i yi
, sample proportionally to xIij, and with the remaining probability, sample

proportionally to yi − xIij. Indeed,

Pr{i is selected by this process} =

∑
i x

I
ij∑

i yi
·

xIij∑
i x

I
ij

+

(
1−

∑
i x

I
ij∑

i yi

)
·

yi − xIij∑
i(yi − xIij)

=
xIij∑
i yi

+

∑
i yi −

∑
i x

I
ij∑

i yi
·

yi − xIij∑
i yi −

∑
i x

I
ij

=
yi∑
i yi

.

Formally, we consider the following facility selection process: let U be a uniform real number
in [0,

∑
i yi), we say that facility i is selected if U ∈ [

∑
k<i yk,

∑
k6i yk) and that event BI

j

occurs if U ∈ [
∑

k<i yk,
∑

k<i yk + xIij). As pointed out before, according to this process: 1)

i is distributed proportionally to yi; 2) PrBI
j = pIj =

∑
i x

I
ij∑

i yi
> 1

2
∑

i yi
; and 3) conditioned to

event BI
j , i is distributed proportionally to xIij.

We repeat the selection process 2 log(2nT )
∑

i yi times independently. Given a pair
(j, I), the probability that event BI

j never occurs is at most (1 − pIj )
2 log(nT )

∑
i yi 6

exp
(
−2 log(2nT )

∑
i yi

2
∑

i yi

)
= 1

2nT
. Since there are at most nT pairs (j, I), the union bounds

ensures that with probability at least 1
2
, all the events BI

j occur at least once during the
selection.

When BI
j occurs, the facility i is selected according to xIij. It follows that the expected dis-

tance of this selected facility to j is for all time t ∈ I:
∑
i

xIij∑
i x

I
ij

·dt(i, j) 6
1

1/2

∑
i

xtijdt(j, i).
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It follows that with probability at least 1
2
, the expectation of the sum of the distances of

all j’s at all time t to their closest selected facility in F is at most: 2
∑

j,t

∑
i x

t
ijdt(j, i).

Summing all the contribution, with probability at least 1
2
, the expected cost of the solution

is at most:

2f log(2nT )
∑
i

yi + 2
∑
i,j,t

xtijdt(j, i) + 2g
∑
i,j,t

ztij 6 2 log(2nT ) · LP.

Applying Markov inequality we get:

Pr{cost 6 4 log(2nT )LP}
> Pr{cost 6 2 · 2 log(2nT )LP and all BI

j occur}
= Pr{cost 6 2 · 2 log(2nT )LP | all BI

j occur} · Pr{all BI
j occur}

>
1

2
· 1

2
. (Markov)

2.3 Hardness of approximation

Proof of Theorem 2. We do a reduction from Set Cover.
Pick an instance of set cover with T elements and m sets. We define the following

instance of dynamic facility location. There is one timestep t for each element of the set
cover instance, one facility i for each set of the set cover instance, and a single client. We set
g = 0 (i.e., g is small enough w.r.t. f , 1/n and 1/T ). Assume the only possible locations for
the client and facilities are two points a and b at distance ∞ (i.e. large enough) from each
other (note that it satisfies the triangle inequality). At every time step, the client sits at
location a. For each set i of the set cover instance, the corresponding facility is in position a
if set i contains element t, and in position b otherwise. This defines the instance of dynamic
facility location.

Since the distance is infinite between the two locations, the output A, to have finite cost,
has to correspond to a cover of the unique client for all T time steps, i.e. a cover of all T
elements in the set cover input. The cost is then simply f times the number of selected
facilities. The Ω(lnT ) hardness lower bound for Set Cover with T elements in [7] implies
that same lower bound for our problem.

3 Hourly opening cost

3.1 Dynamic Facility Location with hourly opening cost

We now focus on a variant of the problem studied in the previous section where the facilities
can be open and closed at any time step and where the opening cost f is paid for every
facility open at every time step.
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Dynamic Facility Location problem with hourly opening cost. We are given a set
F of m facilities and a set C of n clients together with a finite sequence of distances (dt)16t6T
over F×C, and two non-negative values f and g. The goal is to output a sequence of subsets
At ⊆ F of facilities and, for each time step t ∈ [T ] an assignment, φt : C → At of facilities
to clients, so as to minimize:

f ·
∑

16t6T

#At +
∑

16t6T,j∈C

dt(φt(j), j) + g ·
∑

16t<T

∑
j∈C

11{φt(j) 6= φt+1(j)}.

Linear relaxation. The LP (1) readily extends, with variables yti :

Minimize f
∑

16t6T

∑
i∈A

yti +
∑
j∈C

∑
16t6T

∑
i∈F

xtij · dt(i, j) + g
∑
j∈C

∑
16t<T

∑
i∈F

ztij

such that: (∀ijt) xtij 6 yti

(∀jt)
∑
i∈F

xtij = 1

(∀ij, ∀t < T ) ztij > xtij − xt+1
ij

yti , x
t
ij, z

t
ij > 0

(2)

3.2 O(log nT )-Approximation algorithm

We now change the sampling procedure for the facilities: every facility i selects an expo-
nentially distributed random threshold and opens only when its yti variable is above the
threshold.

Algorithm 2 Hourly opening cost

• Solve the linear program LP (2). Let (x, y, z) be the solution obtained.
• For each facility i, pick a random threshold ρi according to an exponential distribution with
expectation 1/(2 log(2nT )): i.e. Pr{ρi > a} = e−2a log(2nT ) for all a > 0. Open facility i at
all times t such that yti > ρi. For each time t, let At be the resulting multiset of facilities open
at t.
for each client j do
• Determine when it should change from one facility to another using the z-variables, and
assign it to the cheapest selected facility between each change:

(a) As before, partition time greedily into `j intervals [tjk, t
j
k+1) s.t. tj1 = 1 and where

tjk+1 is inductively defined as the largest t ∈ (tjk, T + 1] with
∑
i∈F

(
min
tjk6u<t

xuij

)
> 1/2, and

tj`j+1 = T + 1;

(b) For each time interval I = [tjk, t
j
k+1) and facility i, let xIij = mint∈I x

t
ij and connect

client j to the facility i ∈ At that minimizes the ratio ρi/x
I
ij.

end for
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The idea is that client j selects a facility i whose opening threshold is below its xIij-value.
We will show that one can find such a facility for all clients at all time steps with high
probability.

Let us now analyze the cost of the resulting solution (Theorem 3).

Lemma 6. The expected opening cost is at most 2 log(2nT ) times the corresponding term in
LP (2).

Proof. Facility i is open at time t with probability Pr{ρi 6 yti} = 1 − e−2y
t
i log(2nT ) 6

yti log(2nT ) since ea > 1 + a for all a ∈ R. The expected facility cost is thus at most
f
∑

i

∑
t y

t
i · 2 log(2nT ).

As before, Fact 5 holds here as well and the total switching cost is at most twice the
value of the corresponding in LP (2).

Proof of Theorem 3. We are now left with evaluating the distance cost. We want to show
that we can view things so that there is a facility sampled according to xIij that is alive
throughout the time interval I. Use the same ρi’s, but imagine that you only open facility i
if xIij > ρi. Since we assign client j to the facility i such that ρi/x

I
ij is minimum, we do

get a facility in that way, as long as ρi/x
I
ij < 1. Note that ρi/x

I
ij is an exponential of rate

2xIij log(2nT ), and by independence of the ρi’s, mini(ρi/x
I
ij) is also an exponential of rate

2
∑

i x
I
ij log(2nT ), indeed:

Pr{min
i

(ρi/x
I
ij) > a} =

∏
i

Pr{ρi > a · xIij} = e−2a·(
∑

i x
I
ij log(2nT )).

Then, the probability that client i is not covered by an open facility by this process during
time interval I is Pr{mini(ρi/x

I
ij) > 1} = e−2(

∑
i x

I
ij) log(2nT ) 6 1

2nT
since

∑
i x

I
ij > 1/2.

Consider now the event B that for all client j and all interval I, mini(ρi/x
I
ij) < 1, then

PrB > 1
2

by the union bound. Now, conditioned to event B, the expected distance between
every client i to the facility it is assigned during each interval I is upper bounded by:∑

i

Pr{ρi 6 xIij}
PrB

dt(i, j) 6
∑
i

2
(

1− e−2xIij log(2nT )
)
dt(i, j)

6
∑
i

4xIij log(2nT )dt(i, j)

The expected distance cost conditioned to event B is thus at most 4 log(2nT ) times the
corresponding term in LP (2).

As PrB > 1
2
, the expected facility cost conditioned to event B is at most twice the

unconditioned facility cost. The expected overall cost conditioned to event B is then at
most:

4 log(2nT )f
∑
i,t

yti + 2g
∑
i,j,t

ztij + 4 log(2nT )
∑
i,j,t

xIijdt(i, j) 6 4 log(2nT ) LP

We conclude by applying Markov inequality as before.
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4 Conclusion and open questions

Algorithm 1 applies even if the distance do not follow the triangle inequality, and extends
directly to non-uniform opening cost as well as to arrival and departures dates for clients.
It is striking that instances with distances verifying the triangle inequality are not easier
in the dynamic setting as opposed to the classic static setting (the approximation ratio
Θ(log nT ) of Algorithm 1 is tight in both dynamic cases). Algorithm 2 extends also directly
to the setting of opening costs which are non-uniform in time as well. The last section
raises naturally the question whether there is an ω(1)-hardness result /O(1)-approximation
algorithm for the general hourly opening cost case. We believe that our dynamic setting
should be helpful in designing better static representations of dynamical graphs (such as two
dimensional flowcharts of the clients navigating between the different facilities over time).
An other natural extension of our work is to study other objective functions for the distance
cost, such as the sum of the diameters of resulting clusters at all time (i.e. the sum of the
distance of the farthest client attached to each facility at all time, see e.g. [6] for a static
formulation). As it turns out, the optimal dynamic solutions tend to adopt very intriguing
behaviors under this objective, even in the simplest case of client moving along a fixed line,
as has been observed in [9].
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Optimal dynamical 6-clustering Optimal static 6-clustering
(a) The classroom: one teacher cycling between 5 groups of students.

Optimal dynamical 2-clustering Optimal static 2-clustering

t = 1

t = 2

t = 3

(b) Two groups crossing.

Figure 1: Dynamic versus static Facility Location.
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