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Abstract. Text is a very important type of data within the biomedical
domain. For example, patient records contain large amounts of text which
has been entered in a non-standardized format, consequently posing a lot
of challenges to processing of such data. For the clinical doctor the writ-
ten text in the medical findings is still the basis for decision making —
neither images nor multimedia data. However, the steadily increasing
volumes of unstructured information need machine learning approaches
for data mining, i.e. text mining. This paper provides a short, concise
overview of some selected text mining methods, focusing on statistical
methods, i.e. Latent Semantic Analysis, Probabilistic Latent Semantic
Analysis, Latent Dirichlet Allocation, Hierarchical Latent Dirichlet Al-
location, Principal Component Analysis, and Support Vector Machines,
along with some examples from the biomedical domain. Finally, we pro-
vide some open problems and future challenges, particularly from the
clinical domain, that we expect to stimulate future research.

Keywords: Text Mining, Natural Language Processing, Unstructured
Information, Big Data, Knowledge Discovery, Statistical Models, Text
Classification, LSA, PLSA, LDA, hLDA, PCA, SVM.

1 Introduction and Motivation

Medical doctors and biomedical researchers of today are confronted with in-
creasingly large volumes of high-dimensional, heterogeneous and complex data
from various sources, which pose substantial challenges to the computational
sciences [1], [2]. The majority of this data, particularly in classical business en-
terprise hospital information systems, is unstructured information. It is often
imprecisely called unstructured data, which is used in industry as a similar buzz
word as "big data”. In the clinical domain it is colloquially called “free-text”,
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which should be more correctly defined as non-standardized data [3], [?]. How-
ever, this unstructured information is particularly important for decision making
in clinical medicine, as it captures details, elaborations, and nuances that can-
not be captured in discrete fields and predefined nomenclature [5]. All essential
documents of the patient records contain large portions of complex text, which
makes manual analysis very time-consuming and frequently practically impossi-
ble, hence computational approaches are indispensable [6]. Here it is essential to
emphasize that for the clinical doctor the written text in the medical findings is
still the basis for decision making — neither images nor multimedia data [7].

2 Glossary and Key Terms

Bag-of-Words: A representation of the content of a text in which individual
words (or terms) and word (or term) counts are captured, but the linear (sequen-
tial) structure of the text is not maintained. Processing of linguistic structure is
not possible in this representation.

Classification: Identification to which set of categories (sub-populations) a new
observation belongs, on the basis of a training set of data containing observa-
tions (or instances) whose category membership is known. Supervised machine
learning technique.

Clustering: Grouping a set of objects in such a way that objects in the same
group (cluster) are more similar to each other than to those in other groups
(clusters). Unsupervised machine learning technique.

Corpus: A collection of (text) documents. In a vector space model, each doc-
ument can be mapped into a point (vector) in R™. For specific applications,
documents or portions of documents may be associated with labels that can be
used to train a model via machine learning.

Knowledge Discovery: Exploratory analysis and modelling of data and the or-
ganized process of identifying valid, novel, useful and understandable patterns
from these data sets.

Machine Learning: Study of systems that can learn from data. A sub-field of
computational learning theory, where agents learn when they change their be-
haviour in a way that makes them perform better in the future.

Metric space: A space is where a notion of distance between two elements (a
metric) is defined. The distance function is required to satisfy several conditions,
including positive definiteness and the triangle inequality.

Optimization: The selection of a best element (with regard to some criteria)
from some set of available alternatives.
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Text: Text is a general term for sequences of words. Text may be further struc-
tured into chapters, paragraphs and sentences as in books. Texts may contain
some structure easily identifiable for humans, including linguistic structure. How-
ever, from the computer science point of view, text is unstructured information
because the structure is not directly accessible for automatic processing.

Term: Units of text, often representing entities. Terms may be words, but also
may be compound words or phrases in some application scenarios (e.g., “IG-9”,
“Rio de Janeiro”, “Hodgkin’s Lymphoma” ). Relevant terms may be defined by a
dictionary; the dictionary subsequently defines the dimension of the vector space
for representation of documents.

Text Mining (TM): or Text Data Mining. The application of techniques from
machine learning and computational statistics to find useful patterns in text
data [8].

Vector Space Model (VSM): Representation of a set of documents D as vectors
in a common vector space. Approach whose goal is to make objects comparable
by establishing a similarity measure between pairs of documents by using vector
algebra (Euclidean distance, cosine similarity etc.). Most common vector space
is the n-dimensional vector space of real numbers R".

2.1 Notation

Document set or corpus D, d € D
Vocabulary /Dictionary: V vocabulary, t € V term, |V| size of the vocabulary
R"™ n-dimensional space of real numbers
N - number of documents
- vector representation of document d

3 Computational Representation of Text

In this chapter, we will introduce a selection of text mining methods, with an
emphasis on statistical methods that utilise a matrix-like representation of the
input data. In the case of text this representation is called the Vector Space
Model (VSM). The general processing steps from textual data to the vector-
space representation is described in section 3, the VSM itself is introduced in
section 3.2. Specific algorithms applied to this representation of text will be
presented in section 4.

There are a large number of linguistic approaches to processing of biomedi-
cal text, known as biomedical natural language processing (BioNLP) methods.
Such approaches make extensive use of linguistic information such as grammat-
ical relations and word order, as well as semantic resources such as ontologies
and controlled vocabularies. These methods have been demonstrated to be par-
ticularly effective for extraction of biomedical concepts, events and relations,
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where the linguistic structure of the text can be particularly important. There
are a number of resources that explore BioNLP methods, including a short en-
cyclopedia chapter [9] and two recently published books [10,12]. We therefore
point the reader to those resources for more detail on such methods.

3.1 The Text Processing Pipeline

Text processing in the biomedical domain applies the same pipeline as for general
text processing, an overview of which can be found in [13]. A detailed analysis
of the steps in the context of information retrieval is available in [14]. Figure 1
shows and overview of a typical text processing pipeline assumed for statistical
modeling of text. In the following we present each step in detail focusing on the
content of the documents (and not the meta data).

Tokenization
Stop Word
N Format | Retnoral Dictionary | | Vector Space
Conversion Construction Construction

Normalization

Stemming
—

Fig. 1. Text processing pipeline. After converting documents of various source formats
[1], the terms for the dictionary are defined [2], the dictionary is constructed [3], which
leads to the vector space representation for the documents [4].

Format Conversion: Text comes in various formats, some of which can be
accessed only by humans, such as paper books or lecture notes on a notepad. But
even where text is digitally available, the formats vary and need to be normalized
to apply text analysis methods. For instance, web pages contain not only the
actual text content but also layout information (e.g., HTML tags, JavaScript
code) and in HTML 5 the format has been defined with focus on layout and
semantic structure [15]. On the other hand, Adobe’s PDF format is optimized
for layout and optimized printing [16]. In both HTML and PDF files, additional
content, such as images or tables may be embedded. Source documents also come
with various character encodings, like plain-text in Latin-1 encoding.

All such variants of texts have to be unified to make them accessible and the
content available to text analysis methods. Plain text can be extracted from
PDFs or Word documents, layout information is typically removed or ignored,
and character encodings must be carefully handled, in particular to ensure cor-
rect treatment of special characters such as Greek letters or mathematical sym-
bols. Depending on the source format this step may take considerable effort when
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the documents are in non-standard format. The output of the format conversion
step are documents in a plain-text format with a standardized encoding suitable
for further processing.

Tokenization: Vector space models typically use words as their basic represen-
tational element. Words must be identified from a text document, or a sequence
of characters. This requires splitting those sequences into word-like pieces, a pro-
cess called tokenization. In the simplest case tokenization involves splitting on
non-alphanumeric characters (e.g., white spaces, punctuation marks, quotation
marks). However, the process may be difficult in detail, e.g., using such simple
splitting rules would split the words 0’Connor and isn’t in the same way with
very different meaning. Further, specific tokenization rules may be necessary for
some domains, e.g. by not splitting email addresses. The outcome of this step is
a sequence of tokens for each document.

Stop Word Removal: Words that are thought not to carry any meaning for
the purpose of text analysis are called “stop words”. They are considered to
be unnecessary and are typically removed before constructing a dictionary of
relevant tokens. Removing those words serves two purposes: first, the reduced
number of terms decreases the size of the vector space (reduced storage space)
and second, the subsequent processes operating on the smaller space are more
efficient. Stop words can be either removed by using predefined lists or applying
a threshold to the frequency of words in the corpus and removing high-frequent
words. Stop word removal is an optional step in text preprocessing. The outcome
of this step is a sequence of tokens for each document (which may be smaller
than the sequence obtained after tokenization).

Normalization: The process of normalization aims at finding a canonical form
for words with the same semantic meaning but different character sequences. For
instance, the character sequences Visualization and visualisation, and IBM
and I.B.M. contain different characters but carry the same semantic meaning.
Normalization methods include case-folding (convert all letters to lower case
letters), and removing accents and diacritics, but their applicability depends of
the language of the texts.

Stemming and Lemmatization: The underlying assumption for stemming
and lemmatization is that for the purpose of machine text analysis the meaning
of the words is not influenced by their grammatical form in the text. Stemming is
the process of heuristically removing suffices from words to reduce the word to a
common form (the word stem), while lemmatization refers to more sophisticated
methods using vocabularies and morphological analysis. The BioLemmatizer [17]
is a tool for lemmatization that is tailored to biomedical texts. The most common
used stemming algorithm for the English language is the Porter stemmer [18].
The outcome of this step is the representation of documents as a sequence of
(normalized, base) terms.
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Building the Dictionary: Having obtained a sequence of terms for each doc-
ument, a dictionary can be constructed from the document texts themselves. It
is simply the set of all terms in all documents. Generally in machine learning one
would refer to the dictionary terms as features. Details on how to obtain the vec-
tor space model of the document corpus given a dictionary and the documents
are presented in section 3.2.

Note that in more linguistic approaches to text analysis, the dictionary may
be an externally-specified collection of terms, potentially including multi-word
terms, that reflect standard vocabulary terms for a given domain. For biomedicine,
dictionaries of terms may include disease or drug names, or lists of known proteins.
This dictionary may be used as a basis for identifying meaningful terms in the
texts, rather than the more data-driven methodology we have introduced here. We
will not consider this complementary approach further but again refer the reader
to other resources [10,12].

3.2 The Vector Space Model

The Vector space model aka term vector model is an algebraic model for repre-
senting any data objects in general, and text documents specifically, as vectors
of so-called identifiers, e.g. index terms. The VSM is state-of-the-art in infor-
mation retrieval, text classification and clustering for a long time [14,19,20]. In
practice VSM’s usually have the following properties, (1) a high dimensional fea-
tures space, (2) few irrelevant features and (3) sparse instance vectors [21]. The
VSM has been often combined with theoretical, structural and computational
properties of connectionist networks in order to provide a natural environment
for representing and retrieving information [22].

Functionality: Documents d in a corpus D are represented as vectors in a
vector-space. The dimensionality of the vector space equals the number of terms
in the dictionary V. The two most common vector space models used are the
Boolean model and the real-valued vector-space. Figure 2 shows two example
documents d; and ds in a three-dimensional vector space spanned by terms ¢,
to and t3. In a metric vector space, similarities or distances between documents
can be calculated, a necessary ingredient for most algorithms in information
retrieval, text clustering and classification.

In a Boolean vector space, documents are representing as binary vectors, i.e.
d € {0,1}Vl. This model can only capture whether a certain term occurs in a
document or not. On the contrary for documents in a real-valued vector space
d € RV more information about the term-document relation can be captured
by weighting the term occurrences. Several different ways of computing the term
weights, have been developed. The most prominent weighting schemes are tf-idf
weighting [19] and the BM-25 family of weighting schemes [23].

The intuition behind tf-idf weighting is that (i) terms that occur multiple
times in a document should have a higher influence on the document (tf) and (i)
terms that occur in many documents should have lower influence because they
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Fig. 2. A simple three-dimensional vector space with two documents. The angle be-
tween two documents can be used a similarity measure (cf. cosine similarity).

are less discriminating between documents (idf). More precisely, the tf — idf
weight of term ¢ for document d is determined by

tf-idf, g = tfy 4 - idf; (1)
N

idf; =1 2

idfy 0g af, ( )

where tf-idf; 4 is the number of occurrences of term ¢ in document d, N is the
number of documents and df; the number of documents that contain term ¢.
In BM-25 weighting additional statistics of the text corpus, i.e. a document
length-normalization, is incorporated in the weighting formula. For more details
about BM-25 weighting variants see [23].
Cosine similarity The cosine similarity between document d; and d; corre-
sponds to the angle between the documents (see figure 2 and is defined as

N
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where Ez, z is the vector space representation and |Z|, |Z| the Euclidean length
of document d; and d; respectively. For normalized vectors the cosine similarity is
equal to the dot product of those vectors, because the denominator in formula 3
becomes 1. Other similarity measure include Euclidean distance, which works
similar well to cosine similarity for normalized document vectors and the dot
product [14].

=Y

il

Examples in the Biomedical Domain: In Hlioautakis et al. (2006) [24] a
good application example of the vector space model is explained. A medical
knowledge finder which is based on the vector space model was evaluated in
a clinical setting and compared with a gold standard by Hersh et al. [25]. In
Miiller et al. [26] content based image retrieval systems in the medical domain
are compared with each other where some are based on vector space models.
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According to Cunha et al. [27] a combination of vector space model, statistical
physics and linguistics lead to a good hybrid approach for text summarization
of medical articles.

Discussion: The VSM is the state-of-the art representation for text in infor-
mation retrieval and text mining. Advantages of the model include:

— The model is simple and clear.

— The representation is a matrix that can be easily used by many machine
learning algorithms.

— A continuous ranking of documents can be achieved according to their sim-
ilarity to a query vector.

— A general representation of a document as a real-valued vector allows for
different weighting schemes, which are used for instance to incorporate users’
relevance feedback.

The limitations of the VSM are the following:

— The method is calculation intensive and needs a lot of processing time com-
pared to a binary text representation. E.g., two passes over the document-
term matrix are necessary for tf-idf weighting.

— The vector space for text has a high dimensionality (for natural language
texts in the order of 10%), and the matrix is a sparse matrix, since only a very
small number of terms occur in each document. Thus, a sparse representation
of the matrix is usually required to keep the memory consumption low.

— Adding new documents to the search space, means to recalculate /re-dimension
the global term document matrix.

— Each document is seen as a bag of words, words are considered to be sta-
tistically independent. The meaning of the word sequence is not reflected in
the model.

— Assumption a single term represents exactly one word sense, which is not
true for natural language texts, which contain synonymous and polysemous
words. Methods like word sense disambiguation have to applied in the pre-
processing step.

Similar Spaces: The Semantic Vector Space Model (SVSM) is a text represen-
tation and searching technique based on the combination of Vector Space Model
(VSM) with heuristic syntax parsing and distributed representation of semantic
case structures. In this model, both documents and queries are represented as
semantic matrices. A search mechanism is designed to compute the similarity
between two semantic matrices to predict relevancy [28].

Latent semantic mapping (LSM) is a data-driven framework to model globally
meaningful relationships implicit in large volumes of (often textual) data [29]. It
is a generalization of latent semantic analysis.
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4 Text Mining Methods

There are many different methods to deal with text, e.g. Latent Semantic Anal-
ysis (LSA), Probabilistic latent semantic analysis (PLSA), Latent Dirichlet allo-
cation (LDA), Hierarchical Latent Dirichlet Allocation (hLDA), Semantic Vector
Space Model (SVSM), Latent semantic mapping (LSM) and Principal compo-
nent analysis (PCA) to name only a few.

4.1 Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) is both: a theory and a method for both extract-
ing and representing the meaning of words in their contextual environment by
application of statistical analysis to a large amount of text LSA is basically a gen-
eral theory of acquired similarities and knowledge representations, originally de-
veloped to explain learning of words and psycholinguistic problems [30,31]. The
general idea was to induce global knowledge indirectly from local co-occurrences
in the representative text. Originally, LSA was used for explanation of textual
learning of the English language at a comparable rate amongst schoolchildren.
The most interesting issue is that LSA does not use any prior linguistic or percep-
tual similarity knowledge; i.e., it is based exclusively on a general mathematical
learning method that achieves powerful inductive effects by extracting the right
number of dimensions to represent both objects and contexts. The fundamen-
tal suggestion is that the aggregate of all words in contexts in which a given
word does and does not appear provides a set of mutual constraints that largely
determines the similarity of meaning of words and sets of words to each other.
For the combination of Informatics and Psychology it is interesting to note that
the adequacy of LSA’s reflection of human knowledge has been established in a
variety of ways [32]. For example, the scores overlap closely to those of humans
on standard vocabulary and subject matter tests and interestingly it emulates
human word sorting behaviour and category judgements [30]. Consequently, as a
practical outcome, it can estimate passage coherence and the learnability of pas-
sages, and both the quality and quantity of knowledge contained in an textual
passage (originally this were student essays).

Functionality: Latent Semantic Analysis (LSA) is primarily used as a tech-
nique for measuring the coherence of texts. By comparing the vectors for 2
adjoining segments of text in a high-dimensional semantic space, the method
provides a characterization of the degree of semantic relatedness between the
segments. LSA can be applied as an automated method that produces coher-
ence predictions similar to propositional modelling, thus having potential as a
psychological model of coherence effects in text comprehension [32].

Having t terms and d documents one can build a ¢ X d matrix X. Often the
terms within this matrix are weighted according to term frequency - inverse
document frequency (fd-idf) [x]. The main method now is to apply the singular
value decomposition (SVD) on X [y]. Therefore X can be disjointed into tree
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components X = T'SDT. T and D? are orthonormal matrices with the eigen-
vectors of X X7 and X7 X respectively. S contains the roots of the eigenvalues
of XX7 and XTX.

Reducing the dimensionality can now be achieved by step-by-step eliminating
the lowest eigenvalue with the corresponding eigenvectors to a certain value k.
See relatedness to PCA (section 4.5).

A given Query ¢ can now be projected into this space by applying the equation:

Q=q"Uy
diag(Si) )

Having @ and the documents in the same semantic space a similarity measure
can now be applied. Often used for example is the so called cosine similarity
between a document in the semantic space and a query . Having two vectors
A and B in the n dimensional space the cosine similarity is defined as:

A-B

s = a1 18] )

Examples in the Biomedical Domain: Latent semantic analysis can be
used to automatically grade clinical case summaries written by medical students
and therefore proves to be very useful [33]. In [34] latent semantic analysis is
used to extract clinical concepts from psychiatric narrative. According to [35]
LSA was used to extract semantic word and semantic concepts for developing
a ontology-based speech act identification in a bilingual dialogue system. Fur-
thermore, latent semantic analysis combined with hidden Markov models lead to
good results in topic segmentation and labelling in the clinical field [36]. In [37]
the characteristics and usefulness of distributional semantics models (like LSA,
PLSA, LDA) for clinical concept extraction are discussed and evaluated.

Discussion: The advantages of LSA are:

LSA tends to solve the synonym problem [38].

LSA reflects the semantic of the texts, so similar concepts are found.
Finds latent classes.

Reduction of dimensionality of Vector Space Model.

LSA has the following limitations:

— High mathematical complexity (SVD).

— Recalculation of the singular value decomposition when adding new docu-
ments or terms.

— Offers only a partial solution to the polsemy problem [38].

— The estimation of k, that means how many eigenvalues to keep to get good
information retrieval results.

— It has a bad statistical foundation [39].
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4.2 Probabilistic Latent Semantic Analysis (PLSA)

The probabilistic latent semantic analysis (PLSA) is a statistical method for fac-
tor analysis of binary and count data which is closely related to LSA, however, in
contrast to LSA which stems from linear algebra and performs a Singular Value
Decomposition of co-occurrence tables, the PLSA technique uses a generative la-
tent class model to perform a probabilistic mixture decomposition [40,41]. This
results in a more principled approach with a solid foundation in statistical infer-
ence. PLSA has many applications, most prominently in information retrieval,
natural language processing, machine learning from text, see e.g, [42-45]).

document topic word

Fig. 3. Two level generative model

Functionality: The PLSA is a unsupervised technique that forms a two level
generative model (see picture 3). In contrast to the LSA model, it builds up a
clear probability model of the underlying documents, concepts (topics) and words
and therefore is more easy to interpret. Abstractly spoken every document can
talk about different concepts to a different extend as well as words form different
topics. So having a document collection D = {d1, da, d;..., dps} we can define a co-
occurrence table using a vocabulary W = {ws, we, w;..., wn }. Furthermore each
observation, where an observation is defined as occurrence of a word in a doc-
ument is associated with an unobservable class variable Z = {21, 29, k..., 2K }.
We can now define a joint probability P(d;, zx, w;) as:

P(di, 2, wj) = P(w;|2i) P(2k|di) P(d;) (6)

Getting rid of the unobservable variable z; we can rewrite the equation as:

K
P(d;,wj) =Y P(w;|zk) P(zk|di) P(d;) (7)
k=1

The probability of the entire text corpus can now be rewritten as:

M K
P(d,w) = H H ZP wj|zk) P(zk|di) (8)
k=1

i=175=1
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Rewriting the probability of the text corpus in terms of a log likelihood yields:

M N
L=log [T [] P(di,wj) D (9)

i=1j=1

Maximizing L is done by using the expectation maximization algorithm [46].
The algorithm basically consists of two steps:

Expectation-Step: Expectation for the latent variables are calculated given
the observations by using the current estimates of the parameters.

Maximization-Step: Update the parameters such that L increases using the
posterior probabilities in the E-Step.

The steps are repeated until the algorithm converges, resulting in the quantities
P(w,|z) and P(z|d;).

Examples in the Biomedical Domain: According to [47] probabilistic latent
semantic analysis is used to find and extract data about human genetic diseases
and polymorphism. In [48] the usefulness of PLSA, LSA and other data mining
method is discussed for applications in the medical field. Moreover PLSA counts
to one of the well-known topic models that are used to explore health-related
topics in online health communities [49]. According to Masseroli et al. [50] PLSA
is also used for prediction of gene ontology annotations and provides good results.

Discussion: The advantages of PLSA include:

— Can deal with the synonym and polysemy problem [39].
— PLSA performs better than LSA [39].

— PLSA is based on a sound statistical foundation [39].
Finds latent topics.

— Topics are easily interpretable.

PLSA has the following limitations:

— The underlying iterative algorithm of PISA converges only logically [51].

4.3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet allocation (LDA) is a generative probabilistic model for collec-
tions of discrete data such as text corpora, based on a three-level hierarchical
Bayesian model, in which each item of a collection is modelled as a finite mix-
ture over an underlying set of topics [52]. Each topic is, in turn, modelled as
an infinite mixture over an underlying set of topic probabilities. In the context
of text modelling, the topic probabilities provide an explicit representation of
a document, consequently LDA can be seen as a ’bag-of-words’ type of lan-
guage modelling and dimension reduction method [53] (TODO: get pdf). One
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interesting application of LDA was fraud detection in the telecommunications
industry in order to build user profile signatures and assumes that any signifi-
cant unexplainable deviations from the normal activity of an individual end user
is strongly correlated with fraudulent activity; thereby, the end user activity is
represented as a probability distribution over call features which surmises the
end user calling behaviour [54] (TODO: get pdf). LDA is often assumed to be
better performing than e.g. LSA or PLSA [55].

Functionality: The basic idea behind LDA is that documents can be repre-
sented as a mixture of latent topics, which are represented by a distribution
across words [52]. Similar to LSA and PLSA, the number of latent topics used
in the model has to be fixed a-priori. But in contrast, for instance, to LSA which
uses methods of linear algebra, LDA uses probabilistic methods for inferring the
mixture of topics and words. According to Blei et al. [52], the assumed gener-
ative process for each word w in a document within a corpus D contains the
following steps: (1) Choose N, the number of words for a document, estimated
by a Poisson distribution. (2) Choose a topic mixture 6 according to a Dirich-
let distribution over «, a Dirichlet prior over all documents. (3) Each of the N
words w,, are selected by first choosing a topic which is represented as multi-
nomial random variable z, and second by choosing a word from p(w,,|z,, ), a
multinomial probability conditioned on the topic z,.

M

Fig. 4. LDA graphical model. The outer box represents documents, while the inner
box represents the iterative choice of topics and words in a document. [52]

Figure 4, shows the probabilistic graphical model of LDA. The LDA represen-
tation contains three levels. The corpus level parameters a and S are sampled
once within the process of generating a corpus. The document level variable 6
is sampled once per document, and the word level parameters z, and w, are
sampled once for each word within a document.
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The goal of inference in the LDA model is to find the values of ¢, the prob-
ability of word w occurring in topic z and 6, the distribution of topics over a
document. There are several algorithms proposed for solving the inference prob-
lem for LDA, including a variational Expectation-Maximization algorithm [52],
an Expectation-Propagation algorithm [56] or an collapsed Gibbs sampling al-
gorithm of Griffiths and Steyvers [57].

Examples in the Biomedical Domain: In [58], Wu et al. apply LDA to
predict protein-protein relationships from literature. One of their features to
rank candidate gene-drug pairs was the topic distance derived from LDA. Case-
based information retrieval from clinical documents due to LDA can be used to
discover relevant clinical concepts and structuring in patient’s health record [59].
In [60] [get pdf and check if LDA is used for topic model], Arnold and Speier
present a topic model tailored to the clinical reporting environment which allows
for individual patient timelines. In [61] unsupervised relation discovery with
sense disambiguation is processed with the help of LDA which can be used in
different areas of application. Moreover with LDA a genomic analysis of time-to-
event outcomes can be processed [62]. According to [63] big data is available for
research purposes due to data mining of electronic health records, but it has to
pre-processed to be useful with the help of different mining techniques including
LDA.

Discussion: LDA has the following advantages:

Find latent topics.

— Topics are easy to interpret.

— Reduction of dimensionality of Vector Space Model.
Better performance than e.g. LSA or PLSA [55].

The main disadvantage of LDA is the parameter estimation, e.g., the number
of topics has to be known or needs to be estimated.

4.4 Hierarchical Latent Dirichlet Allocation (hLDA)

While topic models such as LDA treat topics as a flat set of probability distribu-
tions and can be used to recover a set of topics from a corpus, they can not give
insight about the abstraction of a topic or how the topics are related. The hier-
archical LDA (hLDA) model is a non-parametric generative probabilistic model
and can be seen as an extension of LDA. One advantage of non-parametric
models is, that these models do not assume a fixed set of parameters such as
the number of topics, instead the number of parameters can grow as the corpus
grows [64]. HLDA is build on the nested Chinese restaurant process (nCRP) to
additionally organize topics as a hierarchy. HLDA arranges topics into a tree,
in which more general topics should appear near the root and more specialized
ones closer to the leaves. This model can be useful e.g. for text categorization,
comparison, summarization, and language modelling for speech-recognition [64].
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Functionality: HLDA uses the nCRP, a distribution on hierarchical partitions,
as a non-parametric prior for the hierarchical extension to the LDA model [64].
A nested Chinese restaurant process can be illustrated by an infinite tree where
each node denotes to a restaurant with an infinite number of tables. One restau-
rant is identified as the root restaurant, and on each of its tables lies a card
with the name of another restaurant. Further, on each table of these restaurants
are again cards to other restaurants and this structure repeats infinite times,
with the restriction that each restaurant is referred only one time. In this way
all restaurants are structured into an infinity deep and infinitely branched tree.
Every tourist starts by selecting a table in the root restaurant according to the
CRP distribution defined as:

p(occupied table i|previous customer) = i
y+m-—1
; (10)
p(next occupied table|previous customer) =
y+m—1

where m; denotes to the number of previous customers at table ¢, and v is a
parameter [64]. Next, the tourist chooses in the same way a table in the referred
restaurant from the last restaurants table. This process repeats infinity many
times. After M tourists go through this process the collection of paths describes
a random sub-tree of the infinite tree [64].

According to [64], the nCRP is augmented in two ways to obtain a generative
model for documents. (1) Each node in the tree is associated with a topic, which
is a probability distribution across words. A path in the tree samples an infinite
collection of topics. (2) The GEM distribution [65] is used to define a probability
distribution on the topics along the path. A document is then generated by
repeatedly sampling topics according to the probabilities defined by one draw
of the GEM distribution, and further sampling each word from the probability
distribution from the selected topic.

For detailed information about the inference in hLDA, it is referred to the
original description of HLDA from Blei et.al [64].

Examples in the Biomedical Domain: Due to hLDA individual and pop-
ulation level traits are extracted from clinical temporal data and used to track
physiological signals of premature infants and therefore gain clinical relevant
insights [66]. According to [67] clinical document labelling and retail product
categorization tasks on large-scale data can be performed by hLDA .

Discussion: Hierarchical LDA has the same advantages and limitations as LDA
(see section 4.3), additionally advantages are:

— Organics topics in a hierarchy depending on their abstraction level.
— Number of topics does not need be fixed a-priori.
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4.5 Principal Components Analysis

Principal component analysis (PCA) is a technique used to reduce multidimen-
sional data sets to lower dimensions for analysis. Depending on the field of ap-
plication, it is also named the discrete Karhunen-Loeve transform, the Hotelling
transform [68] or proper orthogonal decomposition (POD).

PCA was introduced in 1901 by Karl Pearson [69]. Now it is mostly used as a
tool in exploratory data analysis and for making predictive models. PCA involves
the calculation of the eigenvalue decomposition of a data covariance matrix or
singular value decomposition of a data matrix, usually after mean centering the
data for each attribute. The results of a PCA are usually discussed in terms of
component scores and loadings.

Functionality: In this section we give a brief mathematical introduction into
PCA, presuming mathematical knowledge about: standard deviation, covariance,
eigenvectors and eigenvalues. Lets assume to have M observations of an object
gathering at each observation N features. So at any observation point we can
collect a N-dimensional feature vector I'. All feature Vectors together form the
N x M observation matrix @([7y, Iy, ..., [y). Furthermore the average feature
vector is given by:

| XM
U= I, 11
M; (11)

So by mean-adjusting every feature vector I; by ®; = I; — ¥ one can form
the covariance matrix of the mean adjusted data by:

1
T
C= E b, P, (12)

n=1

Basically the PCA is done by following steps:

— Calculate the eigenvalues and the corresponding eigenvectors of C, resulting in
A1, A2, ..., Aps eigenvalues with the corresponding eigenvectors ui, ug, ..., Ups

— Keep the the highest eigenvalues M’ < M forming a matrix P = [u1, us, ...,
upr]? with the corresponding eigenvectors where A1 > Ay > ... Ap.

— Transform the data into the reduced space applying Y = PC

An important thing to mention is that cov(Y) = 1\}1' YY7 is a Diagonalmatrix.
That means we found a representation of the data with minimum redundancy
and noise (off diagonal elements of the covariance matrix are zero). Remember
that one diagonal element of the covariance matrix represent the variance of one
typical feature measured. Another thing to mention for a better understanding
is that the eigenvectors try to point toward the direction of greatest variance of
the data and that all eigenvectors are orthonormal. See figure 5 for an illustrative
example. PCA is closely related to SVD, so LSA is one of the typical examples
in the field of information retrieval where PCA is used.
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Fig. 5. Eigenvectors pointing to direction of maximum variance

Examples in the Biomedical Domain: Examples in medicine span a lot of
different areas, due to the case that PCA is a base statistical mathematical tool.
Especially used as space dimension reduction method, high dimensional parame-
ter space can be reduced to a lower one. Nevertheless we want to give some recent
research papers in various fields of medicine to show that even though the mathe-
matical principles are know more than 100 years old [69], its appliance in modern
medical informatics is still essential. According to [70] the principal components
analysis is used to explicitly model ancestry differences between cases and controls
to enable detection and correction of population stratification on a genome-wide
scale. Moreover PCA is used in [71] to investigate a large cohort with the Tourette
syndrome and evaluate the results. In [72] lay requests to gain medical information
or advice from sick or healthy persons are automatically classified due to differ-
ent text-mining methods including PCA. Furthermore, with the help of PCA and
other text mining methods drug re-purposing can be identified trough analysing
drugs, targets and clinical outcomes [73].

Discussion: PCA is widely used for dimensionality reduction and generally has
the following advantages:

Finds the mathematically optimal methods in the sense of minimizing the

squared error.

— The measurement of the variance along each principle component provides
a means for comparing the relative importance of each dimension.

— PCA is completely non-parametric.

— PCA provides the optimal reduced representation of the data.

However, the following limitations have to be considered when considering to
apply PCA:
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— Sensitive to outliers.

— Removing the outliers before applying the PCA can be a difficult task.

— Standard PCA can not capture higher order dependencies between the vari-
ables.

Similar Methods: Kernel PCA [74] is based on the kernel trick which comes
from the field of Support Vector Machines but has successfully been applied
to the PCA. Basically the kernel trick maps features that are not separable in
the current space into a high dimensional where separation is possible. For this
purpose one has basically just to know the Kernel function K (z,y). A often used
kernel function is the Gaussian kernel,

z—yll2
K(l’,y) :efl\;;QyH (13)
but other Kernels can also be used that at least that they have to fulfil the
condition that the dot product between two components in feature space has
the same results applying the kernel function between two components in the
original space. The main advantage of kernel PCA is the fact that it is able to
separate components, where normal PCA failures.

4.6 Classification of Text Using Support Vector Machines

Support Vector Machines are first introduced in the year 1995 by Vapnik and
Cortes [75], and are one of the most commonly used classification methods. They
are based on well founded computational learning theory and are analysed in
research in very detail. SVMs can easily deal with sparse and high dimensional
data sets, therefore, they fit very well for text mining applications [21].

Functionality: The task of a SVM is to find an hyperplane which separates the
positive and negative instances (in case of a two class input data set) with the
maximum margin. Therefore SVMs are also called maximum margin classifiers.
The margin is defined as the distance between the hyperplane and the closest
point to the hyperplane among both classes denoted by x4 and x_. Assuming
that =1 and x_ are equidistant to the hyperplane with a distance of 1, the
margin is defined as:

1

mD(f) = 1/212)T(1’+ - 1'*) = HU)H

(14)
where w is a unit vector in the direction of w which is known as the weight
vector [76]. Maximizing the margin ||3J|| , which is equivalent to minimizing ||w||?,
will maximize the separability between the classes. In this context, one can
distinguish between the hard margin SVM, which can be applied for linearly
separably data sets, and the soft margin SVM which works also for not linearly
separably data by allowing also misclassifications. The optimization task of a
hard margin SVM is to minimize 1/2||w||? subject to
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yi(wTz; +0) > 1,i=1,....n (15)

where y; denotes the label of an example [76]. In case of the soft margin SVM
the objective of minimizing 1/2||w||?. is augmented with the term C' " | &; to
penalize misclassification and margin errors, where &; are slack variables that
allow an example to be in the margin (0 < & < 1) or to be misclassified (§; > 1)
and the parameter C sets the relative importance of minimizing the amount of
slack and maximizing the margin [76]. The optimization task of a soft margin
SVM is then to minimize 1/2||w||* + C Y"1, & subject to

yi(wla; +0) > 1 — &, 2 >0 (16)

The SVM algorithm as presented above is inherently a binary classifier. SVM
has been successfully applied to multi-class classification problems by using the
multiple one-vs-all or one-vs-one classifiers, a true multi-class SVM approach
has been proposed by Crammer & Singer [77]. In many applications a non-linear
classifier provides better accuracy than a linear one. SVMs use also the kernel
trick, to transfer the input space into a higher dimensional space in which the
data is linearly separable by a hyperplane. In this way SVMs fit also very well
as a non-linear classifier.

Examples in the Biomedical Domain: According to Guyon et al. [78] a
new method of gene selection based on support vector machines was proposed
and evaluated. In a text classification task, Ghanem et al. [79], used SVMs in
combination with regular expressions to evaluate whether papers from the Fly-
Base data set should be curated based on the presence of evidence of Dosophila
gene products. Support vector machine is also used for mining biomedical liter-
ature for protein-protein interactions Donaldson et al. [80]. To discover protein
functional regions, Eskin and Agichtein [81] combined text and sequence analy-
sis by using an SVM classifier. In Joshi et al. [82] support vector machines are
explored for the use in the domain of medical text and compared with other
machine learning algorithm. Further, SVMs are also used in the most effective
approaches for the assertion checking and and relation extraction subtask in the
i2b2 2011 challenge which are tasks of biomedical NLP [83]. Also in the i2b2
co-reference challenge 2012, SVM was used among the leading approaches [83].

Discussion: The SVM is considered state-of-the-art in text classification due
to the following advantages:

— Can deal with many features (more than 10000).
— Can deal with sparse document vectors.
— Not restricted to linear models due to the kernel functions.

The only disadvantage of SVM classification is the interpretable of the classi-
fication model compared to easily interpretable models like Naive Bayes [84] or
Decision trees [85].
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5 Open Problems

5.1 Deployment and Evaluation of Text Mining in Clinical Context

Evaluation of text mining systems is substantially more mature in the context
of analysis of the published biomedical literature than in the clinical context.
A number of community evaluations, with shared tasks and shared data sets,
have been performed to assess the performance of information extraction and
information retrieval from the biomedical literature (e.g. the BioNLP shared
tasks [86], BioCreative [87], and TREC Genomics [88]). Especially when dealing
with supervised machine learning methods, one needs substantial quantities of
labelled training data and again there are growing large-scale richly annotated
training data resources (e.g. the GENIA [89] and CRAFT [90,91] corpora, as
well as a increasing number of more specific resources such as the SCAI chemical
compounds corpus [92] and the Variome genetic variants corpus [93]).

Such tasks and resources have been far more limited on the clinical side. The
2012 TREC Medical Records track [94], i2b2 natural language processing shared
tasks addressing clinical discharge summaries [95, 96], and the SAARE/CLEF
eHealth evaluation lab 2013 [97] provide examples of the importance of such
evaluations in spurring research into new methods development on real-world
problems. The availability of de-identified clinical records that can be shared
publicly is critical to this work, but has posed a stumbling block to open assess-
ment of systems on the same data. Copyright restrictions and especially data
privacy also interfere with the research progress [98]. Indeed, much more work is
needed into evaluation measures to determine how valuable a text mining tool
is for the actual user [98]. Some examples exist (e.g., for biocuration [99] and
systematic reviews [100]) but limited work addresses deployment in a clinical
context, which poses significant challenges. To find the right trade-off between
the processing speed and the accuracy of a text mining algorithm is a challeng-
ing task, especially for online applications which must be responsive [101]. Fur-
thermore, text mining tools should not only focus on English text documents,
but should be able to process other languages too [102]. Recently, there have
been some efforts to explore adaptation of predominantly English vocabulary
resources and tools to other languages [103] and to address multilingual text
processing in the health context [104] but there is significantly more to be done
in this area, in particular to support integration of clinical information across
language-specific data sets.

5.2 Specific Characteristics of Biomedical Texts

Clinical texts, in contrast to edited published articles, are in often not gram-
matically correct, use locally used abbreviations and have misspellings [11]. This
poses huge challenges for transferring tools that have been developed for text
analysis in the literature mining context to the clinical context. At a mini-
mum, it requires appropriate normalization and spelling correction methods for
text [105]. Even well-formed medical texts have different characteristics from
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general domain texts, and require tailored solutions. The BioLemmatizer [17]
was developed specifically for handling inflectional morphology in biomedical
texts; general English solutions do not have adequate coverage of the domain-
specific vocabulary. Within clinical texts, there can be substantial variation in
how ‘regular’ they are from a text processing perspective; emergency depart-
ment triage notes written during a two-minute assessment of a patient will be
substantially noisier than radiology reports or discharge summaries. More work
is required to address adaptation of text processing tools to less well-formed
texts. The biomedical literature also has certain characteristics which require
specialised text processing strategies [106]. Enrichment and analysis of specific
document parts such as tables gives access to a wealth of information, but cannot
be handled using standard vector space or natural language processing strate-
gies [107-110]. Similarly, it has recently been shown that substantial information
in the biomedical literature actually resides in the supplementary files associated
with publications rather than the main narrative text [111]; due to the varied and
unpredictable nature of such files accessing this information will pose challenges
to existing methods for information extraction.

5.3 Linguistic Issues and Semantic Enrichment

When extracting information from text documents one has to deal with several
challenges arising from the complexities of natural language communication.
One issue, which is particularly problematic for instance when trying to find
relations among entities, is that language is very rich and one can express the
same underlying concepts in many different ways. In addition, such relations ex-
pressed over multiple sentences which makes it even more difficult to find them
and typically requires co-reference resolution. Ambiguity of words, phrases and
entire sentences is one of the leading challenges in text mining that emerges be-
cause of the complexity of natural language itself. Some progress on ambiguity,
especially term ambiguity, has been made; there exists a disambiguation mod-
ule in the UMLS MetaMap concept recognition tool as well as other proposed
approaches [112,113]. On the other hand, substantial challenges remain. For in-
stance, although disambiguation of gene names in the biomedical literature (also
known as gene normalization, in which mentions of genes are linked to a refer-
ence entity in a gene database) has been addressed in a recent challenge [114],
the performance of the state-of-the-art systems has left room for improvement.
Gene names are heavily overloaded, re-used across organisms and often confused
with the function of the gene (e.g. “transcription growth factor”). An approach
for entity disambiguation in the biomedical domain has been presented in [115].
Higher-level ambiguity such as processing of coordination structures and attach-
ment of modifiers will require more linguistic methods and has been addressed
in few systems [116,117] but remains a stumbling block. Co-reference resolution
has been addressed in limited contexts [118-120] and also continues to pose a
substantial challenge to integration of information from across a text.
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6 Conclusion and Future Outlook

Biomedical text mining has benefited from substantial interest from the research
community and from practical needs of the clinical domain, particularly in the
last ten years. However, there remain substantial opportunities to progress the
field further. One important direction is in the continued improvement of exist-
ing methods, supported through new creation of gold standards as benchmark
sets [6]. Such resources are urgently needed to enable further improvement of
methods, particularly in the clinical context where only a limited range of text
types and tasks have been rigorously explored. Of particular importance are
open data sets that can internationally be used [121], [106].

Another area of great opportunity is in methodological hot topics such as the
graph-theoretical and topological text mining methods which are very promising
approaches, yet not much studied [122]. Much potential for further research has
the application of evolutionary algorithms [123], for text mining [124].

There are in addition a large number of opportunities to apply text mining to
new problems and new text types. Text analysis of Web 2.0 and social media [125]
is an emerging focus in biomedicine, for instance for detecting influenza-likes
illnesses [126] or adverse drug events [127,128], [129].

In practice we need integrated solutions [130] of content analytics tools [131]
into the clinical workplace. Integration of text mining with more general data
mining is also a fruitful direction. In the clinical context drawing signals from
both text, structured patient data (e.g. biometrics or laboratory results), and
even biomedical images, will likely enable a more complete picture of a patient
and his or her disease status for clinical decision support or outcome modeling.
Such applications will require new strategies for multi-modal data integration
and processing that incorporate text mining as a fundamental component. These
tasks will result in solutions that will have substantial real-world impact and will
highlight the importance of text mining for biomedicine.
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