Skip to main content

On the Generation of Point Cloud Data Sets: Step One in the Knowledge Discovery Process

  • Chapter
Interactive Knowledge Discovery and Data Mining in Biomedical Informatics

Abstract

Computational geometry and topology are areas which have much potential for the analysis of arbitrarily high-dimensional data sets. In order to apply geometric or topological methods one must first generate a representative point cloud data set from the original data source, or at least a metric or distance function, which defines a distance between the elements of a given data set. Consequently, the first question is: How to get point cloud data sets? Or more precise: What is the optimal way of generating such data sets? The solution to these questions is not trivial. If a natural image is taken as an example, we are concerned more with the content, with the shape of the relevant data represented by this image than its mere matrix of pixels. Once a point cloud has been generated from a data source, it can be used as input for the application of graph theory and computational topology. In this paper we first describe the case for natural point clouds, i.e. where the data already are represented by points; we then provide some fundamentals of medical images, particularly dermoscopy, confocal laser scanning microscopy, and total-body photography; we describe the use of graph theoretic concepts for image analysis, give some medical background on skin cancer and concentrate on the challenges when dealing with lesion images. We discuss some relevant algorithms, including the watershed algorithm, region splitting (graph cuts), region merging (minimum spanning tree) and finally describe some open problems and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(suppl. 6), S1 (2014)

    Google Scholar 

  2. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    Google Scholar 

  3. Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Holzinger, A.: Topological Data Mining in a Nutshell. Springer, Heidelberg (2014) (in print)

    Google Scholar 

  5. Mmoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canutescu, A.A., Shelenkov, A.A., Dunbrack, R.L.: A graph-theory algorithm for rapid protein side-chain prediction. Protein Science 12(9), 2001–2014 (2003)

    Article  Google Scholar 

  7. Zomorodian, A.: Topology for computing, vol. 16. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  8. Vegter, G.: Computational topology, pp. 517–536. CRC Press, Inc., Boca Raton (2004)

    Google Scholar 

  9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  10. Cannon, J.W.: The recognition problem: What is a topological manifold? Bulletin of the American Mathematical Society 84(5), 832–866 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational geometry, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  12. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  13. Axelsson, P.E.: Processing of laser scanner data - algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3), 138–147 (1999)

    Article  Google Scholar 

  14. Vosselman, G., Gorte, B.G., Sithole, G., Rabbani, T.: Recognising structure in laser scanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 46(8), 33–38 (2004)

    Google Scholar 

  15. Smisek, J., Jancosek, M., Pajdla, T.: 3D with Kinect, pp. 3–25. Springer (2013)

    Google Scholar 

  16. Dal Mutto, C., Zanuttigh, P., Cortelazzo, G.M.: Time-of-Flight Cameras and Microsoft Kinect. Springer, Heidelberg (2012)

    Google Scholar 

  17. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)

    Article  Google Scholar 

  18. Kayama, H., Okamoto, K., Nishiguchi, S., Yamada, M., Kuroda, T., Aoyama, T.: Effect of a kinect-based exercise game on improving executive cognitive performance in community-dwelling elderly: Case control study. Journal of Medical Internet Research 16(2) (2014)

    Google Scholar 

  19. Gonzalez-Ortega, D., Diaz-Pernas, F.J., Martinez-Zarzuela, M., Anton-Rodriguez, M.: A kinect-based system for cognitive rehabilitation exercises monitoring. Computer Methods and Programs in Biomedicine 113(2), 620–631 (2014)

    Article  Google Scholar 

  20. Holzinger, A., Dorner, S., Födinger, M., Valdez, A.C., Ziefle, M.: Chances of Increasing Youth Health Awareness through Mobile Wellness Applications. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 71–81. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Sitek, A., Huesman, R.H., GuIlberg, G.T.: Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud. IEEE Transactions on Medical Imaging 25(9), 1172–1179 (2006)

    Article  Google Scholar 

  22. Caramella, D., Bartolozzi, C.: 3D image processing: techniques and clinical applications (Medical Radiology / Diagnostic Imaging). Springer, London (2002)

    Google Scholar 

  23. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  24. Holzinger, A.: On Knowledge Discovery and Interactive Intelligent Visualization of Biomedical Data - Challenges in Human Computer Interaction & Biomedical Informatics. INSTICC, Rome, pp. 9–20 (2012)

    Google Scholar 

  25. Wagner, H., Dlotko, P., Mrozek, M.: Computational topology in text mining, pp. 68–78 (2012)

    Google Scholar 

  26. Argenziano, G., Soyer, H.P.: Dermoscopy of pigmented skin lesions–a valuable tool for early diagnosis of melanoma. The Lancet Oncology 2(7) (2001)

    Google Scholar 

  27. Eisemann, N., Waldmann, A., Katalinic, A.: Incidence of melanoma and changes in stage-specific incidence after implementation of skin cancer screening in Schleswig-Holstein. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 57, 77–83 (2014)

    Article  Google Scholar 

  28. Argenziano, G., Giacomel, J., Zalaudek, I., Blum, A., Braun, R.P., Cabo, H., Halpern, A., Hofmann-Wellenhof, R., Malvehy, J., Marghoob, A.A., Menzies, S., Moscarella, E., Pellacani, G., Puig, S., Rabinovitz, H., Saida, T., Seidenari, S., Soyer, H.P., Stolz, W., Thomas, L., Kittler, H.: A Clinico-Dermoscopic Approach for Skin Cancer Screening. Recommendations Involving a Survey of the International Dermoscopy Society (2013)

    Google Scholar 

  29. Australia, M.I.: Dermoscopy (November 2013)

    Google Scholar 

  30. Ahlgrimm-Siess, V., Hofmann-Wellenhof, R., Cao, T., Oliviero, M., Scope, A., Rabinovitz, H.S.: Reflectance confocal microscopy in the daily practice. Semin. Cutan. Med. Surg. 28(3), 180–189 (2009)

    Article  Google Scholar 

  31. Meijering, E., van Cappellen, G.: Biological image analysis primer (2006), booklet online available via www.imagescience.org

  32. Risser, J., Pressley, Z., Veledar, E., Washington, C., Chen, S.C.: The impact of total body photography on biopsy rate in patients from a pigmented lesion clinic. Journal of the American Academy of Dermatology 57(3), 428–434

    Google Scholar 

  33. Mikailov, A., Blechman, A.: Gigapixel photography for skin cancer surveillance: A novel alternative to total-body photography. Cutis 92(5), 241–243 (2013)

    Google Scholar 

  34. dos Santos, S., Brodlie, K.: Gaining understanding of multivariate and multidimensional data through visualization. Computers & Graphics 28(3), 311–325 (2004)

    Article  Google Scholar 

  35. Emmert-Streib, F., de Matos Simoes, R., Glazko, G., McDade, S., Haibe-Kains, B., Holzinger, A., Dehmer, M., Campbell, F.: Functional and genetic analysis of the colon cancer network. BMC Bioinformatics 15(suppl. 6), S6 (2014)

    Google Scholar 

  36. Bramer, M.: Principles of data mining, 2nd edn. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  37. Kropatsch, W., Burge, M., Glantz, R.: Graphs in Image Analysis, pp. 179–197. Springer, New York (2001)

    Google Scholar 

  38. Palmieri, G., Sarantopoulos, P., Barnhill, R., Cochran, A.: 4. Current Clinical Pathology. In: Molecular Pathology of Melanocytic Skin Cancer, pp. 59–74. Springer, New York (2014)

    Google Scholar 

  39. Xu, L., Jackowski, M., Goshtasby, A., Roseman, D., Bines, S., Yu, C., Dhawan, A., Huntley, A.: Segmentation of skin cancer images. Image and Vision Computing 17(1), 65–74 (1999)

    Article  Google Scholar 

  40. Argenziano, G., Soyer, H.P., Chimenti, S., Talamini, R., Corona, R., Sera, F., Binder, M., Cerroni, L., De Rosa, G., Ferrara, G., Hofmann-Wellenhof, R., Landthaler, M., Menzies, S.W., Pehamberger, H., Piccolo, D., Rabinovitz, H.S., Schiffner, R., Staibano, S., Stolz, W., Bartenjev, I., Blum, A., Braun, R., Cabo, H., Carli, P., De Giorgi, V., Fleming, M.G., Grichnik, J.M., Grin, C.M., Halpern, A.C., Johr, R., Katz, B., Kenet, R.O., Kittler, H., Kreusch, J., Malvehy, J., Mazzocchetti, G., Oliviero, M., Özdemir, F., Peris, K., Perotti, R., Perusquia, A., Pizzichetta, M.A., Puig, S., Rao, B., Rubegni, P., Saida, T., Scalvenzi, M., Seidenari, S., Stanganelli, I., Tanaka, M., Westerhoff, K., Wolf, I.H., Braun-Falco, O., Kerl, H., Nishikawa, T., Wolff, K., Kopf, A.W.: Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the internet. Journal of the American Academy of Dermatology 48, 679–693 (2003)

    Article  Google Scholar 

  41. Ferri, M., Stanganelli, I.: Size functions for the morphological analysis of melanocytic lesions. International Journal of Biomedical Imaging 2010, 621357 (2010)

    Article  Google Scholar 

  42. Pizzichetta, M.A., Stanganelli, I., Bono, R., Soyer, H.P., Magi, S., Canzonieri, V., Lanzanova, G., Annessi, G., Massone, C., Cerroni, L., Talamini, R.: Dermoscopic features of difficult melanoma. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery 33, 91–99 (2007)

    Google Scholar 

  43. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  44. Ruppertshofen, H., Lorenz, C., Rose, G., Schramm, H.: Discriminative generalized hough transform for object localization in medical images. International Journal of Computer Assisted Radiology and Surgery 8(4), 593–606 (2013)

    Article  Google Scholar 

  45. Tsai, A., Yezzi Jr., A., Willsky, A.S.: Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  46. de Mauro, C., Diligenti, M., Gori, M., Maggini, M.: Similarity learning for graph-based image representations. Pattern Recognition Letters 24(8), 1115–1122 (2003)

    Article  MATH  Google Scholar 

  47. Bianchini, M., Gori, M., Mazzoni, P., Sarti, L., Scarselli, F.: Face Localization with Recursive Neural Networks. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) WIRN 2003. LNCS, vol. 2859, pp. 99–105. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  48. Chen, C., Freedman, D.: Topology noise removal for curve and surface evolution. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 31–42. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  49. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  50. Meyer, F.: The steepest watershed: from graphs to images. arXiv preprint arXiv:1204.2134 (2012)

    Google Scholar 

  51. Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and machine vision, 3rd edn. Cengage Learning (2007)

    Google Scholar 

  52. Rogowska, J.: Overview and fundamentals of medical image segmentation, pp. 69–85. Academic Press, Inc. (2000)

    Google Scholar 

  53. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  54. Lee, Y.J., Grauman, K.: Object-graphs for context-aware visual category discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(2), 346–358 (2012)

    Article  Google Scholar 

  55. Wiltgen, M., Gerger, A.: Automatic identification of diagnostic significant regions in confocal laser scanning microscopy of melanocytic skin tumors. Methods of Information in Medicine, 14–25 (2008)

    Google Scholar 

  56. Oesterling, P., Heine, C., Janicke, H., Scheuermann, G.: Visual analysis of high dimensional point clouds using topological landscapes. In: North, S., Shen, H.W., Vanwijk, J.J. (eds.) IEEE Pacific Visualization Symposium 2010, pp. 113–120. IEEE (2010)

    Google Scholar 

  57. Oesterling, P., Heine, C., Janicke, H., Scheuermann, G., Heyer, G.: Visualization of high-dimensional point clouds using their density distribution’s topology. IEEE Transactions on Visualization and Computer Graphics 17(11), 1547–1559 (2011)

    Article  Google Scholar 

  58. Oesterling, P., Heine, C., Weber, G.H., Scheuermann, G.: Visualizing nd point clouds as topological landscape profiles to guide local data analysis. IEEE Transactions on Visualization and Computer Graphics 19(3), 514–526 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holzinger, A. et al. (2014). On the Generation of Point Cloud Data Sets: Step One in the Knowledge Discovery Process. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43968-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43967-8

  • Online ISBN: 978-3-662-43968-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics