Skip to main content

Solving Multiple Bichromatic Mutual Nearest Neighbor Queries with the GPU

  • Conference paper
  • First Online:
Book cover Database Systems for Advanced Applications (DASFAA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8505))

Included in the following conference series:

Abstract

In this paper we propose and solve multiple bichromatic mutual nearest neighbor queries in the plane considering multiplicative weighted Euclidean distances. These multiple queries are related to the mutual influence of two sets of facilities of different type, in which facilities of the first type cooperates with facilities of the second type in order to obtain reciprocal benefits. The studied problems find applications, for example, in collaborative marketing. We present a parallel algorithm, to be run on a Graphics Processing Unit, for solving multiple bichromatic mutual nearest neighbor queries. We also present the complexity analysis of the algorithm, and provide and discuss experimental results that show the scalability of our approach.

Work partially supported by the Spanish Ministerio de Economía y Competitividad under grant TIN2010-20590-C02-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtert, E., Böhm, C., Kroger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor search in arbitrary metric spaces. SIGMOD (2006)

    Google Scholar 

  2. Brito, M.R., Chavez, E.L., Quiroz, A.J., Yukich, J.E.: Connectivity of the mutual k-nearest neighbor graph in clustering and outlier detection. Stat. Probab. Lett. 35(1), 33–42 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN query processing in metric spaces using GPUs. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Brown, S., Snoeyink, J.: Gpu nearest neighbors using a minimal kd-tree, In: Second Workshop on Massive Data Algorithmics, (MASSIVE) (2010)

    Google Scholar 

  5. Cayton, L.: A nearest neighbor data structure for Graphics Hardware. VLDB-ADMS pp. 1–6 (2010)

    Google Scholar 

  6. Cheung, K.L., Fu, A.W.-C.: Enhanced nearest neighbour search on the R-tree. SIGMOD 27(3), 16–21 (1998)

    Article  Google Scholar 

  7. Chen, Y., Patel, J.: Efficient evaluation of all-nearest-neighbor queries. ICDE pp. 1056–1065 (2007)

    Google Scholar 

  8. Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market share: an interactive model. J. Retail. 70(1), 49–64 (1994)

    Article  Google Scholar 

  9. Drezner, T., Drezner, Z.: Validating the Gravity-Based Competitive Location Model Using Inferred Attractiveness. Annals OR 111(1–4), 227–237 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fort, M., Sellarès, J.A.: Finding influential location regions based on reverse k-neighbor queries. Knowl.Based Syst. 47, 35–52 (2013)

    Article  Google Scholar 

  11. Gao, Y., Chen, G., Li, Q., Zheng, B., Li, C.: Processing mutual nearest neighbor queries for moving object trajectories. In: Proc. 9th Int. Conf. on Mobile Data Management, pp. 116–123 (2008)

    Google Scholar 

  12. Garcia, V., Debreuve, E., Nielsen, F., Barlaud, M.: k-nearest neighbor search: fast GPU-based implementation and application to high-dimensional feature matching. In: Proceedings IEEE 17th Int. Conf. on Image Processing (ICIP) pp. 3757–3760 (2010)

    Google Scholar 

  13. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighborhood. Pattern Recog. 10(2), 105–112 (1978)

    Article  MATH  Google Scholar 

  14. Gowda, K.C., Krishna, G.: The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Trans. Inf. Theory 25(4), 488–490 (1979)

    Article  Google Scholar 

  15. Gao, Y., Zheng, B., Chen, G., Li, Q., Chen, C., Chen, G.: Efficient mutual nearest neighbor query processing for moving object trajectories, Information Sciences, 180(11), pp. 2176–2195 (2010)

    Google Scholar 

  16. Gao, Y., Zheng, B., Chen, G., Li, Q.: On efficient mutual nearest neighbor query processing in spatial databases. Data Knowl. Eng. 68(8), 705–727 (2009)

    Article  Google Scholar 

  17. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

    Article  Google Scholar 

  18. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking Outliers Using Symmetric Neighborhood Relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. SIGMOD (2000)

    Google Scholar 

  20. Miranda, N., Chávez, E., Piccoli, M.F., Reyes, N.: (Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces without Indexing. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 300–311. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of influence sets in frequently updated databases. In: Proceedings 27th Int. Conf. on Very Large Data Bases (VLDB) pp. 99–108 (2001)

    Google Scholar 

  22. Wong, R.C.-W., Tao, Y., Fu, A.W.C., Xiao, X.: On efficient spatial matching. In: Proceedings 33rd International Conference on Very Large Data Base, pp. 579–590 (2007)

    Google Scholar 

  23. Wu, W., Yang, F., Chan, C.Y., Tan, K.: FINCH: evaluating reverse k-Nearest-Neighbor queries on location data. In Proceedings of VLDB 1(1), pp. 1056–1067 (2008)

    Google Scholar 

  24. Yao, B., Li, F., Kumar, P.: K-nearest neighbor queries and knn-joins in large relational databases (almost) for free. In Proceedings of ICDE 2010, pp. 4–15 (2010)

    Google Scholar 

  25. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial databases. In: Proceedings of 16th International Conference on Scientific and Statistical Database Management (SSDBM). pp. 297–306 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antoni Sellarès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fort, M., Sellarès, J.A. (2014). Solving Multiple Bichromatic Mutual Nearest Neighbor Queries with the GPU. In: Han, WS., Lee, M., Muliantara, A., Sanjaya, N., Thalheim, B., Zhou, S. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science(), vol 8505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43984-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43984-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43983-8

  • Online ISBN: 978-3-662-43984-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics