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Abstract. Applications extracting data from crowdsourcing platforms
must deal with the uncertainty of crowd answers in two different ways:
first, by deriving estimates of the correct value from the answers; second,
by choosing crowd questions whose answers are expected to minimize this
uncertainty relative to the overall data collection goal. Such problems are
already challenging when we assume that questions are unrelated and
answers are independent, but they are even more complicated when we
assume that the unknown values follow hard structural constraints (such
as monotonicity).
In this vision paper, we examine how to formally address this issue with
an approach inspired by [2]. We describe a generalized setting where we
model constraints as linear inequalities, and use them to guide the choice
of crowd questions and the processing of answers. We present the main
challenges arising in this setting, and propose directions to solve them.

1 Introduction

Crowd data sourcing leverages human knowledge to obtain information which
does not exist in conventional databases. This may be done by posing targeted
questions to crowd users, through conventional crowdsourcing platforms such
as Amazon Mechanical Turk [6]. Contrary to many works that use the crowd
as a means to perform different tasks, here the crowd serves as a source of
information.

Many challenges arise when using the crowd as a data source. First, human
answers have a high latency and are usually provided against some (monetary)
compensation, so we must minimize the number of posed questions. Second,
answers collected from the crowd may be erroneous and noisy, so we must control
and improve answer quality, e.g., pose the same question to multiple workers.

A vast body of research has tackled these issues for various data procurement
tasks (e.g., [1,2,7,8,11,12]). For example, [7] studied the number of answers that
must be obtained to reach sufficient confidence in the final answer of a given
Boolean question, and mentions the problem of deciding, when there are several
questions to answer, which is the next best question to ask the crowd. In differ-
ent situations [2,12], this selection of questions is performed by comparing the
expected contribution of the answers to some data acquisition goal. However, in
such situations, the answers to the various questions are independent, so that
we can choose the next best question by looking at each question in isolation.
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In this paper, we study the problem of collecting numerical values from the
crowd under hard a-priori constraints on the final answers, caused by inherent
data dependencies.

For instance, suppose that we have devised a lossy compression algorithm
for e.g. music files, and that we wish to estimate the average quality rating of
different compression ratios in a user population. We can ask a few random crowd
workers to evaluate the quality q1, . . . , qn for each of n compression ratios of
increasing lossiness. The quality ratings of any given person are not independent:
we can assume that every person will consider q1 (the quality of the least lossy
compression) to be at least as high as q2, and so on. Consequently, the average
q1 in the entire population is higher than q2, and so on. However, the quality
q1 for some people might be lower than q2 for others; hence, by asking random
workers we may obtain an estimation of the quality ratings that is not perfectly
monotone. This use case will be our running example throughout the paper.

As another example, consider the estimation of the price that people are
willing to pay for varying combined deals. In fields such as auction study in
game theory [9], it is customary to assume that the price function for each user
is monotone, i.e., adding products cannot decrease the deal price. For instance,
we know that in the entire population, the average value of a flight and hotel
cannot be lower than that of the flight alone. But again, if we sample different
users for each deal, we may obtain a non-monotone estimation for the average
price.

A similar problem occurs in [2], where the crowd is used to estimate the
frequency of patterns in user habits. While these frequencies are dependent for
patterns with overlapping activities (e.g., if someone never swims, they also never
swim and dive), such dependencies are not accounted for in [2]. In general, exist-
ing work on crowd data sourcing has mostly ignored the problem of uncertainty
when dealing with dependent questions [1,8]. There are works that deal in a
non-trivial way with the interaction between uncertainty and dependency [4,10],
but they assume that the individual outcomes observed are Boolean and not
numeric like in the present paper.

We consider here two important problems that arise in the context of depen-
dent crowd questions. First, can we improve the variable estimation by taking
dependencies into account? For instance, in our running example, if we esti-
mate that the quality q1 is lower than q2 (which contradicts our monotonicity
assumption), we may attempt to correct our estimation by increasing q1 and/or
decreasing q2; or, to begin with, we can only consider estimations that com-
ply with our monotonicity requirement. What is the right way to enforce this
monotonicity, and how does it increase the quality of our estimation?

Second, we use the dependencies to reduce the number of questions posed to
the crowd. For instance, if we estimate that the average quality rating q1 and q4
of the compression ratios 1 and 4 are both 6 out of 10, we do not need to ask
people about q2 and q3. Or, as another example, if we wish to find the lossiest
compression with rating at least 6 out of 10, and we estimate that q5 and q10
are 8 and 3 respectively, we can interpolate q6, . . . , q9 (using monotonicity) and
estimate that the rating with value closest to 6 is most likely q7.



Paper structure. We first give a formal definition of the considered problem in
Section 2. We next present in Section 3 a general scheme to solve the problem in
the absence of dependencies, and turn in Section 4 to how dependencies should
be handled. For numerous dependent variables, interpolating samples is crucial:
we discuss this in Section 5. Last, we conclude in Section 6.

2 Problem statement

We wish to learn n numerical values µ = (µ1, . . . , µn) from the crowd. We model
the distribution of crowd answers to questions about these values using n random

variables X1, . . . , Xn. We assume that the mean of Xi is µi for every i.3

We further assume that µ satisfies a certain known set of linear inequalities,
represented as a matrix E of reals such that E · µ ≤ (0), where (0) is the zero
vector and · denotes the product of matrix E and vector µ. We assume that the
inequalities E are feasible, namely, that there is some vector e satisfying E.

Example 1. In our running example, the random variables Q1, . . . , Qn, with un-
known means q1, . . . , qn, denote the ratings obtained for the compression ratios.
The inequalities represent a decreasing order: q2 − q1 ≤ 0, q3 − q2 ≤ 0, etc.

We consider a known loss function Lµ which associates to a prediction v for
the unknown values µ some nonnegative value Lµ(v). We assume that Lµ can
be written as the sum of nonnegative functions Li

µi
, that is, the error function

for all values is the sum of the errors of individual values. We require that for all
i, Li

µi
(µi) = 0 and Li

µi
(x) ≤ Li

µi
(y) for all µi ≤ x ≤ y and y ≤ x ≤ µi. (In other

words, the loss is 0 for the correct value, and increases with the absolute error.)

Example 2. The loss function depends on the target application. For compression
ratios, if our task is to find which is the lossiest compression with rating at least
6, a reasonable loss function for all variables is the threshold loss Lµ,τ with τ = 6.
The value Lµ,τ (x) is defined to be 1 if the x and µ are miscategorized with respect
to threshold τ (formally, µ < τ < x or x < τ < µ) and 0 otherwise. The overall
loss function is the sum of the Lqi,τ which counts the number of ratios that are
miscategorized with respect to the threshold τ = 6.

For any i, we can obtain a sample of variable Xi (we say that we sample Xi

or draw Xi) by asking the corresponding question to a random crowd worker; we
assume that all draws are independent both between variables and between two
draws of the same variable. Our goal is to choose draws carefully and, based on
the obtained samples, try to provide a prediction v which minimizes Lµ(v): we
phrase this in a fixed-budget formulation, namely minimize Lµ(v) in expectation
after a fixed number of samples.

Example 3. In the running example, sampling the variable Qi is achieved by
providing a random crowd user with a sound sample compressed with ratio i
and asking for a rating for this sample. The overall objective is to choose the

3 This assumption holds when we are interested in the average crowd answer, e.g., the
average rating for a compression quality; and in the many cases where the errors of
worker answers tend to cancel out so that the average is close to the truth [2].



right ratios for which to request more ratings, in order to minimize the number
of average quality ratings that are miscategorized with respect to τ = 6.

We next review the problem of minimizing the loss by choosing the “right”
questions. We first study an approach for a simplified setting where there are no
order constraints on the estimated values, before we consider the general case.

3 Without order constraints

Let us present a general scheme inspired by [2] for the case with no order con-
straints, before we extend it to order constraints in the next section.

With no constraints, as the variables are independent and the loss is the sum
of the individual losses of variables, our goal is to find which one of the variables
is such that one more sample for it would yield the largest loss reduction. Hence,
we first focus on an individual variable Xi to describe how we predict its mean
value vi from the samples Si observed for this variable, and how we estimate the
loss reduction that we may achieve by taking one more sample.

Estimating the parameter. Our approach for a variable X given a set S of samples
of this variable is to fit a model for X from the family of normal distributions,
as they are a simple and general way to represent real-life data. Denote by Θ =
R×R+ the parameter space, such that every θ ∈ Θ, with θ = (µ, σ2), represents
the normal distribution N (µ, σ2) with mean µ and variance σ2. Denote by Prθ
the probability density function of this distribution.

As the samples S of X are assumed to be independent, we can define the
probability of S according to N (θ) as the product of Prθ(si) for all si ∈ S. The
likelihood function LS : Θ → [0, 1] is then simply defined as LS(θ) = Prθ(S): it
describes, as a function of θ, the probability4 of the sample under θ.

Our way to fit a normal distribution to the random variable X is then the
standard method of choosing the maximum likelihood estimator (MLE):

θ̂ = argmax
θ∈Θ

LS(θ)

In the case of normal distributions, it is easily checked that we have θ̂ = (µ̂, σ̂2),
where µ̂ and σ̂2 are the sample mean and sample variance defined by:

µ̂ =
1

|S|

∑

i

si σ̂2 =
1

|S|

∑

i

(si − µ̂)2

Hence, we take v = µ̂ as our current guess of the mean of variable X .

Example 4. Assume that we ask 3 users to evaluate sound samples compressed
with ratio 3, and obtain the grades 3, 5, and 7. This means that our sample
mean and variance for variable Q3 are respectively µ̂3 = 5 and σ̂3

2
= 8/3.

Estimating the error. How to estimate the loss of our prediction µ̂? Because the
true value is unknown, we estimate the loss by assuming that our current guess θ̂
is correct, and finding out what its expected error is. We do this by examining the

4 Note that likelihood cannot, however, be seen as a probability distribution on Θ.



range of samples that could have been obtained instead of S under the assumed
distribution and computing the loss of the MLE obtained from them.

By the central limit theorem, the distribution of the mean of N samples of
N (µ̂, σ̂2) can be approximated by N (µ̂, σ̂2/N). Hence, under the assumption

that θ̂ is correct, we can define the average error obtained through the MLE
method from |S| samples, as follows:

E(θ̂, |S|) =

∫

x∈R

Pr(µ̂,σ̂2/|S|)(x)Lµ̂(x) dx

This integral can be numerically approximated by sampling.

Example 5. The estimated error for Q3 under the samples S3 of the previ-
ous example is the probability that the sample mean, distributed according to
N (5, (8/3) · (1/3)), is above threshold τ = 6 (as the loss is then 1, and is 0 other-

wise, relative to our estimate µ̂3 = 5). Numerically we have E(θ̂3, |S3|) = 0.144.

Estimating the error decrease. Now that we can estimate the parameter of a
distribution from the samples, and the expected error according to this parame-
ter, we can easily devise an estimation of how this error may decrease when an
additional sample is requested from variable X .

Let us assume that we obtain a new sample of X with value x, and call S′

the |S| + 1 samples obtained by adding x to S. Call θ̂′ the MLE obtained by

maximizing LS′ , and define the error decrease as D(S, x) = E(θ̂, |S|)−E(θ̂′, |S|+
1). This gives us an estimation of how error decreases for one more sample with
value x. Of course, we cannot know if we would indeed obtain value x, but we can
compute its probability according to our current hypothesis for the underlying
distribution, namely N (µ̂, σ̂2). We therefore define the expected error decrease:

D(S) =

∫

x

Prθ̂(x)D(S, x)dx

This is our estimate of the expected loss reduction when sampling this variable.

Example 6. If we obtain one additional sample of 5 for Q3 (yielding S′
3), the

estimated mean µ̂3 = 5 is unchanged, but the estimated variance decreases to 2
so the estimated error under the new MLE θ̂′3 becomes E(θ̂′3, |S

′
3|) = 0.079. We

estimate the expected error decrease by averaging the decrease under possible
additional samples drawn from our estimated distribution N (θ̂3) for Q3.

Multiple variables. With the above method, we can compute the expected error
decrease of each variable, and sample the one whose expected error decrease is
highest. It is easy to see that this greedy approach is optimal in terms of reducing
the expected error over any fixed number of requests, as samples for one variable
do not change the estimated parameter or expected error of other variables.

4 With order constraints

Under order constraints, the problem is more challenging. Though the loss func-
tion remains a sum of loss functions over individual parameters, it is not possible
anymore to manage variables separately, because information obtained for one
variable gives us additional information about the other variables. Reconsidering



our running example, under the objective of identifying the lossiest compression
ratio with average quality at least τ , it makes little sense to consider the results
of every variable independently, and we should examine the results globally to
locate where the decreasing sequence of qualities intersects the threshold τ . The
challenge is how to formalize such a global strategy, under general constraints.

To this end, we propose a greedy strategy inspired by that of the previous
section, but integrating the order constraints and considering the variables glob-
ally rather than in isolation. Because additional samples on one variable give us
information about other variables, such a greedy approach is no longer guaran-
teed to be optimal over multiple draws. Because of space constraints, we only
sketch the principles of our initial approach; we plan to study this further and
examine possible alternative approaches in future work.

We consider the parameter space Θ = (R × R+)
n, covering all parameters

of all random variables simultaneously, and we define the likelihood of θ ∈ Θ
(with θi = (µi, σ

2
i )) as a function of S = (S1, . . . , Sn), the set of all samples

for all variables, using the fact that all draws are still independent. We exclude
parameters which violate order constraints by defining the likelihood as follows:

LS(θ) =

{∏
i

∏
s∈Si

Prθi(s) if E · θ ≤ (0)
0 otherwise

The main problem is now to determine the maximum likelihood estimator
for θ by maximizing this expression. We next propose a possible approach to the
problem, and the challenges yet to be resolved.

Estimating the means. We propose to maximize the expression as a function of
the means µ, while making the assumption that the variances are the sample
variances σ̂ for every individual variable. Under this approximation, the maxi-
mization problem can be rewritten as maximizing a quadratic expression with a
positive definite matrix under the inequalities E. Such a problem is tractable [5],
so we can solve it and obtain a set of candidate means v for the underlying
distributions. Technical details are omitted for lack of space.

Example 7. Assume that we have obtained the same number of samples for Q1,
Q2 and Q3, that their sample variances are equal (σ̂1 = σ̂2 = σ̂3), and that the
sample means are µ̂1 = 9, µ̂2 = 7, and µ̂3 = 8. Observe that we have µ̂2 < µ̂3

even though we know that q3 ≤ q2. In this specific setting, our estimation of
the means is the solution v of a quadratic programming problem amounting
to minimizing the sum of squares

∑
i(vi − µ̂i)

2 subject to the inequalities: its
solution is v1 = 9, v2 = 7.5, and v3 = 7.5.

Estimating the variances. We have computed the MLE estimator for the means
of the distributions subject to the inequality constraints, up to the approximation
of substituting the individual sample variances instead of integrating them in
the maximization problem. Since the estimations of the means and variances are
inter-dependent, we may now need to reestimate the variances.

Example 8. Assume that we have samples S2 = {0.1, 0.2} for Q2, and numerous
samples for Q1 and Q3 which convince us that v1 = 9 and v3 = 8.5 are very



good estimates for q1 and q3. We know that we must have 8.5 ≤ v2 ≤ 9 (we will
probably choose v2 = 8.5 given S2), but then our estimation of the variance of
Q2 should be much higher than the sample variance σ̂2

2 of S2 in isolation.

We estimate the variance of each Xi under the computed means v (and
thus estimate the complete parameter θ) as the sample variance relative to the
computed mean vi of Xi (instead of relative to the sample mean). The solution
thus obtained may not be optimal, as we have fixed and optimized the means
and variances separately rather than simultaneously. Estimating how much this
approach deviates from the true solution is a challenge for future work.

Estimating the error and error decrease. The overall method now follows Sec-
tion 3 except that we follow the above5 to fit a family of distributions to the
variables.

5 Interpolation

In some real-life scenarios, we may have a very large number of questions to ask
the crowd; for instance, the number of possible compression ratios may be very
high, almost continuous. In such cases, we may have many variables Xi with no
samples at all: those variables thus do not appear in the optimization problem, so
that we know nothing about them (except that they satisfy the order constraints).
However, we could then perform interpolation to estimate more precisely a large
proportion of the variables with a limited number of questions to the crowd.

In the general case where E is an arbitrary set of inequalities, it is hard to
define how to interpolate a value for a variable with no samples. We leave this
general question to future work, and only focus on the case where E expresses
the total order µ1 ≥ · · · ≥ µn. For simplicity, up to renumbering indices, we
assume that we have a model for X1 and Xn, namely (µ1, σ

2
1) and (µn, σ

2
n), and

that we wish to derive a model for Xk, 1 ≤ k ≤ n, for which we have no samples.

Example 9. If we estimate v1 = 8 and v5 = 4, our best guess for q3 in the absence
of samples should be v3 = 6. Likewise, our best guess for q4 should be v4 = 5.

Interpolating the mean. We interpolate the mean µk by a linear interpolation
between µ1 and µn according to the rank k, as presented in Example 9

Interpolating the variance. We want to interpolate σ2
k by combining both the

variances of X1 and Xn, and the uncertainty arising from the interpolation itself:
the further away k is from 1 and n, the least certain we are about µk.

To do so, we consider that µk has been chosen by picking n − 2 random
uniform values between µ1 and µn (the means µ2, . . . , µn−1), sorting them, and
choosing the (k− 1)-th value to be µk. Now, this means that µk is the (k− 1)-th
order statistic of n− 2 uniform and independent random variables in [µ1, µn], so
that it follows a beta distribution [3] whose variance has a closed form.

Example 10. Pursuing Example 9, for µ5 = 8 and µ9 = 4, we estimate the
variance on µ7 to be 4/5 for this outcome (that of the adequate beta distribution).

5 Note that this also changes the way of fitting distributions when computing the error
decrease under possible additional samples.



We can thus estimate a variance for Xk for fixed values µ1 and µn: those
values are unknown, but can be sampled according to our model for X1 and Xn

to yield an overall variance for Xk. We omit details for lack of space, and leave
to future work the study of other possible interpolation methods for variance.

6 Conclusion and perspectives

In this paper, we have studied the problem of learning numerical values from the
crowd, leveraging ordering constraints on those values to mitigate the uncertainty
on crowd answers. We have presented an abstract framework inspired by [2]
ignoring the order constraints, and presented an approximate method to take
those constraints into account, along with a way to interpolate values for yet
unsampled variables. We have identified further challenges to be explored.

Our main direction for future work is to study more carefully the approxima-
tions and design choices that we made, and to implement our approach to eval-
uate its effectiveness. We plan to evaluate, over various datasets and objectives,
the importance of accounting for order constraints and performing interpolation,
and compare our approach to round-robin or random baselines, as well as ad-hoc
strategies for specific scenarios such as total orders.
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