Skip to main content

Algorithms and Tools for Intelligent Monitoring of Critical Infrastructure Systems

  • Chapter
  • First Online:
  • 1980 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 565))

Abstract

Critical Infrastructure Systems (CIS) are essential services to sustain both society and economy. In fact, CIS can be considered as vital systems for a geographic area or a country. Such valuable assets have to be carefully monitored because their partial or complete failure (caused by natural hazards or criminal acts) could produce severe costs in terms of environment, economy and, in the worst scenario, human lives. The need to protect and maintain CIS and the surrounding environment is pushing the research for the development of intelligent monitoring systems, able to detect anomalies and events and to adapt autonomously to the changes in the system under investigation. In this chapter, we describe an intelligent hardware-software architecture for CIS monitoring, specifically designed for asynchronous events detection, remote configurability and diagnosis. In particular, this monitoring system is based on a novel hybrid architecture, in which different sensors, architectures and physical phenomena under monitoring coexist and cooperate to provide different views of the same physical phenomenon. In fact, the proposed monitoring system is able to gather both high frequency signals (microscopic level), such as accelerometer signals, and low-dynamic signals (macroscopic level), such as temperature and inclination. The monitoring system is connected to a remote data center, which collects, interprets and forwards them to the stakeholders in the desired format. The design principles driving the monitoring system are introduced. As a practical application will be shown a CIS monitoring system employed to monitor the Rialba’s tower, a rock tower-like limestone complex overlooking an area of strategic importance connecting the Lecco and Como provinces in north Italy. The rock tower is indeed exposed to a rock toppling risk, thus menacing an area characterized by the presence of a freeway, a railway line and gas and power distribution pipelines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Farrar, C., Park, G., Allen, D.W., Todd, M.: Sensing network paradigms for structural health monitoring. J. Struct. Control Health Monit. 13(1), 210–225 (2006)

    Article  Google Scholar 

  2. Worden, K., Dulieu-Barton, J.M.: An overview of intelligent fault detection in systems and structures. Struct. Health Monit. 3(1), 85–98 (2004)

    Article  Google Scholar 

  3. Buttyan, L., Gessner, D., Hessler, A., Langendoerfer, P.: Application of wireless sensor networks in critical infrastructure protection: challenges and design options (security and privacy in emerging wireless networks). IEEE Wirel. Commun. 17(5), 44–49 (2010)

    Article  Google Scholar 

  4. Kostopoulos, D., Leventakis, G., Tsoulkas, V., Nikitakos, N.: An intelligent fault monitoring and risk management tool for complex critical infrastructures: the SERSCIS approach in air-traffic surface control. In: UKSim 14th International Conference on Computer Modelling and Simulation (UKSim), pp. 205–210, 2012

    Google Scholar 

  5. Caldeira, F., Schaberreiter, T., Monteiro, E., Aubert, J., Simoes, P., Khadraoui, D.: Trust based interdependency weighting for on-line risk monitoring in interdependent critical infrastructures. In: 6th International Conference on Risk and Security of Internet and Systems (CRiSIS), pp. 1–7, 2011

    Google Scholar 

  6. Schreiber, F., Camplani, R., Fortunato, M., Marelli, M., Rota, G.: Perla: a language and middleware architecture for data management and integration in pervasive information systems. IEEE Trans. Softw. Eng. 38(2), 478–496 (2012)

    Article  Google Scholar 

  7. Alippi, C., Camplani, R., Galperti, C., Marullo, A., Roveri, M.: An hybrid wireless-wired monitoring system for real-time rock collapse forecasting. In: IEEE 7th International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 224–231, 2010

    Google Scholar 

  8. Alippi, C., Galperti, C.: An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans. Circuits Syst. I Regul. Pap. 55(6), 1742–1750 (2008)

    Article  MathSciNet  Google Scholar 

  9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  10. Alippi, C., Camplani, R., Roveri, M., Viscardi, G.: NetBrick: a high-performance, low-power hardware platform for wireless and hybrid sensor network. In: The 9th IEEE International Conference on Mobile Ad hoc and Sensor Systems (IEEE MASS 2012), 2012

    Google Scholar 

  11. Elahi, A., Gschwender, A.: ZigBee wireless sensor and control network. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the EU INTERREG project Italy-Switzerland action 2007–2013 MIARIA (Project Id 7629775) and the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation, KIOS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alippi, C., Camplani, R., Marullo, A., Roveri, M. (2015). Algorithms and Tools for Intelligent Monitoring of Critical Infrastructure Systems. In: Kyriakides, E., Polycarpou, M. (eds) Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems. Studies in Computational Intelligence, vol 565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44160-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44160-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44159-6

  • Online ISBN: 978-3-662-44160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics