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Abstract. We introduce a new approach in black box group theory
which deals with black box group problems in the category of black
boxes and their morphisms. This enables us to enrich black box groups
by actions of outer automorphisms such as Frobenius maps or graph
automorphisms of simple groups of Lie type. As an application of this
new technique, we present a number of new results, including a solution
of an old problem about constructing unipotent elements in groups of
Lie type of odd characteristic.
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1 Black box groups

A black box group X is a black box (or an oracle, or an algorithm) operating on
0 − 1 strings of uniform length which encrypt elements of some finite group G.
The procedures performed by a black box are specified as follows.

BB1 X produces strings of fixed length l(X) encrypting random (almost) uni-
formly distributed elements from G; this is done in probabilistic time poly-
nomial in l(X).

BB2 X computes, in probabilistic time polynomial in l(X), a string encrypting
the product of two group elements given by strings or a string encrypting
the inverse of an element given by a string.

BB3 X decides, in probabilistic time polynomial in l(X), whether two strings en-
crypt the same element in G—therefore identification of strings is a canonical
projection

X π−→ G.

In this situation we say that X encrypts the group G.
A natural question here is to determine the isomorphism type of a black box

group X or, if it is known, find an isomorphism between X and its natural copy.
To that end, we need additional assumptions about X, which we are keeping to
a minimum by adopting an additional axiom.
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BB4 We are given a global exponent of X, that is, a natural number E such that
π(x)E = 1 for all strings x ∈ X while computation of xE is computationally
feasible (say, logE is polynomially bounded in terms of log |G|).

Note that axioms BB1–BB4 hold, for example, in matrix groups over finite
fields where we can take for E the exponent of the ambient GLn(q).

In this paper, we assume BB1–BB4 and are concerned with structure re-
covery of black box groups X encrypting an explicitly given group G of Lie type
over Fq, that is, with constructing, in probabilistic polynomial time in log |G|,

– a black box field K encrypting Fq, and
– a morphism Ψ : G(K)→ X.

Unlike the constructive recognition algorithms of black box groups [7–11], we
shall note here that we are not using a discrete logarithm oracle or an SL2(q)-
oracle, see [4] for a detailed discussion of the hierarchy of black box group prob-
lems.

2 Morphisms and automorphisms

Let X and Y be two black box groups encrypting the groups G and H, respec-
tively. We say that a map ζ, which assigns strings from X to Y, is a morphism
of black box groups if

– the map ζ is computable in probabilistic time polynomial in l(X) and l(Y);
and

– there is an abstract homomorphism φ : G → H such that the following
diagram is commutative:

X
ζ−→ Y

πX ↓ ↓ πY

G
φ−→ H

where πX and πY are the canonical projections of X and Y onto G and H,
respectively.

In this case we say that a morphism ζ encrypts the homomorphism φ. Observe
that replacing a given generating set of a black box group X by a more suitable
one means that we construct a new black box Y and work with the corresponding
morphism Y → X.

The first result based on this new philosophy is “amalgamation of local au-
tomorphisms”:

Theorem 1. [4, Theorem 5.1] Let X be a black box group encrypting a group
G. Assume that G contains subgroups G1, . . . , Gl invariant under an automor-
phism α ∈ AutG and that these subgroups are encrypted in X as black boxes Xi,
i = 1, . . . , l, supplied with morphisms

φi : Xi −→ Xi
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which encrypt restrictions α |Gi of α on Gi. Assume also that 〈Gi, i = 1, . . . , l〉 =
G. Then we can construct, in time polynomial in l(X), a morphism φ : X −→ X
which encrypts α.

This theorem can be applied, for example, to groups of Lie type and systems
of root SL2-subgroups corresponding to the nodes in the associated Dynkin di-
agrams. That way, we construct the following automorphisms of groups of Lie
type.

(1) Frobenius maps on groups of Lie type of odd characteristic [4];
(2) Graph automorphisms of SLn(q), Dn(q) (including the triality of D4(q)),

F4(q), and E6(q) (for odd q) [6].

Interestingly, construction of graph automorphisms in black box groups of Lie
type of odd characteristic does not use information about the underlying field.
Further manipulation with morphisms between root SL2(q)-subgroups yields, for
example, the following (field-independent) black box embeddings constructed in
time polynomial in log q and n:

– SUn(q) ↪→ SLn(q2);
– G2(q) ↪→ SO7(q) ↪→ SO+

8 (q) ↪→ SL8(q);
– 3D4(q) ↪→ SO+

8 (q) ↪→ SL8(q);

These embeddings are implemented in GAP for various fields but notably we
construct the embedding SU3(p) ↪→ SL3(p2) for the 60 digit prime

p = 622288097498926496141095869268883999563096063592498055290461.

Notice that the size of SL3(p2) is bigger than 10960.
Another very important corollary of Theorem 1 is that if the action of an

involutive automorphism a of G is known on some a-invariant subgroups of G
generating G, then we can transfer the action of a on these subgroups to whole
group G. We call this process a reification of a. More precisely, we have

Theorem 2. [4, Theorem 7.1] Let X be a black box group encrypting a finite
group G. Assume that G admits an involutive automorphism a ∈ AutG and
contains a-invariant subgroups H1, . . . ,Hn where a either inverts or centralizes
each Hi.

Assume also that we are given black boxes Y1, . . . ,Yn encrypting subgroups
H1, . . . ,Hn. Then we can construct, in polynomial time,

– a black box for the structure {Y, α }, where Y encrypts H = 〈H1, . . . ,Hn〉
and α encrypts the restriction of a |H of a to H;

– a black box subgroup Z encrypting Ω1(Z(CH(a))), the subgroup generated by
involutions from Z(CH(a));

– if, in addition, the automorphism a ∈ G and H = G then α is induced by
one of the involutions in Z.
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An immediate application of Theorem 2 is that we can append a diagonal
automorphism d of PSL2(q) to a black box group X encrypting PSL2(q) to obtain
a black box group Y = X o 〈δ〉 encrypting PGL2(q), where δ encrypts d, see
[5] for details. This construction plays a crucial role in the proof of Theorem 3
below.

In addition, if a is an inner involutive automorphism in a group G of small
2-rank, after reification it can be identified with a string in X.

It turns out that construction of an involution in black box groups encrypting
PGL2(2k) by Kantor and Kassabov [12] is a special case of Theorem 2, see [4] for
further discussion. Moreover, the construction of a black box projective plane is
based on reification of involutions.

3 PSL2(q): structure recovery and unipotent elements

This is our principal result.

Theorem 3. [5] Let Y be a black box group encrypting PSL2(Fq) for q = pk of
known odd characteristic p. Then we construct, in probabilistic time polynomial
in log q,

– a black box group X encrypting PGL2(Fq) and an effective embedding

Y ↪→ X;

– a black box field K of order q, and
– polynomial in log q time isomorphisms

Y
↓

PGL2(Fq) � PGL2(K) � X −→ SO3(K)

where Fq is the standard explicitly given field of order q.

Construction of unipotent elements in X is an automatic corollary, but can
be actually done at early stages of the proof of this theorem.

Our approach to the proof is recovery, within X, of geometric structures
arising from the adjoint representation of the group PGL2(q) on its Lie algebra
sl2 seen as an inner product space with respect to its Killing form—this explains
appearance of the morphism

X −→ SO3(K)

in the statement of Theorem 3.
Our proof in [5] starts by exploiting the fact that the set of involutions in

X is the set I = P r Q of regular points in projective plane P over sl2 with a
quadric Q (coming from the Killing form), and the points in Q are the Borel
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subgroups in X. There are also two types of lines in P: regular and parabolic.
The regular lines are the polar images of regular points

π(t) = {x ∈ I | [t, x] = 1 and t 6= x}. (1)

The parabolic lines correspond to Borel subgroups B in X and consist of invo-
lutions inverting a maximal unipotent subgroup U of B, together with U itself
seen as a point in P.

It turns out that the set I is a finite symmetric space with the conjugation
operation ◦, for s, t ∈ I, s ◦ t = ts, forming a finite field analogue of the real
hyperbolic (Lobachevsky) plane viewed as a symmetric space. The black box
field K is built by applying the Hilbert’s coordinatization on this Lobachevsky
plane I. The analysis of the action of X on I produces the morphism

X −→ SO3(K).

Constructing the black box field by coordinatizing the Lobachevsky plane enables
us to construct arbitrary elements in P with specified coordinates. In particu-
lar, we can construct unipotent elements in X encrypting PGL2(q), which are
precisely the points on the quadric Q.

4 Toolbox in Lobachevsky plane

It is shown in [5] that the following procedures are performed in time polynomial
in log q inside the Lobachevsky plane constructed in X. So we construct a black
box that

(a) produces uniformly distributed points from I;
(b) checks the equality of points;
(c) checks collinearity of triples of points;
(d) for any two points s, t ∈ I, computes the half turn of t around s, which we

denote by s ◦ t;
(e) for any involution t ∈ I, produces uniformly distributed regular points in

the polar image of t:

$(t) = { s ∈ I | s ◦ t = t and s 6= t };

(f) for any two distinct points s, t ∈ I, produces uniformly distributed regular
points on the line s ∨ t through s and t;

(g) for a regular line through two distinct points s and t, constructs its pole,
which is the involution commuting with both s and t;

(h) for any two distinct lines k and l, finds its intersection point k ∧ l or, if the
lines k and l do not intersect in I and therefore their intersection point z
belongs to Q, computes the unipotent element.

(i) for a point s ∈ I, computes the polar projection

ξs : I r { s } −→ π(s)
x 7→ π(x) ∧ (s ∨ x);
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(j) for any two points s, t ∈ I conjugate under the action of X, finds r ∈ I such
that r ◦ s = t;

(k) represents any element of X as a product of two involutions from X.

As an example, we show how we draw the line passing through two distinct
points s, t ∈ I as in item (f). For an involution x ∈ X denote by Tx the maximal
torus in CX(x).

If z = st is a unipotent element then 〈zTs〉s is a parabolic line. Otherwise
observe that it suffices to construct the involution j := j(s, t) which commutes
with both s and t. Indeed, the line passing through s and t is the coset Tjw
where w is an involution inverting Tj , see Equation (1). If z = st has even
order, then j is the involution in 〈z〉 which can be constructed by using square
and multiply method. However, if z has odd order, then we can not construct j
immediately but we know its action on X:

– j centralizes 〈z〉,
– j inverts every element in the torus Ts.

Hence, j(s, t) can be reified from these two conditions by using Theorem 2.
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2. A. V. Borovik and Ş. Yalçınkaya, Steinberg presentations of black box classical groups
in small characteristics, Available at arXiv:1302.3059v1.
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