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ON COMPUTATION OF THE FIRST BAUES-WIRSCHING
COHOMOLOGY OF A FREELY-GENERATED SMALL
CATEGORY

MOMOSE, YASUHIRO AND NUMATA, YASUHIDE

ABSTRACT. The Baues—Wirsching cohomology is one of the cohomologies of a
small category. Our aim is to describe the first Baues—Wirsching cohomology
of the small category generated by a finite quiver freely. We consider the case
where the coefficient is a natural system obtained by the composition of a
functor and the target functor. We give an algorithm to obtain generators of
the vector space of inner derivations. It is known that there exists a surjection
from the vector space of derivations of the small category to the first Baues—
Wirsching cohomology whose kernel is the vector space of inner derivations.

1. INTRODUCTION

Baues and Wirsching [I] introduced a cohomology of a small category, which is
called nowadays the Baues—Wirsching cohomology. It is known that the Baues—
Wirsching cohomology is a generalization of some cohomologies; e.g., the cohomol-
ogy of a group G with coefficients in a left G-module, the singular cohomology of
the classifying space of a small category with coefficients in a field, and so on. Let k
be a field and D a natural system on a small category C; that is, a functor from the
category of factorizations in C to the category k-Mod of left k-modules. The n-th
Baues—Wirsching cohomology of C with coefficients in D is denoted by Hyy, (C, D).
For an equivalence ¢ : C — C’ of small categories and a natural system D on C,
Baues and Wirsching showed that the k-liner map ¢ : Hyyy, (C, D) — Hyyy (C', ¢* D)
induced by ¢ is an isomorphism for n € Z. The Baues—Wirsching cohomology is an
invariant for the equivalence of small categories in this sense.

Assume that C is freely generated by a quiver and that D = D ot is the com-
position of D and the target functor ¢. In this case, it is known that Hy, (C, D)
vanishes for n > 2 and that HYy,, (C, D) is isomorphic to the limit lime D. There-
fore, we focus on the first cohomology HEW(C , D). Let kC be the category algebra
of C, i.e. the algebra whose basis is a morphism of C and whose multiplication
is the composition of morphisms (if the morphisms are not composable, then the
multiplication is zero). Since C is generated by @, the category algebra is the path
algebra kQ. Define the functor m¢ from £C-Mod to the category k-Mod® of functors
from C to k-Mod as follows: m¢ maps an object M in kC-Mod to the functor which
maps z € ob(C) to id, -M and which maps v € mor(C) to the left multiplicative
map of u; and m¢ maps a morphism f in kC-Mod to the natural transformation
{flid, M }zeob(c)- Since the set of objects in C is finite, m¢ is an equivalence of
categories. (See [2].) Our algorithm introduced in this article computes the first
cohomology Hiy (C,mc(N) o t) for a left kC-module N.

The authors give a description of the first Baues—Wirsching cohomology in the
case where C is a Bo-free poset [3]. The algorithm in this paper is a generalization
of the idea of the special case.
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This article is organized as follows: In Section 2.J] we define some notation.
In Section 2221 we give algorithms. In Section Bl we show our main result. We
calculate the first Baues—Wirsching cohomology for some examples in Section A

2. DEFINITION

2.1. Definition of the first Baues—Wirsching cohomology. We define some
notation on the first Baues—Wirsching cohomology in this section.

Let P and @ be finite sets, s and ¢ maps from @) to P. We call the set @) equipped
with the triple (P;s,t) a finite quiver. We call an element of P a vertex and call
an element of @ an arrow. An arrow f € @ such that s(f) = a and ¢(f) = b is
denoted by f : a — b. We call a sequence fi--- f; of arrows a path of length [ if
s(fi) = t(fiq1) for alli. A path fy -+ fi; such that ¢(f1) = s(/fi) is called a cycle. We
say that a quiver Q is acyclic if Q) has no cycle. Let Q' be a subset of Q and P’ a
subset of P. We call the set Q' equipped with the triple (P’;s|q/,t|q’) a subquiver
of @ if s(Q’') and t(Q’) are subsets of P’.

Let @ be a finite quiver. The category defined in the following manner is called
the small category freely generated by Q:

the set of objects is the set of vertices of Q;

a morphism from z to y is a path from z to y;

the identity id, is the path from z to = of length 0; and

if s(f) = t(g), then the composition of morphisms f and g is the concate-
nation of paths f and g.

Let C be a small category freely generated by Q. The category F(C) defined in
the following manner is called the category of factorizations in C:

e the objects are morphisms in C;
e a morphism from « to § is a pair (u,v) of morphisms in C such that 8 =
u o aov; and
e the composition of (v/,v’) and (u,v) is defined by (u',v) o (u,v) = (v o
u,v o).
A covariant functor from F(C) to k-Mod is called a natural system on a small
category C. Let D be a natural system on the small category C. For « € ob(F(C)),
D,, denotes the k-module corresponding to a. For a pair (u,v) of composable
morphisms, we define u, and v* by

Ux = D(’LL, lds(v)) : Dy — Duov7
vt = D(idt(u),v) : Dy — Dyoy.

Let d : mor(C) = [ e mor(cy Dy be a map such that d(f) € Dy for each f € mor(C).
We call d a derivation from C to D if d(f o g) = f.(dg) + ¢g*(df) for each pair
(f,g) of composable morphisms. We define Der(C, D) to be the k-vector space of
derivations from C to D. We call d an inner derivation from C to D if there exists
an element (nz)we()b(c) S HIEOb(C) Digq, such that d(f) = f« (ns(f)) — f*(nt(f)) for
each f € mor(C). We define Ider(C, D) to be the k-vector space of inner derivations
from C to D. The first Baues-Wirsching cohomology Hpyy, (C, D) is the quotient
space Der(C, D)/ Ider(C, D).

Remark 2.1. Let @ be a quiver, C a small category freely generated by @, N a
kC-module, ¢ the target functor, and D the natural system me(N) ot. For a pair
(u,v) of composable morphisms, wu, (resp. v*) maps m € D, = idy(y -V (resp.
nec Du = ldt(u) N) tou-m € Duov = ldt(u) -N (T@Sp. ne Duov = ldt(u) N)
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2.2. Definition of algorithms. In this section, we give algorithms to obtain gen-
erators of Ider(C, D).

Let Q be a ﬁr{ite quiver, and P the set of vertices of Q. For subsets @1, Q3 of
Q@ and a subset P of P, we define the set H(P;Q,Q1,Q3) to be

t(h) € P.
{ heQs ‘ hp is not a cycle in @ for any path p in Q. } '

For subsets Q1, Q2 of Q and h € H(P;Q,Ql,Qg), we define the set G(Q1,Q2;h)
to be

There exists a cycle in Q1 UQ2U{ h}
which contains g and h.

{9€Q2

Algorithm 2.2.
Input: a finite quiver Q.
Output: ((ai)é:ﬁ (03)iZ1; (fl)ézl; (9i)iz1; (hi)izy)-
Procedure:
(1) Let P be the set of vertices of Q.
(2) Let P=0,P=P, Q1 =0,Q=0, Qs = Q.
(3) While H(P;Q,Q1,Qs) # 0, do the following:
(a) Choose an element h € H(P;Q,Ql,Qg).
Let Q' = ((Q1UQ2) \ G(Q1,Q2;:h)) U{h}.
Let Q be a maximal acyclic subquiver of @) including Q.
Let P = {aeP}ﬂferuchthatt —a.}.

)
)
)
) Let P =P\ P.
)
)
I =
)

(b
(c
(d
(e
(f) For each a € P, choose f, € Q so that t(f,) = a.

(g) Let Q1 = { fa | a€P},Q:=Q\Q1,and Q3 =0Q\ Q.
(4) Let |P|. Fori=1,...,1, do the following:

(a) Choose a vertex 2 € P such that there exists no arrow in Q;

whose source is z.

(b) Let a; = =.

(c) For a € @y so that t(a) =z, let f; = au.

(d) Let P=P\{z},and Q1 = Q; \ {a }.
(5) Let {by,...,by } = P.
(6) Let {gla"'agn}:Q2-
(7) Let {hl,...,hr}:Qg.

Remark 2.3. In Step Blin Algorithm 2.2] |H(P7 Q, Q1,Q3)| strictly decreases since
|P| decreases in each step. Hence Step [is a finite procedure.

Remark 2.4. Let ((a;)_y; (0:)™q; (f1)iq; (g0)™y; (Rs)5_;) be an output of Algo-
rithm 221 Let

2 ={ay,...,a },
P={by,....by},

Ql:{fla"'vfl};
Q2=1{91,---,9n },and
ng{hl,...,hT}_

The set P P is decomposition of P. The set Q, [1Q21]1Qs is also decomposition
of Q. By Stepdin Algorithm 22 a; corresponds to the target of f; forz=1,...,1.
Hence if there exists a path from a; to a; or a path from b; to a; in @1, then the
path is unique. Since the quiver @1 U Q)2 is a maximal acychc subquiver of @, we
can regard P as a poset. Moreover, if aj < a; in the poset P, then the inequality
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i < 7 holds. If @ is a finite acyclic quiver, then Q3 is the empty set. By Step Bl in
Algorithm [Z2] for h; so that t(h;) € P, there exists a path p in @1 such that h;p is
a cycle in Q).
Algorithm 2.5.
Input: ((a;)i_y; (0)71; (f1)izs (90)i1s (ha)iy)-
Output: (V,W).
Procedure:
(1> Let Ql :{fla"'afl}'
(2) (We define elements v; ; in the path algebra kQ.) For j =1,...,1, do
the following;:
(a) Fori=1,...,1, let v; ; =0.
(b) Let Vj i = ida].
(¢) For : =1,...,n, do the following:
(i) Let Viti,; = 0.
(ii) If there exists a path p from a; to ¢(g;) in Q1, then let
Vlti,j = Ulgi,j + P
(iii) If there exists a path p from a; to s(g;) in Q1, then let
Vi+i,j = Viti,j — GiP-
(d) Fori=1,...,r, do the following:
(1) Let Vi4n+i,j = 0.
(ii) If there exists a path p from a; to t(h;) in @1, then let
Vi4n+i,j = Vldnti,j T D-
(iii) If there exists a path p from a; to s(h;) in @1, then let
Vigntij = Vigntiy — hiD.
(3) Let V = (vij)1<i<itn+r, 1<5<1-
(4) (We define elements w; ; in the path algebra kQ.) For j = 1,...,m,
do the following;:
(a) Fori=1,...,1, let w; ; = 0.
(b) For : =1,...,n, do the following:
(i) Let Wiys,5 = 0.
(ii) If there exists a path p from b; to t(g;) in Q1, then let
Wii,j = Witi,j + P-
(iii) If there exists a path p from b; to s(g;) in @1, then let
Witi,5 = Witi,j — GiP-
(¢) Fori=1,...,r, do the following:
(1) Let Wi4n+i,j = 0.
(ii) If there exists a path p from b; to ¢(h;) in Q1, then let
Witnti,j = Witnti,j + P-
(iii) If there exists a path p from b; to s(h;) in @1, then let
Wignitij = Witnti,j — hip-
(5) Let W = (wij)1<i<itntr, 1<j<m-

Remark 2.6. Let (V, W) be the output of Algorithm 2.5] for some input. The matrix
(vi,5)1<i<i, 1<j<i is the identity matrix, i.e., the diagonal matrix whose entries one
(idg,,--.,idg,). The matrix (w; j)1<i<i, 1<j<m is the zero matrix.

3. OUR MAIN RESULT

We show our main result in this section. Our main result computes the first
Baues-Wirsching cohomology via the column echelon matrix obtained by our algo-
rithm.

Let @ be a finite quiver, C a small category freely generated by Q. Fix a left
kC-module N, and consider the natural system D = m¢(N) ot.
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Let T = ((a:)!_y; (5:)74: (F1)!ss (96)7 5 (hi)7_,) be the output of Algorithm 22
for Q. We define the k-vector space A1, Ao, and Az by

l n r
Alz@bﬂ., AQZ@D%, and AgZ@Dhi.
i=1 i=1 i=1

Let (V, W) be the output of Algorithm [ZH for T'. Let v; and w; be the j-th column

vector of V and W, respectively. The vectors v; and w; are elements of @i;ﬂf” kC.

We define the k-vector spaces V and W by
V= <vjnaj |naj €idg, N, 1 <j < l>,

W = <wjnbj |nbj € idy, -N, 1 §j§m>.

Theorem 3.1. The first Baues—Wirsching cohomology H}BW(C,E) s isomorphic
to

(A1 @ A @ A3)/(V+ W)
as k-vector spaces.

Proof. According to Baues and Wirsching [, if C is freely generated by S C mor(C),
then we can identify Der(C, D) with [] .¢ Ds. Via the identification, Ider(C, D) is
the k-vector space

aes

(a*(ns(a)) - a*(nt(a)))a € H D, (nm)m S H Didm

aes z€ob(C)
Let
Q={fi|l1<i<i}U{gi|1<i<n}u{h|1<i<r}, and
P={a|1<i<i}u{bi|1<i<m}.

It follows that Der(C, ﬁ) >~ A, @ Ay @ As. Hence Ider(C, D) is isomorphic to the
k-vector space

(n2)s € @Pids -N } .

B= { (ans(a) — nt(a))aeQ €A
zeP

For z € P and m € id, -N, we define rom = (rz oMm)acq € A by
—am  (s(a) =x)
TpaM =4 m (t(a) = 2)
0 (otherwise).
It is clear that the k-vector space B is equal to

(rym|xz € Pym €id,-N).

Forj=1,....land n,; € id,, -N, we define 75, nq, to be 1o, 14, +3 s Tar fella; -
For j =1,...,m and ny; € idy, -N, we define T3, ny, to be ry;ny, + 2221 Tan [KMb, -
It follows from the direct calculation that Ta;Na,; and Ty, np,; are equal to vjn,; and
wjny, , respectively. Hence we have Theorem B.11 O
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[e%1 Qp—2 Qp—1
o ————0

1 2 n—2 n—1 n

FIGURE 1. The quiver in Example Tl

4. SOME EXAMPLES

In this section, we apply our algorithm to some examples of finite quivers to
calculate the first Baues—Wirsching cohomology. First we apply our algorithm to
some quivers whose set of vertices is a Ba-free poset, which is discussed in [3].

Example 4.1. Let P, ={1,...,n }. Define «; to be an arrow from i+ 1 to i. Let
Qrn={a;|i=1,...,n—1}. The quiver @, is a chain in Figure[Il An output of
Algorithm for @y, is

a;=tifori=1,...,n—1,
b1 =n, and

fi=a;fori=1,...,n—1.

Consider the small category C,, generated by @,. An output of Algorithm [Z5]is

n—1

vj =@Pdjxida, forj=1,...,n—1, and
k=1

w1 = 0®(n_1).

For a kC,-module N,

By Theorem B.1], we have
Hhy (Cn,me, (N) ot) = 0.

Example 4.2. Let P, = {1,...,n }U{z =0 }. Define o; to be an arrow from i to
xz. Let Q, ={a;|i=1,...,n}. The quiver @, is a quiver such that the targets
of each arrow is z. See Figure[2l An output of Algorithm for Q,, is

ay =@,
b;=ifori=1,...,n,
f1:ana and

gi=q;fori=1,...,n—1.
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FI1GURE 2. The quiver in Example

Consider the small category C,, generated by @Q,. An output of Algorithm [2.5]is

v = (idal )EBH

For a kC,-module N,

A; =1idg, N,
n—1

Ay = @idal N,
k=1

A3 = 05

V = <77”L€B"‘77”L€idal ‘N, and

n—1
W= (EB 9k - N) + {12V,
k=1
By Theorem Bl we have
Hpw (C me, (N) o t) = (Ay & Ag)/(V + W).
Moreover, if N = kC,,, then
Hpw (Cn, e, (KCn) o t)

~ (@«idal,m {9515 # k>>> /(0.

k=1

Ny, € idb3 N> .

Example 4.3. Let P, = {z; = (0,j) | j € Z/nZ }U{y; = (1,j) | j € Z/nZ }. De-
fine a; and B3; to be arrows from y; and y;_1 to x;, respectively. Let Q, =
{a;|J€Z/MZ}YU{B;]|j€Z/nZ}. The quiver Q, is a zigzag circle in Figure Bl
An output of Algorithm 2.2 for Q,, is

aj=x;forj=1,...,n,

bj=yjforj=1,...,n,

fi=ajforj=1,...,n, and

gj=08;forj=1,...,n.
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Tn .9?7. Yn
L.
FIGURE 3. The quiver in Example

Consider the small category C,, generated by @Q,. An output of Algorithm [2.5]is

vj = (@ 8 kida, ) B (@ 0 kide,) for j=1,...,n, and
k=1 k=1

w; = (0") @ (@(5j,kfk —0j41,k9k)) for j=1,...,n.
k=1

For a kC,-module N,

n

A1 = Pida, N,

k=1

4y = Pida, N,
k=1

A3 =0,

V = <vjnaj ‘naj €idg; N,j = 1,...,n>, and
W= <wjnbj ‘nb]. €idy, N, j = 1,...,n>.
By Theorem B.1], we have

Hpy (Coy e, (N) ot) 22 (A @ Ag)/(V + W).
Moreover, if N = kC,,, then

n—1

HEy (Cp, e, (kCp) ot) = (iday, fr) -
k=0

Next we consider examples which are not posets.
Example 4.4. Let P, = Z/nZ. Define a; to be an arrow from j + 1 to j. Let
Qn ={a;j|j€Z/nZ}. The quiver Q, is a circle in Figure @ An output of
Algorithm for Q,, is
aj=jforj=1,...,n—1,
bl =n,
fi=ajforj=1,...,n—1, and

h,l = Op.
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n ap, 1

Opp—1 aq

n—l—‘_ *2

FIGURE 4. The quiver in Example L4

R/

nflo

FIGURE 5. The quiver in Example

Consider the small category C,, generated by @,. An output of Algorithm [Z5]is

n—1
v = <@5j,kidak> ® (=hifr--- fi-1) for j=1,....n,
k=1

wy = 0@9(71—1) o) (idbl _hlfl e fn—l)-
For a kC,-module N,

n—1

A = @mak ‘N,
k=1

Ay =0,

As =idy, -N,

V = <vjnaj ‘naj €idg, N, j = 1,...,n71>, and
W = <w1nb1 |7’Lb1 S idb1 N) .
By Theorem [B1] we have
Hpw (Cnsme, (N) 0 t) = (A @ A3)/(V + W)
Moreover, if N = kC,,, then
H}E;W(Cnaﬂcn (kCn)ot)
g<idao>+<h1f1---fj_1|j = 1,...,7’L—1>.

Example 4.5. Let P, = Z/nZ. Define a; to be an arrow from j + 1 to j, and
B to be an arrow from j to j+ 1. Let Q, ={ o | j €Z/nZ}U{pB; |j € Z/nZ}.
The quiver @, is a circle in Figure[fl An output of Algorithm for Q,, is
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aj=jforj=1,...,n—-1,
b1:7’L,

fi=ajforj=1,...,n—1,

glzﬂnv
hj=pforj=1,...,n—1, and
hy = au,.

Consider the small category C,, generated by @,. We define p; ; in kC by
firoofy (@i<j+1)
Dij = | idq, (ifi=j+1).
0 (ifi>j5+1)
An output of Algorithm 2.5l is
V5 = 51'7]' idaj
fori=1,....,n—1, j=1,...,n—1,
Un,j = P1,j-1
forj=1,...,n—1,
Untij = Pit1,j—1 — RiDij—1
fori=1,....,.n—1, j=1,...,n—1,
Vap,j = —NpD1,j—1
forj=1,...,n—1,
’LUZ'J = 0
fori=1,...,n—1,
Wn,1 = P1,n—1 — 91,
Wn+i,1 = Pi+ln—1 — hipi,nq
fori=1,...,n—1, and

Wapn1 = idp, —ApP1n—1.

Let v; = @1221 v for j=1,...,n—1, and wy = @f:l w;.1. For a kCp,-module N,

n—1
A = @mak ‘N,
k=1

Ay = id,, -N,
n—1

A3 = (@ ida, -N) @ (ids, -N) @ (idy, -N),
k=2

V = <vjnaj ‘naj €idg, -N,j = 1,...,n—1>, and
W = (winp, | ny, € idy, -N).

By Theorem Bl we have
Hy (Coyme, (N) ot) = (A1 @ Ay & As)/(V + W).
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