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ON COMPUTATION OF THE FIRST BAUES–WIRSCHING

COHOMOLOGY OF A FREELY-GENERATED SMALL

CATEGORY

MOMOSE, YASUHIRO AND NUMATA, YASUHIDE

Abstract. The Baues–Wirsching cohomology is one of the cohomologies of a
small category. Our aim is to describe the first Baues–Wirsching cohomology
of the small category generated by a finite quiver freely. We consider the case
where the coefficient is a natural system obtained by the composition of a
functor and the target functor. We give an algorithm to obtain generators of
the vector space of inner derivations. It is known that there exists a surjection
from the vector space of derivations of the small category to the first Baues–
Wirsching cohomology whose kernel is the vector space of inner derivations.

1. Introduction

Baues and Wirsching [1] introduced a cohomology of a small category, which is
called nowadays the Baues–Wirsching cohomology. It is known that the Baues–
Wirsching cohomology is a generalization of some cohomologies; e.g., the cohomol-
ogy of a group G with coefficients in a left G-module, the singular cohomology of
the classifying space of a small category with coefficients in a field, and so on. Let k
be a field and D a natural system on a small category C; that is, a functor from the
category of factorizations in C to the category k-Mod of left k-modules. The n-th
Baues–Wirsching cohomology of C with coefficients in D is denoted by Hn

BW (C, D).
For an equivalence φ : C → C′ of small categories and a natural system D on C,
Baues and Wirsching showed that the k-liner map φ̃ : Hn

BW (C, D) → Hn
BW (C′, φ∗D)

induced by φ is an isomorphism for n ∈ Z. The Baues–Wirsching cohomology is an
invariant for the equivalence of small categories in this sense.

Assume that C is freely generated by a quiver and that D = Ď ◦ t is the com-
position of Ď and the target functor t. In this case, it is known that Hn

BW (C, D)
vanishes for n ≥ 2 and that H0

BW (C, D) is isomorphic to the limit limC Ď. There-
fore, we focus on the first cohomology H1

BW (C, D). Let kC be the category algebra
of C, i.e. the algebra whose basis is a morphism of C and whose multiplication
is the composition of morphisms (if the morphisms are not composable, then the
multiplication is zero). Since C is generated by Q, the category algebra is the path

algebra kQ. Define the functor πC from kC-Mod to the category k-ModC of functors
from C to k-Mod as follows: πC maps an object M in kC-Mod to the functor which
maps x ∈ ob(C) to idx ·M and which maps u ∈ mor(C) to the left multiplicative
map of u; and πC maps a morphism f in kC-Mod to the natural transformation
{f |idx ·M}x∈ob(C). Since the set of objects in C is finite, πC is an equivalence of
categories. (See [2].) Our algorithm introduced in this article computes the first
cohomology H1

BW (C, πC(N) ◦ t) for a left kC-module N .
The authors give a description of the first Baues–Wirsching cohomology in the

case where C is a B2-free poset [3]. The algorithm in this paper is a generalization
of the idea of the special case.

Key words and phrases. Finite quivers; path algebras; category algebras; inner derivations;
Gaussian elimination.
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This article is organized as follows: In Section 2.1, we define some notation.
In Section 2.2, we give algorithms. In Section 3, we show our main result. We
calculate the first Baues–Wirsching cohomology for some examples in Section 4.

2. Definition

2.1. Definition of the first Baues–Wirsching cohomology. We define some
notation on the first Baues–Wirsching cohomology in this section.

Let P and Q be finite sets, s and t maps from Q to P . We call the set Q equipped
with the triple (P ; s, t) a finite quiver. We call an element of P a vertex and call
an element of Q an arrow. An arrow f ∈ Q such that s(f) = a and t(f) = b is
denoted by f : a → b. We call a sequence f1 · · · fl of arrows a path of length l if
s(fi) = t(fi+1) for all i. A path f1 · · · fl such that t(f1) = s(fl) is called a cycle. We
say that a quiver Q is acyclic if Q has no cycle. Let Q′ be a subset of Q and P ′ a
subset of P . We call the set Q′ equipped with the triple (P ′; s|Q′ , t|Q′) a subquiver

of Q if s(Q′) and t(Q′) are subsets of P ′.
Let Q be a finite quiver. The category defined in the following manner is called

the small category freely generated by Q:

• the set of objects is the set of vertices of Q;
• a morphism from x to y is a path from x to y;
• the identity idx is the path from x to x of length 0; and
• if s(f) = t(g), then the composition of morphisms f and g is the concate-
nation of paths f and g.

Let C be a small category freely generated by Q. The category F(C) defined in
the following manner is called the category of factorizations in C:

• the objects are morphisms in C;
• a morphism from α to β is a pair (u, v) of morphisms in C such that β =
u ◦ α ◦ v; and

• the composition of (u′, v′) and (u, v) is defined by (u′, v′) ◦ (u, v) = (u′ ◦
u, v ◦ v′).

A covariant functor from F(C) to k-Mod is called a natural system on a small
category C. Let D be a natural system on the small category C. For α ∈ ob(F(C)),
Dα denotes the k-module corresponding to α. For a pair (u, v) of composable
morphisms, we define u∗ and v∗ by

u∗ = D(u, ids(v)) : Dv → Du◦v,

v∗ = D(idt(u), v) : Du → Du◦v.

Let d : mor(C) →
∏

ϕ∈mor(C) Dϕ be a map such that d(f) ∈ Df for each f ∈ mor(C).

We call d a derivation from C to D if d(f ◦ g) = f∗(dg) + g∗(df) for each pair
(f, g) of composable morphisms. We define Der(C, D) to be the k-vector space of
derivations from C to D. We call d an inner derivation from C to D if there exists
an element (nx)x∈ob(C) ∈

∏

x∈ob(C)Didx
such that d(f) = f∗(ns(f)) − f∗(nt(f)) for

each f ∈ mor(C). We define Ider(C, D) to be the k-vector space of inner derivations
from C to D. The first Baues–Wirsching cohomology H1

BW (C, D) is the quotient
space Der(C, D)/ Ider(C, D).

Remark 2.1. Let Q be a quiver, C a small category freely generated by Q, N a
kC-module, t the target functor, and D̃ the natural system πC(N) ◦ t. For a pair

(u, v) of composable morphisms, u∗ (resp. v∗) maps m ∈ D̃v = idt(v) ·N (resp.

n ∈ D̃u = idt(u) ·N) to u ·m ∈ D̃u◦v = idt(u) ·N (resp. n ∈ D̃u◦v = idt(u) ·N).
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2.2. Definition of algorithms. In this section, we give algorithms to obtain gen-
erators of Ider(C, D).

Let Q be a finite quiver, and P the set of vertices of Q. For subsets Q1, Q3 of
Q and a subset P̂ of P , we define the set H(P̂ ;Q,Q1, Q3) to be

{

h ∈ Q3

∣

∣

∣

∣

t(h) ∈ P̂ .
hp is not a cycle in Q for any path p in Q1.

}

.

For subsets Q1, Q2 of Q and h ∈ H(P̂ ;Q,Q1, Q3), we define the set G(Q1, Q2;h)
to be

{

g ∈ Q2

∣

∣

∣

∣

There exists a cycle in Q1 ∪Q2 ∪ { h }
which contains g and h.

}

.

Algorithm 2.2.

Input: a finite quiver Q.
Output: ((ai)

l
i=1; (bi)

m
i=1; (f1)

l
i=1; (gi)

n
i=1; (hi)

r
i=1).

Procedure:

(1) Let P be the set of vertices of Q.

(2) Let P̌ = ∅, P̂ = P , Q1 = ∅, Q2 = ∅, Q3 = Q.

(3) While H(P̂ ;Q,Q1, Q3) 6= ∅, do the following:

(a) Choose an element h ∈ H(P̂ ;Q,Q1, Q3).
(b) Let Q′ = ((Q1 ∪Q2) \G(Q1, Q2;h)) ∪ { h }.
(c) Let Q̄ be a maximal acyclic subquiver of Q including Q′.
(d) Let P̌ =

{

a ∈ P
∣

∣ ∃f ∈ Q̄ such that t(f) = a.
}

.

(e) Let P̂ = P \ P̌ .
(f) For each a ∈ P̌ , choose fa ∈ Q̄ so that t(fa) = a.
(g) Let Q1 =

{

fa
∣

∣ a ∈ P̌
}

, Q2 = Q′ \Q1, and Q3 = Q \Q′.

(4) Let l = |P̌ |. For i = 1, . . . , l, do the following:
(a) Choose a vertex x ∈ P̌ such that there exists no arrow in Q1

whose source is x.
(b) Let ai = x.
(c) For α ∈ Q1 so that t(α) = x, let fi = α.
(d) Let P̌ = P̌ \ { x }, and Q1 = Q1 \ { α }.

(5) Let { b1, . . . , bm } = P̂ .
(6) Let { g1, . . . , gn } = Q2.
(7) Let { h1, . . . , hr } = Q3.

Remark 2.3. In Step 3 in Algorithm 2.2, |H(P̂ ;Q,Q1, Q3)| strictly decreases since

|P̂ | decreases in each step. Hence Step 3 is a finite procedure.

Remark 2.4. Let ((ai)
l
i=1; (bi)

m
i=1; (f1)

l
i=1; (gi)

n
i=1; (hi)

r
i=1) be an output of Algo-

rithm 2.2. Let

P̌ = { a1, . . . , al } ,

P̂ = { b1, . . . , bm } ,

Q1 = { f1, . . . , fl } ,

Q2 = { g1, . . . , gn } , and

Q3 = { h1, . . . , hr } .

The set P̌
∐

P̂ is decomposition of P . The set Q1

∐

Q2

∐

Q3 is also decomposition
of Q. By Step 4 in Algorithm 2.2, ai corresponds to the target of fi for i = 1, . . . , l.
Hence if there exists a path from aj to ai or a path from bj to ai in Q1, then the
path is unique. Since the quiver Q1 ∪ Q2 is a maximal acyclic subquiver of Q, we
can regard P̌ as a poset. Moreover, if aj ≤ ai in the poset P̌ , then the inequality
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i ≤ j holds. If Q is a finite acyclic quiver, then Q3 is the empty set. By Step 3 in
Algorithm 2.2, for hi so that t(hi) ∈ P̂ , there exists a path p in Q1 such that hip is
a cycle in Q.

Algorithm 2.5.

Input: ((ai)
l
i=1; (bi)

m
i=1; (f1)

l
i=1; (gi)

n
i=1; (hi)

r
i=1).

Output: (V,W ).
Procedure:

(1) Let Q1 = { f1, . . . , fl }.
(2) (We define elements vi,j in the path algebra kQ.) For j = 1, . . . , l, do

the following:
(a) For i = 1, . . . , l, let vi,j = 0.
(b) Let vj,j = idaj

(c) For i = 1, . . . , n, do the following:
(i) Let vl+i,j = 0.
(ii) If there exists a path p from aj to t(gi) in Q1, then let

vl+i,j = vl+i,j + p.
(iii) If there exists a path p from aj to s(gi) in Q1, then let

vl+i,j = vl+i,j − gip.
(d) For i = 1, . . . , r, do the following:

(i) Let vl+n+i,j = 0.
(ii) If there exists a path p from aj to t(hi) in Q1, then let

vl+n+i,j = vl+n+i,j + p.
(iii) If there exists a path p from aj to s(hi) in Q1, then let

vl+n+i,j = vl+n+i,j − hip.
(3) Let V = (vi,j)1≤i≤l+n+r, 1≤j≤l.
(4) (We define elements wi,j in the path algebra kQ.) For j = 1, . . . ,m,

do the following:
(a) For i = 1, . . . , l, let wi,j = 0.
(b) For i = 1, . . . , n, do the following:

(i) Let wl+i,j = 0.
(ii) If there exists a path p from bj to t(gi) in Q1, then let

wl+i,j = wl+i,j + p.
(iii) If there exists a path p from bj to s(gi) in Q1, then let

wl+i,j = wl+i,j − gip.
(c) For i = 1, . . . , r, do the following:

(i) Let wl+n+i,j = 0.
(ii) If there exists a path p from bj to t(hi) in Q1, then let

wl+n+i,j = wl+n+i,j + p.
(iii) If there exists a path p from bj to s(hi) in Q1, then let

wl+n+i,j = wl+n+i,j − hip.
(5) Let W = (wi,j)1≤i≤l+n+r, 1≤j≤m.

Remark 2.6. Let (V,W ) be the output of Algorithm 2.5 for some input. The matrix
(vi,j)1≤i≤l, 1≤j≤l is the identity matrix, i.e., the diagonal matrix whose entries one
(ida1

, . . . , idal
). The matrix (wi,j)1≤i≤l, 1≤j≤m is the zero matrix.

3. Our main result

We show our main result in this section. Our main result computes the first
Baues–Wirsching cohomology via the column echelon matrix obtained by our algo-
rithm.

Let Q be a finite quiver, C a small category freely generated by Q. Fix a left
kC-module N , and consider the natural system D̃ = πC(N) ◦ t.



ON COMPUTATION OF THE FIRST BAUES–WIRSCHING COHOMOLOGY 5

Let T = ((ai)
l
i=1; (bi)

m
i=1; (f1)

l
i=1; (gi)

n
i=1; (hi)

r
i=1) be the output of Algorithm 2.2

for Q. We define the k-vector space A1, A2, and A3 by

A1 =

l
⊕

i=1

D̃fi , A2 =

n
⊕

i=1

D̃gi , and A3 =

r
⊕

i=1

D̃hi
.

Let (V,W ) be the output of Algorithm 2.5 for T . Let vj and wj be the j-th column

vector of V and W , respectively. The vectors vj and wj are elements of
⊕l+n+r

i=1 kC.
We define the k-vector spaces V̄ and W̄ by

V̄ =
〈

vjnaj

∣

∣naj
∈ idaj

·N, 1 ≤ j ≤ l
〉

,

W̄ =
〈

wjnbj

∣

∣nbj ∈ idbj ·N, 1 ≤ j ≤ m
〉

.

Theorem 3.1. The first Baues–Wirsching cohomology H1
BW (C, D̃) is isomorphic

to

(A1 ⊕A2 ⊕A3)/(V̄ + W̄ )

as k-vector spaces.

Proof. According to Baues andWirsching [1], if C is freely generated by S ⊂ mor(C),
then we can identify Der(C, D) with

∏

α∈S Dα. Via the identification, Ider(C, D) is
the k-vector space







(α∗(ns(α))− α∗(nt(α)))α ∈
∏

α∈S

Dα

∣

∣

∣

∣

∣

(nx)x ∈
∏

x∈ob(C)

Didx







.

Let

Q = { fi | 1 ≤ i ≤ l } ∪ { gi | 1 ≤ i ≤ n } ∪ { hi | 1 ≤ i ≤ r } , and

P = { ai | 1 ≤ i ≤ l } ∪ { bi | 1 ≤ i ≤ m } .

It follows that Der(C, D̃) ∼= A1 ⊕ A2 ⊕ A3. Hence Ider(C, D̃) is isomorphic to the
k-vector space

B =

{

(αns(α) − nt(α))α∈Q ∈ A

∣

∣

∣

∣

∣

(nx)x ∈
⊕

x∈P

idx ·N

}

.

For x ∈ P and m ∈ idx ·N , we define rxm = (rx,αm)α∈Q ∈ A by

rx,αm =











−αm (s(α) = x)

m (t(α) = x)

0 (otherwise).

It is clear that the k-vector space B is equal to

〈rxm |x ∈ P,m ∈ idx ·N〉 .

For j = 1, . . . , l and naj
∈ idaj

·N , we define raj
naj

to be raj
naj

+
∑i−1

k=1 rak
fknaj

.

For j = 1, . . . ,m and nbj ∈ idbj ·N , we define rbjnbj to be rbjnbj +
∑l

k=1 rak
fknbj .

It follows from the direct calculation that raj
naj

and rbjnbj are equal to vjnaj
and

wjnbj , respectively. Hence we have Theorem 3.1. �
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•
1
✛

α1
•
2

· · · •
n− 2

✛
αn−2

•
n− 1

✛
αn−1

•
n

Figure 1. The quiver in Example 4.1.

4. Some examples

In this section, we apply our algorithm to some examples of finite quivers to
calculate the first Baues–Wirsching cohomology. First we apply our algorithm to
some quivers whose set of vertices is a B2-free poset, which is discussed in [3].

Example 4.1. Let Pn = { 1, . . . , n }. Define αi to be an arrow from i+1 to i. Let
Qn = { αi | i = 1, . . . , n− 1 }. The quiver Qn is a chain in Figure 1. An output of
Algorithm 2.2 for Qn is

ai = i for i = 1, . . . , n− 1,

b1 = n, and

fi = αi for i = 1, . . . , n− 1.

Consider the small category Cn generated by Qn. An output of Algorithm 2.5 is

vj =

n−1
⊕

k=1

δj,k idak
for j = 1, . . . , n− 1, and

w1 = 0⊕(n−1).

For a kCn-module N ,

A1 =

n−1
⊕

k=1

idak
·N,

A2 = 0,

A3 = 0,

V̄ =

n−1
⊕

k=1

idak
·N, and

W̄ = 0.

By Theorem 3.1, we have

H1
BW (Cn, πCn

(N) ◦ t) = 0.

Example 4.2. Let Pn = { 1, . . . , n }∪{ x = 0 }. Define αi to be an arrow from i to
x. Let Qn = { αi | i = 1, . . . , n }. The quiver Qn is a quiver such that the targets
of each arrow is x. See Figure 2. An output of Algorithm 2.2 for Qn is

a1 = x,

bi = i for i = 1, . . . , n,

f1 = αn, and

gi = αi for i = 1, . . . , n− 1.
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• 1

• 2

...

• n

•x

✟✟✟✟✟✟✙

α0

✛
α1

❅
❅

❅
❅

❅
❅■

αn

Figure 2. The quiver in Example 4.2.

Consider the small category Cn generated by Qn. An output of Algorithm 2.5 is

v1 = (ida1
)⊕n,

wj = 0⊕

(

n−1
⊕

k=1

(−δj,kgk)

)

for j = 1, . . . , n, and

wn = 0⊕
(

f
⊕(n−1)
1

)

.

For a kCn-module N ,

A1 = ida1
·N,

A2 =
n−1
⊕

k=1

ida1
·N,

A3 = 0,

V̄ =
〈

m⊕n
∣

∣m ∈ ida1
·N
〉

, and

W̄ =

(

n−1
⊕

k=1

gk ·N

)

+
〈

f
⊕(n−1)
1 nb3

∣

∣

∣
nb3 ∈ idb3 ·N

〉

.

By Theorem 3.1, we have

H1
BW (C, πCn

(N) ◦ t) ∼= (A1 ⊕A2)/(V̄ + W̄ ).

Moreover, if N = kCn, then

H1
BW (Cn, πCn

(kCn) ◦ t)

∼=

(

n−1
⊕

k=1

(〈ida1
, f1〉+ 〈gj | j 6= k〉)

)

/

〈

f
⊕(n−1)
1

〉

.

Example 4.3. Let Pn = { xj = (0, j) | j ∈ Z/nZ }∪{ yj = (1, j) | j ∈ Z/nZ }. De-
fine αj and βj to be arrows from yj and yj−1 to xj , respectively. Let Qn =
{ αj | j ∈ Z/nZ } ∪ { βj | j ∈ Z/nZ }. The quiver Qn is a zigzag circle in Figure 3.
An output of Algorithm 2.2 for Qn is

aj = xj for j = 1, . . . , n,

bj = yj for j = 1, . . . , n,

fj = αj for j = 1, . . . , n, and

gj = βj for j = 1, . . . , n.
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• y1

• y2

• y3

• yn

✛
α1

✛
α2

✛
α3

✛
αn

•x1

•x2

•x3

•xn

✟✟✟✟✟✟✙

β2

✟✟✟✟✟✟✙

β3

✟✟✟ β4

✟✟✟ β1

✟✟✙

✟✟✙

...
...

...

Figure 3. The quiver in Example 4.3.

Consider the small category Cn generated by Qn. An output of Algorithm 2.5 is

vj = (

n
⊕

k=1

δj,k idak
)⊕ (

n
⊕

k=1

δj,k idak
) for j = 1, . . . , n, and

wj = (0⊕n)⊕ (

n
⊕

k=1

(δj,kfk − δj+1,kgk)) for j = 1, . . . , n.

For a kCn-module N ,

A1 =

n
⊕

k=1

idak
·N,

A2 =

n
⊕

k=1

idak
·N,

A3 = 0,

V̄ =
〈

vjnaj

∣

∣naj
∈ idaj

·N, j = 1, . . . , n
〉

, and

W̄ =
〈

wjnbj

∣

∣nbj ∈ idbj ·N, j = 1, . . . , n
〉

.

By Theorem 3.1, we have

H1
BW (Cn, πCn

(N) ◦ t) ∼= (A1 ⊕A2)/(V̄ + W̄ ).

Moreover, if N = kCn, then

H1
BW (Cn, πCn

(kCn) ◦ t) ∼=

n−1
⊕

k=0

〈idak
, fk〉 .

Next we consider examples which are not posets.

Example 4.4. Let Pn = Z/nZ. Define αj to be an arrow from j + 1 to j. Let
Qn = { αj | j ∈ Z/nZ }. The quiver Qn is a circle in Figure 4. An output of
Algorithm 2.2 for Qn is

aj = j for j = 1, . . . , n− 1,

b1 = n,

fj = αj for j = 1, . . . , n− 1, and

h1 = αn.
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•
n

•n− 1

•
1

•2❙
❙

❙
❙♦ α1

✛ αn

✓
✓

✓
✓✴

αn−1

Figure 4. The quiver in Example 4.4.

•
n

•n− 1

•
1

•2
❙

❙
❙♦ α1

✛ αn

✓
✓

✓✴

αn−1
❙
❙
❙✇β1

✲
βn

✓
✓
✓✼
βn−1

Figure 5. The quiver in Example 4.5.

Consider the small category Cn generated by Qn. An output of Algorithm 2.5 is

vj =

(

n−1
⊕

k=1

δj,k idak

)

⊕ (−h1f1 · · · fj−1) for j = 1, . . . , n,

w1 = 0⊕(n−1) ⊕ (idb1 −h1f1 · · · fn−1).

For a kCn-module N ,

A1 =

n−1
⊕

k=1

idak
·N,

A2 = 0,

A3 = idb1 ·N,

V̄ =
〈

vjnaj

∣

∣naj
∈ idaj

·N, j = 1, . . . , n− 1
〉

, and

W̄ = 〈w1nb1 |nb1 ∈ idb1 ·N〉 .

By Theorem 3.1, we have

H1
BW (Cn, πCn

(N) ◦ t) ∼= (A1 ⊕A3)/(V̄ + W̄ ).

Moreover, if N = kCn, then

H1
BW (Cn, πCn

(kCn) ◦ t)

∼= 〈ida0
〉+ 〈h1f1 · · · fj−1 | j = 1, . . . , n− 1〉 .

Example 4.5. Let Pn = Z/nZ. Define αj to be an arrow from j + 1 to j, and
βj to be an arrow from j to j + 1. Let Qn = { αj | j ∈ Z/nZ } ∪ { βj | j ∈ Z/nZ }.
The quiver Qn is a circle in Figure 5. An output of Algorithm 2.2 for Qn is
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aj = j for j = 1, . . . , n− 1,

b1 = n,

fj = αj for j = 1, . . . , n− 1,

g1 = βn,

hj = βj for j = 1, . . . , n− 1, and

hn = αn.

Consider the small category Cn generated by Qn. We define pi,j in kC by

pi,j =











fi · · · fj (if i < j + 1)

idai
(if i = j + 1)

0 (if i > j + 1)

.

An output of Algorithm 2.5 is

vi,j = δi,j idaj

for i = 1, . . . , n− 1, j = 1, . . . , n− 1,

vn,j = p1,j−1

for j = 1, . . . , n− 1,

vn+i,j = pi+1,j−1 − hipi,j−1

for i = 1, . . . , n− 1, j = 1, . . . , n− 1,

v2n,j = −hnp1,j−1

for j = 1, . . . , n− 1,

wi,1 = 0

for i = 1, . . . , n− 1,

wn,1 = p1,n−1 − g1,

wn+i,1 = pi+1,n−1 − hipi,n−1

for i = 1, . . . , n− 1, and

w2n,1 = idb1 −hnp1,n−1.

Let vj =
⊕2n

i=1 vi,j for j = 1, . . . , n− 1, and w1 =
⊕2n

i=1 wi,1. For a kCn-module N ,

A1 =

n−1
⊕

k=1

idak
·N,

A2 = ida1
·N,

A3 = (

n−1
⊕

k=2

idak
·N)⊕ (idb1 ·N)⊕ (idb1 ·N),

V̄ =
〈

vjnaj

∣

∣naj
∈ idaj

·N, j = 1, . . . , n− 1
〉

, and

W̄ = 〈w1nb1 |nb1 ∈ idb1 ·N〉 .

By Theorem 3.1, we have

H1
BW (Cn, πCn

(N) ◦ t) ∼= (A1 ⊕A2 ⊕A3)/(V̄ + W̄ ).
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