ON COMPUTATION OF THE FIRST BAUES-WIRSCHING COHOMOLOGY OF A FREELY-GENERATED SMALL CATEGORY

MOMOSE, YASUHIRO AND NUMATA, YASUHIDE

Abstract

The Baues-Wirsching cohomology is one of the cohomologies of a small category. Our aim is to describe the first Baues-Wirsching cohomology of the small category generated by a finite quiver freely. We consider the case where the coefficient is a natural system obtained by the composition of a functor and the target functor. We give an algorithm to obtain generators of the vector space of inner derivations. It is known that there exists a surjection from the vector space of derivations of the small category to the first BauesWirsching cohomology whose kernel is the vector space of inner derivations.

1. Introduction

Baues and Wirsching [1] introduced a cohomology of a small category, which is called nowadays the Baues-Wirsching cohomology. It is known that the BauesWirsching cohomology is a generalization of some cohomologies; e.g., the cohomology of a group G with coefficients in a left G-module, the singular cohomology of the classifying space of a small category with coefficients in a field, and so on. Let k be a field and D a natural system on a small category \mathcal{C}; that is, a functor from the category of factorizations in \mathcal{C} to the category k-Mod of left k-modules. The n-th Baues-Wirsching cohomology of \mathcal{C} with coefficients in D is denoted by $\mathrm{H}_{B W}^{n}(\mathcal{C}, D)$. For an equivalence $\phi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ of small categories and a natural system D on \mathcal{C}, Baues and Wirsching showed that the k-liner map $\tilde{\phi}: \mathrm{H}_{B W}^{n}(\mathcal{C}, D) \rightarrow \mathrm{H}_{B W}^{n}\left(\mathcal{C}^{\prime}, \phi^{*} D\right)$ induced by ϕ is an isomorphism for $n \in \mathbb{Z}$. The Baues-Wirsching cohomology is an invariant for the equivalence of small categories in this sense.

Assume that \mathcal{C} is freely generated by a quiver and that $D=\check{D} \circ t$ is the composition of \check{D} and the target functor t. In this case, it is known that $\mathrm{H}_{B W}^{n}(\mathcal{C}, D)$ vanishes for $n \geq 2$ and that $\mathrm{H}_{B W}^{0}(\mathcal{C}, D)$ is isomorphic to the limit $\lim _{\mathcal{C}} \bar{D}$. Therefore, we focus on the first cohomology $\mathrm{H}_{B W}^{1}(\mathcal{C}, D)$. Let $k \mathcal{C}$ be the category algebra of \mathcal{C}, i.e. the algebra whose basis is a morphism of \mathcal{C} and whose multiplication is the composition of morphisms (if the morphisms are not composable, then the multiplication is zero). Since \mathcal{C} is generated by Q, the category algebra is the path algebra $k Q$. Define the functor $\pi_{\mathcal{C}}$ from $k \mathcal{C}$-Mod to the category k - $\operatorname{Mod}^{\mathcal{C}}$ of functors from \mathcal{C} to k-Mod as follows: $\pi_{\mathcal{C}}$ maps an object M in $k \mathcal{C}$-Mod to the functor which maps $x \in \operatorname{ob}(\mathcal{C})$ to $\operatorname{id}_{x} \cdot M$ and which maps $u \in \operatorname{mor}(\mathcal{C})$ to the left multiplicative map of u; and $\pi_{\mathcal{C}}$ maps a morphism f in $k \mathcal{C}-\operatorname{Mod}$ to the natural transformation $\left\{\left.f\right|_{\mathrm{id}_{x} \cdot M}\right\}_{x \in \mathrm{ob}(\mathcal{C})}$. Since the set of objects in \mathcal{C} is finite, $\pi_{\mathcal{C}}$ is an equivalence of categories. (See [2].) Our algorithm introduced in this article computes the first cohomology $\mathrm{H}_{B W}^{1}\left(\mathcal{C}, \pi_{\mathcal{C}}(N) \circ t\right)$ for a left $k \mathcal{C}$-module N.

The authors give a description of the first Baues-Wirsching cohomology in the case where \mathcal{C} is a B_{2}-free poset [3]. The algorithm in this paper is a generalization of the idea of the special case.

[^0]This article is organized as follows: In Section [2.1] we define some notation. In Section 2.2, we give algorithms. In Section 3, we show our main result. We calculate the first Baues-Wirsching cohomology for some examples in Section 4.

2. Definition

2.1. Definition of the first Baues-Wirsching cohomology. We define some notation on the first Baues-Wirsching cohomology in this section.

Let P and Q be finite sets, s and t maps from Q to P. We call the set Q equipped with the triple $(P ; s, t)$ a finite quiver. We call an element of P a vertex and call an element of Q an arrow. An arrow $f \in Q$ such that $s(f)=a$ and $t(f)=b$ is denoted by $f: a \rightarrow b$. We call a sequence $f_{1} \cdots f_{l}$ of arrows a path of length l if $s\left(f_{i}\right)=t\left(f_{i+1}\right)$ for all i. A path $f_{1} \cdots f_{l}$ such that $t\left(f_{1}\right)=s\left(f_{l}\right)$ is called a cycle. We say that a quiver Q is acyclic if Q has no cycle. Let Q^{\prime} be a subset of Q and P^{\prime} a subset of P. We call the set Q^{\prime} equipped with the triple $\left(P^{\prime} ;\left.s\right|_{Q^{\prime}},\left.t\right|_{Q^{\prime}}\right)$ a subquiver of Q if $s\left(Q^{\prime}\right)$ and $t\left(Q^{\prime}\right)$ are subsets of P^{\prime}.

Let Q be a finite quiver. The category defined in the following manner is called the small category freely generated by Q :

- the set of objects is the set of vertices of Q;
- a morphism from x to y is a path from x to y;
- the identity id_{x} is the path from x to x of length 0 ; and
- if $s(f)=t(g)$, then the composition of morphisms f and g is the concatenation of paths f and g.
Let \mathcal{C} be a small category freely generated by Q. The category $\mathcal{F}(\mathcal{C})$ defined in the following manner is called the category of factorizations in \mathcal{C} :
- the objects are morphisms in \mathcal{C};
- a morphism from α to β is a pair (u, v) of morphisms in \mathcal{C} such that $\beta=$ $u \circ \alpha \circ v$; and
- the composition of $\left(u^{\prime}, v^{\prime}\right)$ and (u, v) is defined by $\left(u^{\prime}, v^{\prime}\right) \circ(u, v)=\left(u^{\prime} \circ\right.$ $\left.u, v \circ v^{\prime}\right)$.
A covariant functor from $\mathcal{F}(\mathcal{C})$ to k-Mod is called a natural system on a small category \mathcal{C}. Let D be a natural system on the small category \mathcal{C}. For $\alpha \in \operatorname{ob}(\mathcal{F}(\mathcal{C}))$, D_{α} denotes the k-module corresponding to α. For a pair (u, v) of composable morphisms, we define u_{*} and v^{*} by

$$
\begin{aligned}
u_{*} & =D\left(u, \operatorname{id}_{s(v)}\right): D_{v} \rightarrow D_{u \circ v} \\
v^{*} & =D\left(\operatorname{id}_{t(u)}, v\right): D_{u} \rightarrow D_{u \circ v}
\end{aligned}
$$

Let $d: \operatorname{mor}(\mathcal{C}) \rightarrow \prod_{\varphi \in \operatorname{mor}(\mathcal{C})} D_{\varphi}$ be a map such that $d(f) \in D_{f}$ for each $f \in \operatorname{mor}(\mathcal{C})$. We call d a derivation from \mathcal{C} to D if $d(f \circ g)=f_{*}(d g)+g^{*}(d f)$ for each pair (f, g) of composable morphisms. We define $\operatorname{Der}(\mathcal{C}, D)$ to be the k-vector space of derivations from \mathcal{C} to D. We call d an inner derivation from \mathcal{C} to D if there exists an element $\left(n_{x}\right)_{x \in \operatorname{ob}(\mathcal{C})} \in \prod_{x \in \operatorname{ob}(\mathcal{C})} D_{\mathrm{id}_{x}}$ such that $d(f)=f_{*}\left(n_{s(f)}\right)-f^{*}\left(n_{t(f)}\right)$ for each $f \in \operatorname{mor}(\mathcal{C})$. We define $\operatorname{Ider}(\mathcal{C}, D)$ to be the k-vector space of inner derivations from \mathcal{C} to D. The first Baues-Wirsching cohomology $\mathrm{H}_{B W}^{1}(\mathcal{C}, D)$ is the quotient space $\operatorname{Der}(\mathcal{C}, D) / \operatorname{Ider}(\mathcal{C}, D)$.

Remark 2.1. Let Q be a quiver, \mathcal{C} a small category freely generated by Q, N a $k \mathcal{C}$-module, t the target functor, and \tilde{D} the natural system $\pi_{\mathcal{C}}(N) \circ t$. For a pair (u, v) of composable morphisms, u_{*} (resp. v^{*}) maps $m \in \tilde{D}_{v}=\operatorname{id}_{t(v)} \cdot N$ (resp. $\left.n \in \tilde{D}_{u}=\operatorname{id}_{t(u)} \cdot N\right)$ to $u \cdot m \in \tilde{D}_{u \circ v}=\operatorname{id}_{t(u)} \cdot N\left(\right.$ resp. $\left.n \in \tilde{D}_{u \circ v}=\operatorname{id}_{t(u)} \cdot N\right)$.
2.2. Definition of algorithms. In this section, we give algorithms to obtain generators of $\operatorname{Ider}(\mathcal{C}, D)$.

Let Q be a finite quiver, and P the set of vertices of Q. For subsets Q_{1}, Q_{3} of Q and a subset \hat{P} of P, we define the set $H\left(\hat{P} ; Q, Q_{1}, Q_{3}\right)$ to be

$$
\left\{\begin{array}{l|l}
h \in Q_{3} & \begin{array}{l}
t(h) \in \hat{P} . \\
h p \text { is not a cycle in } Q \text { for any path } p \text { in } Q_{1} .
\end{array}
\end{array}\right\} .
$$

For subsets Q_{1}, Q_{2} of Q and $h \in H\left(\hat{P} ; Q, Q_{1}, Q_{3}\right)$, we define the set $G\left(Q_{1}, Q_{2} ; h\right)$ to be

$$
\left\{\begin{array}{l|l}
g \in Q_{2} & \begin{array}{l}
\text { There exists a cycle in } Q_{1} \cup Q_{2} \cup\{h\} \\
\text { which contains } g \text { and } h .
\end{array}
\end{array}\right\} .
$$

Algorithm 2.2.

Input: a finite quiver Q.
Output: $\left(\left(a_{i}\right)_{i=1}^{l} ;\left(b_{i}\right)_{i=1}^{m} ;\left(f_{1}\right)_{i=1}^{l} ;\left(g_{i}\right)_{i=1}^{n} ;\left(h_{i}\right)_{i=1}^{r}\right)$.

Procedure:

(1) Let P be the set of vertices of Q.
(2) Let $\check{P}=\emptyset, \hat{P}=P, Q_{1}=\emptyset, Q_{2}=\emptyset, Q_{3}=Q$.
(3) While $H\left(\hat{P} ; Q, Q_{1}, Q_{3}\right) \neq \emptyset$, do the following:
(a) Choose an element $h \in H\left(\hat{P} ; Q, Q_{1}, Q_{3}\right)$.
(b) Let $Q^{\prime}=\left(\left(Q_{1} \cup Q_{2}\right) \backslash G\left(Q_{1}, Q_{2} ; h\right)\right) \cup\{h\}$.
(c) Let \bar{Q} be a maximal acyclic subquiver of Q including Q^{\prime}.
(d) Let $\check{P}=\{a \in P \mid \exists f \in \bar{Q}$ such that $t(f)=a$. $\}$.
(e) Let $\hat{P}=P \backslash \check{P}$.
(f) For each $a \in \check{P}$, choose $f_{a} \in \bar{Q}$ so that $t\left(f_{a}\right)=a$.
(g) Let $Q_{1}=\left\{f_{a} \mid a \in \check{P}\right\}, Q_{2}=Q^{\prime} \backslash Q_{1}$, and $Q_{3}=Q \backslash Q^{\prime}$.
(4) Let $l=|\check{P}|$. For $i=1, \ldots, l$, do the following:
(a) Choose a vertex $x \in \check{P}$ such that there exists no arrow in Q_{1} whose source is x.
(b) Let $a_{i}=x$.
(c) For $\alpha \in Q_{1}$ so that $t(\alpha)=x$, let $f_{i}=\alpha$.
(d) Let $\check{P}=\check{P} \backslash\{x\}$, and $Q_{1}=Q_{1} \backslash\{\alpha\}$.
(5) Let $\left\{b_{1}, \ldots, b_{m}\right\}=\hat{P}$.
(6) Let $\left\{g_{1}, \ldots, g_{n}\right\}=Q_{2}$.
(7) Let $\left\{h_{1}, \ldots, h_{r}\right\}=Q_{3}$.

Remark 2.3. In Step 3 in Algorithm 2.2, $\left|H\left(\hat{P} ; Q, Q_{1}, Q_{3}\right)\right|$ strictly decreases since $|\hat{P}|$ decreases in each step. Hence Step 3 is a finite procedure.

Remark 2.4. Let $\left(\left(a_{i}\right)_{i=1}^{l} ;\left(b_{i}\right)_{i=1}^{m} ;\left(f_{1}\right)_{i=1}^{l} ;\left(g_{i}\right)_{i=1}^{n} ;\left(h_{i}\right)_{i=1}^{r}\right)$ be an output of Algorithm 2.2. Let

$$
\begin{aligned}
\check{P} & =\left\{a_{1}, \ldots, a_{l}\right\}, \\
\hat{P} & =\left\{b_{1}, \ldots, b_{m}\right\}, \\
Q_{1} & =\left\{f_{1}, \ldots, f_{l}\right\}, \\
Q_{2} & =\left\{g_{1}, \ldots, g_{n}\right\}, \text { and } \\
Q_{3} & =\left\{h_{1}, \ldots, h_{r}\right\} .
\end{aligned}
$$

The set $\check{P} \coprod \hat{P}$ is decomposition of P. The set $Q_{1} \coprod Q_{2} \coprod Q_{3}$ is also decomposition of Q. By Step4] in Algorithm [2.2, a_{i} corresponds to the target of f_{i} for $i=1, \ldots, l$. Hence if there exists a path from a_{j} to a_{i} or a path from b_{j} to a_{i} in Q_{1}, then the path is unique. Since the quiver $Q_{1} \cup Q_{2}$ is a maximal acyclic subquiver of Q, we can regard \check{P} as a poset. Moreover, if $a_{j} \leq a_{i}$ in the poset \check{P}, then the inequality
$i \leq j$ holds. If Q is a finite acyclic quiver, then Q_{3} is the empty set. By Step 3 in Algorithm 2.2. for h_{i} so that $t\left(h_{i}\right) \in \hat{P}$, there exists a path p in Q_{1} such that $h_{i} p$ is a cycle in Q.

Algorithm 2.5.

Input: $\left(\left(a_{i}\right)_{i=1}^{l} ;\left(b_{i}\right)_{i=1}^{m} ;\left(f_{1}\right)_{i=1}^{l} ;\left(g_{i}\right)_{i=1}^{n} ;\left(h_{i}\right)_{i=1}^{r}\right)$.
Output: (V, W).

Procedure:

(1) Let $Q_{1}=\left\{f_{1}, \ldots, f_{l}\right\}$.
(2) (We define elements $v_{i, j}$ in the path algebra $k Q$.) For $j=1, \ldots, l$, do the following:
(a) For $i=1, \ldots, l$, let $v_{i, j}=0$.
(b) Let $v_{j, j}=\operatorname{id}_{a_{j}}$
(c) For $i=1, \ldots, n$, do the following:
(i) Let $v_{l+i, j}=0$.
(ii) If there exists a path p from a_{j} to $t\left(g_{i}\right)$ in Q_{1}, then let $v_{l+i, j}=v_{l+i, j}+p$.
(iii) If there exists a path p from a_{j} to $s\left(g_{i}\right)$ in Q_{1}, then let $v_{l+i, j}=v_{l+i, j}-g_{i} p$.
(d) For $i=1, \ldots, r$, do the following:
(i) Let $v_{l+n+i, j}=0$.
(ii) If there exists a path p from a_{j} to $t\left(h_{i}\right)$ in Q_{1}, then let $v_{l+n+i, j}=v_{l+n+i, j}+p$.
(iii) If there exists a path p from a_{j} to $s\left(h_{i}\right)$ in Q_{1}, then let $v_{l+n+i, j}=v_{l+n+i, j}-h_{i} p$.
(3) Let $V=\left(v_{i, j}\right)_{1 \leq i \leq l+n+r,}, 1 \leq j \leq l$.
(4) (We define elements $w_{i, j}$ in the path algebra $k Q$.) For $j=1, \ldots, m$, do the following:
(a) For $i=1, \ldots, l$, let $w_{i, j}=0$.
(b) For $i=1, \ldots, n$, do the following:
(i) Let $w_{l+i, j}=0$.
(ii) If there exists a path p from b_{j} to $t\left(g_{i}\right)$ in Q_{1}, then let $w_{l+i, j}=w_{l+i, j}+p$.
(iii) If there exists a path p from b_{j} to $s\left(g_{i}\right)$ in Q_{1}, then let $w_{l+i, j}=w_{l+i, j}-g_{i} p$.
(c) For $i=1, \ldots, r$, do the following:
(i) Let $w_{l+n+i, j}=0$.
(ii) If there exists a path p from b_{j} to $t\left(h_{i}\right)$ in Q_{1}, then let $w_{l+n+i, j}=w_{l+n+i, j}+p$.
(iii) If there exists a path p from b_{j} to $s\left(h_{i}\right)$ in Q_{1}, then let $w_{l+n+i, j}=w_{l+n+i, j}-h_{i} p$.
(5) Let $W=\left(w_{i, j}\right)_{1 \leq i \leq l+n+r, ~} 1 \leq j \leq m$.

Remark 2.6. Let (V, W) be the output of Algorithm 2.5for some input. The matrix $\left(v_{i, j}\right)_{1 \leq i \leq l, 1 \leq j \leq l}$ is the identity matrix, i.e., the diagonal matrix whose entries one $\left(\operatorname{id}_{a_{1}}, \ldots, \operatorname{id}_{a_{l}}\right)$. The matrix $\left(w_{i, j}\right)_{1 \leq i \leq l, 1 \leq j \leq m}$ is the zero matrix.

3. Our main result

We show our main result in this section. Our main result computes the first Baues-Wirsching cohomology via the column echelon matrix obtained by our algorithm.

Let Q be a finite quiver, \mathcal{C} a small category freely generated by Q. Fix a left $k \mathcal{C}$-module N, and consider the natural system $\tilde{D}=\pi_{\mathcal{C}}(N) \circ t$.

Let $T=\left(\left(a_{i}\right)_{i=1}^{l} ;\left(b_{i}\right)_{i=1}^{m} ;\left(f_{1}\right)_{i=1}^{l} ;\left(g_{i}\right)_{i=1}^{n} ;\left(h_{i}\right)_{i=1}^{r}\right)$ be the output of Algorithm 2.2 for Q. We define the k-vector space A_{1}, A_{2}, and A_{3} by

$$
A_{1}=\bigoplus_{i=1}^{l} \tilde{D}_{f_{i}}, \quad A_{2}=\bigoplus_{i=1}^{n} \tilde{D}_{g_{i}}, \text { and } \quad A_{3}=\bigoplus_{i=1}^{r} \tilde{D}_{h_{i}}
$$

Let (V, W) be the output of Algorithm 2.5 for T. Let v_{j} and w_{j} be the j-th column vector of V and W, respectively. The vectors v_{j} and w_{j} are elements of $\bigoplus_{i=1}^{l+n+r} k \mathcal{C}$. We define the k-vector spaces \bar{V} and \bar{W} by

$$
\begin{aligned}
\bar{V} & =\left\langle v_{j} n_{a_{j}} \mid n_{a_{j}} \in \operatorname{id}_{a_{j}} \cdot N, 1 \leq j \leq l\right\rangle \\
\bar{W} & =\left\langle w_{j} n_{b_{j}} \mid n_{b_{j}} \in \operatorname{id}_{b_{j}} \cdot N, 1 \leq j \leq m\right\rangle
\end{aligned}
$$

Theorem 3.1. The first Baues-Wirsching cohomology $\mathrm{H}_{B W}^{1}(\mathcal{C}, \tilde{D})$ is isomorphic to

$$
\left(A_{1} \oplus A_{2} \oplus A_{3}\right) /(\bar{V}+\bar{W})
$$

as k-vector spaces.
Proof. According to Baues and Wirsching [1], if \mathcal{C} is freely generated by $S \subset \operatorname{mor}(\mathcal{C})$, then we can identify $\operatorname{Der}(\mathcal{C}, D)$ with $\prod_{\alpha \in S} D_{\alpha}$. Via the identification, $\operatorname{Ider}(\mathcal{C}, D)$ is the k-vector space

$$
\left\{\left(\alpha_{*}\left(n_{s(\alpha)}\right)-\alpha^{*}\left(n_{t(\alpha)}\right)\right)_{\alpha} \in \prod_{\alpha \in S} D_{\alpha} \mid\left(n_{x}\right)_{x} \in \prod_{x \in \operatorname{ob}(\mathcal{C})} D_{\mathrm{id}_{x}}\right\}
$$

Let

$$
\begin{aligned}
& Q=\left\{f_{i} \mid 1 \leq i \leq l\right\} \cup\left\{g_{i} \mid 1 \leq i \leq n\right\} \cup\left\{h_{i} \mid 1 \leq i \leq r\right\}, \text { and } \\
& P=\left\{a_{i} \mid 1 \leq i \leq l\right\} \cup\left\{b_{i} \mid 1 \leq i \leq m\right\}
\end{aligned}
$$

It follows that $\operatorname{Der}(\mathcal{C}, \tilde{D}) \cong A_{1} \oplus A_{2} \oplus A_{3}$. Hence $\operatorname{Ider}(\mathcal{C}, \tilde{D})$ is isomorphic to the k-vector space

$$
B=\left\{\left(\alpha n_{s(\alpha)}-n_{t(\alpha)}\right)_{\alpha \in Q} \in A \mid\left(n_{x}\right)_{x} \in \bigoplus_{x \in P} \operatorname{id}_{x} \cdot N\right\}
$$

For $x \in P$ and $m \in \operatorname{id}_{x} \cdot N$, we define $r_{x} m=\left(r_{x, \alpha} m\right)_{\alpha \in Q} \in A$ by

$$
r_{x, \alpha} m= \begin{cases}-\alpha m & (s(\alpha)=x) \\ m & (t(\alpha)=x) \\ 0 & (\text { otherwise })\end{cases}
$$

It is clear that the k-vector space B is equal to

$$
\left\langle r_{x} m \mid x \in P, m \in \operatorname{id}_{x} \cdot N\right\rangle
$$

For $j=1, \ldots, l$ and $n_{a_{j}} \in \operatorname{id}_{a_{j}} \cdot N$, we define $\overline{r_{a_{j}}} n_{a_{j}}$ to be $r_{a_{j}} n_{a_{j}}+\sum_{k=1}^{i-1} \overline{r_{a_{k}}} f_{k} n_{a_{j}}$. For $j=1, \ldots, m$ and $n_{b_{j}} \in \operatorname{id}_{b_{j}} \cdot N$, we define $\overline{r_{b_{j}}} n_{b_{j}}$ to be $r_{b_{j}} n_{b_{j}}+\sum_{k=1}^{l} \overline{r_{a_{k}}} f_{k} n_{b_{j}}$. It follows from the direct calculation that $\overline{r_{a_{j}}} n_{a_{j}}$ and $\overline{r_{b_{j}}} n_{b_{j}}$ are equal to $v_{j} n_{a_{j}}$ and $w_{j} n_{b_{j}}$, respectively. Hence we have Theorem 3.1.

Figure 1. The quiver in Example 4.1

4. Some examples

In this section, we apply our algorithm to some examples of finite quivers to calculate the first Baues-Wirsching cohomology. First we apply our algorithm to some quivers whose set of vertices is a B_{2}-free poset, which is discussed in [3].

Example 4.1. Let $P_{n}=\{1, \ldots, n\}$. Define α_{i} to be an arrow from $i+1$ to i. Let $Q_{n}=\left\{\alpha_{i} \mid i=1, \ldots, n-1\right\}$. The quiver Q_{n} is a chain in Figure 1. An output of Algorithm 2.2 for Q_{n} is

$$
\begin{aligned}
& a_{i}=i \text { for } i=1, \ldots, n-1, \\
& b_{1}=n, \text { and } \\
& f_{i}=\alpha_{i} \text { for } i=1, \ldots, n-1 .
\end{aligned}
$$

Consider the small category \mathcal{C}_{n} generated by Q_{n}. An output of Algorithm 2.5 is

$$
\begin{aligned}
& v_{j}=\bigoplus_{k=1}^{n-1} \delta_{j, k} \operatorname{id}_{a_{k}} \text { for } j=1, \ldots, n-1, \text { and } \\
& w_{1}=0^{\oplus(n-1)}
\end{aligned}
$$

For a $k \mathcal{C}_{n}$-module N,

$$
\begin{aligned}
A_{1} & =\bigoplus_{k=1}^{n-1} \mathrm{id}_{a_{k}} \cdot N, \\
A_{2} & =0 \\
A_{3} & =0, \\
\bar{V} & =\bigoplus_{k=1}^{n-1} \mathrm{id}_{a_{k}} \cdot N, \text { and } \\
\bar{W} & =0
\end{aligned}
$$

By Theorem 3.1 we have

$$
\mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}(N) \circ t\right)=0
$$

Example 4.2. Let $P_{n}=\{1, \ldots, n\} \cup\{x=0\}$. Define α_{i} to be an arrow from i to x. Let $Q_{n}=\left\{\alpha_{i} \mid i=1, \ldots, n\right\}$. The quiver Q_{n} is a quiver such that the targets of each arrow is x. See Figure 2, An output of Algorithm 2.2 for Q_{n} is

$$
\begin{aligned}
a_{1} & =x, \\
b_{i} & =i \text { for } i=1, \ldots, n, \\
f_{1} & =\alpha_{n}, \text { and } \\
g_{i} & =\alpha_{i} \text { for } i=1, \ldots, n-1 .
\end{aligned}
$$

Figure 2. The quiver in Example 4.2

Consider the small category \mathcal{C}_{n} generated by Q_{n}. An output of Algorithm 2.5 is

$$
\begin{aligned}
& v_{1}=\left(\operatorname{id}_{a_{1}}\right)^{\oplus n} \\
& w_{j}=0 \oplus\left(\bigoplus_{k=1}^{n-1}\left(-\delta_{j, k} g_{k}\right)\right) \text { for } j=1, \ldots, n, \text { and } \\
& w_{n}=0 \oplus\left(f_{1}^{\oplus(n-1)}\right) .
\end{aligned}
$$

For a $k \mathcal{C}_{n}$-module N,

$$
\begin{aligned}
A_{1} & =\operatorname{id}_{a_{1}} \cdot N \\
A_{2} & =\bigoplus_{k=1}^{n-1} \operatorname{id}_{a_{1}} \cdot N, \\
A_{3} & =0 \\
\bar{V} & =\left\langle m^{\oplus n} \mid m \in \operatorname{id}_{a_{1}} \cdot N\right\rangle, \text { and } \\
\bar{W} & =\left(\bigoplus_{k=1}^{n-1} g_{k} \cdot N\right)+\left\langle f_{1}^{\oplus(n-1)} n_{b_{3}} \mid n_{b_{3}} \in \operatorname{id}_{b_{3}} \cdot N\right\rangle .
\end{aligned}
$$

By Theorem 3.1 we have

$$
\mathrm{H}_{B W}^{1}\left(\mathcal{C}, \pi_{\mathcal{C}_{n}}(N) \circ t\right) \cong\left(A_{1} \oplus A_{2}\right) /(\bar{V}+\bar{W})
$$

Moreover, if $N=k \mathcal{C}_{n}$, then

$$
\begin{aligned}
& \mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}\left(k \mathcal{C}_{n}\right) \circ t\right) \\
\cong & \left(\bigoplus_{k=1}^{n-1}\left(\left\langle\operatorname{id}_{a_{1}}, f_{1}\right\rangle+\left\langle g_{j} \mid j \neq k\right\rangle\right)\right) /\left\langle f_{1}^{\oplus(n-1)}\right\rangle .
\end{aligned}
$$

Example 4.3. Let $P_{n}=\left\{x_{j}=(0, j) \mid j \in \mathbb{Z} / n \mathbb{Z}\right\} \cup\left\{y_{j}=(1, j) \mid j \in \mathbb{Z} / n \mathbb{Z}\right\}$. Define α_{j} and β_{j} to be arrows from y_{j} and y_{j-1} to x_{j}, respectively. Let $Q_{n}=$ $\left\{\alpha_{j} \mid j \in \mathbb{Z} / n \mathbb{Z}\right\} \cup\left\{\beta_{j} \mid j \in \mathbb{Z} / n \mathbb{Z}\right\}$. The quiver Q_{n} is a zigzag circle in Figure 3 An output of Algorithm 2.2 for Q_{n} is

$$
\begin{aligned}
a_{j} & =x_{j} \text { for } j=1, \ldots, n, \\
b_{j} & =y_{j} \text { for } j=1, \ldots, n, \\
f_{j} & =\alpha_{j} \text { for } j=1, \ldots, n, \text { and } \\
g_{j} & =\beta_{j} \text { for } j=1, \ldots, n .
\end{aligned}
$$

Figure 3. The quiver in Example 4.3

Consider the small category \mathcal{C}_{n} generated by Q_{n}. An output of Algorithm 2.5 is

$$
\begin{aligned}
& v_{j}=\left(\bigoplus_{k=1}^{n} \delta_{j, k} \operatorname{id}_{a_{k}}\right) \oplus\left(\bigoplus_{k=1}^{n} \delta_{j, k} \operatorname{id}_{a_{k}}\right) \text { for } j=1, \ldots, n, \text { and } \\
& w_{j}=\left(0^{\oplus n}\right) \oplus\left(\bigoplus_{k=1}^{n}\left(\delta_{j, k} f_{k}-\delta_{j+1, k} g_{k}\right)\right) \text { for } j=1, \ldots, n .
\end{aligned}
$$

For a $k \mathcal{C}_{n}$-module N,

$$
\begin{aligned}
A_{1} & =\bigoplus_{k=1}^{n} \operatorname{id}_{a_{k}} \cdot N, \\
A_{2} & =\bigoplus_{k=1}^{n} \operatorname{id}_{a_{k}} \cdot N, \\
A_{3} & =0, \\
\bar{V} & =\left\langle v_{j} n_{a_{j}} \mid n_{a_{j}} \in \operatorname{id}_{a_{j}} \cdot N, j=1, \ldots, n\right\rangle, \text { and } \\
\bar{W} & =\left\langle w_{j} n_{b_{j}} \mid n_{b_{j}} \in \operatorname{id}_{b_{j}} \cdot N, j=1, \ldots, n\right\rangle .
\end{aligned}
$$

By Theorem 3.1 we have

$$
\mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}(N) \circ t\right) \cong\left(A_{1} \oplus A_{2}\right) /(\bar{V}+\bar{W})
$$

Moreover, if $N=k \mathcal{C}_{n}$, then

$$
\mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}\left(k \mathcal{C}_{n}\right) \circ t\right) \cong \bigoplus_{k=0}^{n-1}\left\langle\operatorname{id}_{a_{k}}, f_{k}\right\rangle
$$

Next we consider examples which are not posets.
Example 4.4. Let $P_{n}=\mathbb{Z} / n \mathbb{Z}$. Define α_{j} to be an arrow from $j+1$ to j. Let $Q_{n}=\left\{\alpha_{j} \mid j \in \mathbb{Z} / n \mathbb{Z}\right\}$. The quiver Q_{n} is a circle in Figure 4. An output of Algorithm 2.2 for Q_{n} is

$$
\begin{aligned}
a_{j} & =j \text { for } j=1, \ldots, n-1 \\
b_{1} & =n \\
f_{j} & =\alpha_{j} \text { for } j=1, \ldots, n-1, \text { and } \\
h_{1} & =\alpha_{n}
\end{aligned}
$$

Figure 4. The quiver in Example 4.4

Figure 5. The quiver in Example 4.5

Consider the small category \mathcal{C}_{n} generated by Q_{n}. An output of Algorithm 2.5 is

$$
\begin{aligned}
& v_{j}=\left(\bigoplus_{k=1}^{n-1} \delta_{j, k} \operatorname{id}_{a_{k}}\right) \oplus\left(-h_{1} f_{1} \cdots f_{j-1}\right) \text { for } j=1, \ldots, n, \\
& w_{1}=0^{\oplus(n-1)} \oplus\left(\mathrm{id}_{b_{1}}-h_{1} f_{1} \cdots f_{n-1}\right) .
\end{aligned}
$$

For a $k \mathcal{C}_{n}$-module N,

$$
\begin{aligned}
A_{1} & =\bigoplus_{k=1}^{n-1} \operatorname{id}_{a_{k}} \cdot N, \\
A_{2} & =0 \\
A_{3} & =\operatorname{id}_{b_{1}} \cdot N \\
\bar{V} & =\left\langle v_{j} n_{a_{j}} \mid n_{a_{j}} \in \operatorname{id}_{a_{j}} \cdot N, j=1, \ldots, n-1\right\rangle, \text { and } \\
\bar{W} & =\left\langle w_{1} n_{b_{1}} \mid n_{b_{1}} \in \operatorname{id}_{b_{1}} \cdot N\right\rangle .
\end{aligned}
$$

By Theorem 3.1 we have

$$
\mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}(N) \circ t\right) \cong\left(A_{1} \oplus A_{3}\right) /(\bar{V}+\bar{W})
$$

Moreover, if $N=k \mathcal{C}_{n}$, then

$$
\begin{aligned}
& \mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}\left(k \mathcal{C}_{n}\right) \circ t\right) \\
\cong & \left\langle\mathrm{id}_{a_{0}}\right\rangle+\left\langle h_{1} f_{1} \cdots f_{j-1} \mid j=1, \ldots, n-1\right\rangle .
\end{aligned}
$$

Example 4.5. Let $P_{n}=\mathbb{Z} / n \mathbb{Z}$. Define α_{j} to be an arrow from $j+1$ to j, and β_{j} to be an arrow from j to $j+1$. Let $Q_{n}=\left\{\alpha_{j} \mid j \in \mathbb{Z} / n \mathbb{Z}\right\} \cup\left\{\beta_{j} \mid j \in \mathbb{Z} / n \mathbb{Z}\right\}$. The quiver Q_{n} is a circle in Figure 5 An output of Algorithm 2.2 for Q_{n} is

$$
\begin{aligned}
a_{j} & =j \text { for } j=1, \ldots, n-1, \\
b_{1} & =n \\
f_{j} & =\alpha_{j} \text { for } j=1, \ldots, n-1, \\
g_{1} & =\beta_{n} \\
h_{j} & =\beta_{j} \text { for } j=1, \ldots, n-1, \text { and } \\
h_{n} & =\alpha_{n}
\end{aligned}
$$

Consider the small category \mathcal{C}_{n} generated by Q_{n}. We define $p_{i, j}$ in $k \mathcal{C}$ by

$$
p_{i, j}= \begin{cases}f_{i} \cdots f_{j} & (\text { if } i<j+1) \\ \operatorname{id}_{a_{i}} & (\text { if } i=j+1) \\ 0 & (\text { if } i>j+1)\end{cases}
$$

An output of Algorithm 2.5 is

$$
\begin{aligned}
v_{i, j} & =\delta_{i, j} \operatorname{id}_{a_{j}} \\
& \text { for } i=1, \ldots, n-1, j=1, \ldots, n-1 \\
v_{n, j} & =p_{1, j-1} \\
& \text { for } j=1, \ldots, n-1 \\
v_{n+i, j} & =p_{i+1, j-1}-h_{i} p_{i, j-1} \\
& \text { for } i=1, \ldots, n-1, j=1, \ldots, n-1, \\
v_{2 n, j} & =-h_{n} p_{1, j-1} \\
& \text { for } j=1, \ldots, n-1 \\
w_{i, 1} & =0 \\
& \text { for } i=1, \ldots, n-1 \\
w_{n, 1} & =p_{1, n-1}-g_{1}, \\
w_{n+i, 1} & =p_{i+1, n-1}-h_{i} p_{i, n-1} \\
& \text { for } i=1, \ldots, n-1, \text { and } \\
w_{2 n, 1} & =\operatorname{id}_{b_{1}}-h_{n} p_{1, n-1} .
\end{aligned}
$$

Let $v_{j}=\bigoplus_{i=1}^{2 n} v_{i, j}$ for $j=1, \ldots, n-1$, and $w_{1}=\bigoplus_{i=1}^{2 n} w_{i, 1}$. For a $k \mathcal{C}_{n}$-module N,

$$
\begin{aligned}
A_{1} & =\bigoplus_{k=1}^{n-1} \operatorname{id}_{a_{k}} \cdot N \\
A_{2} & =\operatorname{id}_{a_{1}} \cdot N \\
A_{3} & =\left(\bigoplus_{k=2}^{n-1} \operatorname{id}_{a_{k}} \cdot N\right) \oplus\left(\operatorname{id}_{b_{1}} \cdot N\right) \oplus\left(\operatorname{id}_{b_{1}} \cdot N\right) \\
\bar{V} & =\left\langle v_{j} n_{a_{j}} \mid n_{a_{j}} \in \operatorname{id}_{a_{j}} \cdot N, j=1, \ldots, n-1\right\rangle, \text { and } \\
\bar{W} & =\left\langle w_{1} n_{b_{1}} \mid n_{b_{1}} \in \operatorname{id}_{b_{1}} \cdot N\right\rangle
\end{aligned}
$$

By Theorem 3.1 we have

$$
\mathrm{H}_{B W}^{1}\left(\mathcal{C}_{n}, \pi_{\mathcal{C}_{n}}(N) \circ t\right) \cong\left(A_{1} \oplus A_{2} \oplus A_{3}\right) /(\bar{V}+\bar{W})
$$

References

[1] H. J. Baues and G. Wirsching. Cohomology of small categories. J. Pure Appl. Algebra, 38(2-3):187-211, 1985.
[2] B. Mitchell. Rings with several objects. Advances in Math., 8:1-161, 1972.
[3] Y. Momose and Y. Numata. On the Baues-Wirsching cohomology of B_{2}-free posets. in preparation.
(Y. Momose) Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 JAPAN

E-mail address: momose@math.shinshu-u.ac.jp
(Y. Numata) Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 JAPAN

E-mail address: nu@math.shinshu-u.ac.jp

[^0]: Key words and phrases. Finite quivers; path algebras; category algebras; inner derivations; Gaussian elimination.

