
#A67 INTEGERS 13 (2013)

COMPUTATION OF AN IMPROVED LOWER BOUND TO
GIUGA’S PRIMALITY CONJECTURE

Jonathan Borwein
Centre for Computer-assisted Research Mathematics and its Applications
(CARMA), School of Mathematical and Physical Sciences, University of

Newcastle, Australia
jonathan.borwein@newcastle.edu.au jborwein@gmail.com

Christopher Maitland
Mathematical Sciences Institute, Australian National University, Canberra,

Australia
c3053540@gmail.com

Matthew Skerritt
Centre for Computer-assisted Research Mathematics and its Applications
(CARMA), School of Mathematical and Physical Sciences, University of

Newcastle, Australia
matt.skerritt@gmail.com

Received: 3/7/13, Accepted: 9/5/13, Published: 10/10/13

Abstract
Our most recent computations tell us that any counterexample to Giuga’s 1950
primality conjecture must have at least 19,908 decimal digits. Equivalently, any
number which is both a Giuga and a Carmichael number must have at least 19,908
decimal digits. This bound has not been achieved through exhaustive testing of
all numbers with up to 19,908 decimal digits, but rather through exploitation of
the properties of Giuga and Carmichael numbers. This bound improves upon the
1996 bound of one of the authors. We present the algorithm used, and our im-
proved bound. We also discuss the changes over the intervening years as well as the
challenges to further computation.

1. Introduction

In a 1950 paper [9] Giuseppe Giuga formulated his now well-known prime number
conjecture:

Conjecture 1 (Giuga Conjecture). An integer, n > 1, is prime if and only if

sn :=
n−1∑

k=1

kn−1 ≡ −1 (mod n).

INTEGERS: 13 (2013) 2

In 1995, Takahashi Agoh [1] showed that this is equivalent to:

Conjecture 2 (Giuga-Agoh Conjecture). An odd integer, n > 1, is prime if and
only if the even Bernoulli number Bn−1 satisfies

nBn−1 ≡ −1 (mod n).

A more recent generalisation of Giuga’s conjecture can be found in [12].

1.1. Giuga and Carmichael numbers

Herein, we present enough background material to facilitate understanding of the
algorithm with which lower bounds to any possible counterexample were computed.
For more details, including proofs of the theorems below, see [6, 7, 8].

We begin by observing that if p is prime, then sp ≡ p−1 (mod p) is an immediate
consequence of Fermat’s little theorem. The question, then, is whether there exists
any composite n with sn ≡ n− 1 (mod n). To this end, Giuga proved the following
theorem.

Theorem 3. An integer, n > 1, satisfies sn ≡ −1 (mod n) if and only if each
prime divisor p of n satisfies:

p |
(
n

p
− 1

)
, (1)

(p− 1) |
(
n

p
− 1

)
. (2)

Any composite number satisfying (1) is known as a Giuga number. It is currently
unknown whether there are infinitely many Giuga numbers, or whether there are
any odd Giuga numbers. Recent papers on Giuga numbers include [10, 11]. Note
that Giuga numbers must be square-free. To see this we suppose n = p2q and
observe that (1) implies p | (pq − 1), which is impossible.

Giuga numbers may be characterised in the following manner, which is useful in
the computation of exclusion bounds for counterexamples.

Theorem 4. A composite number n ∈ N is a Giuga number if and only if it is
square-free and satisfies ∑

p |n

1

p
−

∏

p |n

1

p
∈ N.

Composite, square-free numbers satisfying (2) are called Carmichael numbers.
We may replace (2) with the equivalent formulation:

(p− 1) | (n− 1). (3)

INTEGERS: 13 (2013) 3

It has been shown that there are infinitely many Carmichael numbers [2]. Indeed,
for any ε > 0, for sufficiently large x the number of Carmichael numbers n ≤ x
exceeds xβ−ε where β := 0.33222... > 2/7 is an explicit constant. More recently,
various interesting density estimates have been given in [5, 14, 16]. For example,
the number of Carmichael numbers n ≤ x that are not Giuga numbers exceeds xβ−ε

for sufficiently large x. It has been observed that xβ−ε may be replaced by x1/3 as
a consequence of a result of Harman [13].

1.2. Normal sequences of primes

Note that if p is a prime divisor of a Carmichael number, n say, then for no k ∈ N is
kp+1 a prime divisor of n. We can see this if we suppose that there is some prime p
such that p |n, kp+1 is prime, and (kp+1) |n. Then, by (3), (kp+1)−1 = kp | (n−1)
which is impossible if p |n. A consequence of this observation is that p = 2 cannot
be a prime divisor of a Carmichael number, and that therefore every Carmichael
number must be odd.

We say that the prime divisors of a Carmichael number, n, are normal according
to the following definition:

Definition 5. A set of odd primes, P , is normal if no p, q ∈ P satisfies p | (q − 1).

The following extension of the idea of a normal set of primes is useful in the
computation of exclusion bounds.

Definition 6. Let P be a normal set of primes. For any prime, p, we say p is
normal to P if P ∪ {p} is normal.

In light of this we can reformulate Theorem 3 to say that a counterexample
to Giuga’s conjecture must be both a Giuga number and a Carmichael number.
Giuga’s conjecture then simply states that there is no such number. A detailed
study on Giuga’s conjecture and variants related to normal families of primes is
made in [17].

2. Exclusion Bounds

We may compute exclusion bounds for counterexamples to Giuga’s conjecture by
exploiting the properties of Giuga and Carmichael numbers described in the previous
section.

Notation 1 (Odd primes and sets of odd primes).

• Let qk denote the kth odd prime.

• Let Q denote the collection of all odd primes {3, 5, 7, 11, . . .}

INTEGERS: 13 (2013) 4

• Let Qk denote the set {q1, . . . , qk−1} of odd primes strictly less than qk

• Let Nd denote the set {N ⊂ Qd | N is normal } of all finite normal sets whose
maximal element is less than qd.

To begin with, an easy lower bound can be found by observing that, by Theo-
rem 4, the reciprocal sum of prime factors of any Giuga number must be greater
than 1, and that any Carmichael number must be odd. We observe that the set
Q10 = {3, 5, 7, 11, 13, 17, 19, 23, 29} is the smallest set of odd primes whose recipro-
cal sum is greater than 1. Thus a counterexample must, because |Q10| = 9, have at
least 9 prime factors and, because

∏
p∈Q10

p > 109, must have at least 10 digits.

Observe that the above result does not fully take into account the fact that a
counterexample must also be a Carmichael number. Doing so raises the bounds
considerably.

We exploit a binary tree structure, where the vertices of the tree are normal sets
of primes. We begin with the empty set as the root of the tree, and consider this
to be depth 1 of the tree. Each vertex, N say, at depth d of the tree has itself
as a child. Additionally, if qd is normal to N then N ∪ {qd} is also a child of N .
This structure is shown in Figure 1. With this structure, the collection of all sets
at depth d of this tree is precisely the set Nd, defined above.

{}

{}

{}

{}

{} {11}

{7}

{7} {7,11}

{5}

{5}

{5}

{5,7}

{5,7}

{3}

{3}

{3}

{3} {3,11}

{3,5}

{3,5}

{3,5}

Figure 1: The first 5 levels of a tree of normal sets of primes.

For each set, N , on level d of the tree we compute a new set which we call Td(N).
We begin by assigning Td(N) = N . We then look at the reciprocal sum of Td(N)

r :=
∑

q∈Td(N)

1

q

If r ≤ 1 and N ∪ {qd} is normal then we set Td(N) = Td(N) ∪ {qd}, otherwise we

INTEGERS: 13 (2013) 5

leave it unchanged. We repeat this process with qd+1, qd+2 and so on until r > 1,
at which point we are done.

Definition 7 (j-value). Let N ∈ Nd be a vertex at depth d of the tree. Denote by
Td(N) the set computed as described, above. Then we say that

jd(N) := |Td(N)|

is the j-value or, equivalently, the score of N .

Note that there is a special case when the reciprocal sum of N is greater than
1 to begin with. In this case, no primes are appended to Td(N), and we have
Td(N) = N and so jd(N) = |N |.

Example 8. The lower bound we computed at the beginning of this section is
equivalent to computing T1({}) = {3, 5, 7, 11, 13, 17, 19, 23, 29} and j1({}) = 9. We
may also compute

T2({}) = {5, 7, 11, 13, 17, . . . , 107, 109} so that j2({}) = 27

T2({3}) = {3, 5, 11, 17, 23, . . . , 317, 347} so that j2({3}) = 32.

Observe that, in general, it is not true that Td(N) is a normal set; our criterion
for inclusion of a prime, q, into Td(N) is that it is normal to N , and not that it is
normal to Td(N). We can see, above, that both T2({}) and T2({3}) contain both 5
an 11, and so are not normal.

For a fixed depth, d, the values of jd(N) for all N ∈ Nd allow us to compute a
lower bound for the number of primes needed for a counterexample. For each N ,
we consider a hypothetical family of all counterexamples whose set of prime factors
less than qd is precisely N , and jd(N) is an approximation—specifically a lower
bound—of the number of primes required for any such counterexample, should one
exist.

To see that jd(N) is a lower bound, recall that Td(N) is not (in general) a normal
set, but that the prime factors of a counterexample must form a normal set. As
such, whenever Td(N) is not normal, some of its elements must be absent in any
counterexample from the above hypothetical family. Each such absent element—
because of the way Td(N) was constructed—must be replaced by at least one prime
greater than max(Td(N)) in order for the reciprocal sum to stay above 1. Note
that if Td(N) is normal, then we have the smallest normal set containing N with
a reciprocal sum greater than 1, although it is not necessarily the case that these
normal primes are the factors of a counterexample. We may, nonetheless, conclude
that jd(N) is a lower bound on the number of prime factors in any counterexample
whose prime factors less than qd are exactly the set N .

Recall that Nd is the collection of all normal subsets of Qd and that the leaves
(or vertices) of our tree for a fixed depth, d, are precisely the sets contained in Nd.

INTEGERS: 13 (2013) 6

Any counterexample to Giuga’s conjecture must have as its set of prime factors less
than qd exactly one of N ∈ Nd, and so if we compute jd(N) for all N ∈ Nd, then
the smallest such value

jd := min {jd(N) |N ∈ Nd}

must be a lower bound for the number of prime factors in any counterexample to
Giuga’s conjecture. From this we compute the corresponding lower bound

Pd :=
jd∏

k=1

qk

as the product of the first jd odd primes.

Example 9. Any counterexample to Giuga’s conjecture will either have 3 as a
prime factor or not, corresponding to the normal sets {} and {3} sitting at depth
2 of the tree in Figure 1. We have computed the values of j2({}) and j2({3}) in
Example 8, above. In the former case there must be at least 32 prime factors; in
the latter case there must be at least 27. We may conclude, then, that such a
counterexample must have at least 27 prime factors—that is j2 = 27—and must
therefore be greater than P2 =

∏27
k=1 qk > 1042.

The algorithm, then, is simply to build the tree down to the desired depth,
d, then to calculate the j-value for every vertex at that depth, so as to find the
minimum j-value as the value of jd. Pd may easily be computed once jd is known.
Regrettably the number of vertices grows exponentially with the depth of the tree,
so computation of jd for large d is slow and so the algorithm is of limited use in
the form hitherto described. Fortunately a relatively simple observation leads to
significant improvement in performance.

We observe that the j-values of a set in our tree do not decrease as we travel
down the tree. That is, for a set N at depth d of the tree, the value of jd(N) is no
larger than the value of jd+1(N ′) so long as N ′ is a child of N . This follows from
the following theorem which is proved in [8].

Theorem 10. Let N ∈ Nd be a normal set of primes. Then jd+1(N) ≥ jd(N)
Furthermore, let N ′ = N ∪ {qd}. If N ′ is normal, then jd+1(N ′) ≥ jd(N).

A corollary of this theorem is that any normal superset of N whose reciprocal
sum is greater than 1 must have at least jd(N) elements. That is, if N ⊂ N ′, N ′ is
normal, and

∑
q∈N ′ 1/q > 1, then |N ′| ≥ jd(N).

We exploit Theorem 10 to significantly cut down the number of vertices (leaves)
needed when computing jd for a fixed d. Inasmuch as jd is the minimum j-value of
any vertex at depth d of the tree, the j-value of any vertex at that depth is an upper
bound for jd. Any vertex higher in the tree—which is to say at depth d′ < d—whose
j-value exceeds such an upper bound need not have any of its children examined.

INTEGERS: 13 (2013) 7

{}9

{}27

{}66

{}144 {7}114

{7}221{7, 11}216

{5}65

{5}196 {5, 7}127

{5, 7}127

{3}36

{3}396 {3, 5}383

Figure 2: The first 5 levels of the trimmed tree of normal sets of primes.

In essence, we may trim the tree early. A trimmed tree, along with the j-values for
each vertex can be seen in Figure 2.

Note that the algorithm still exhibits signs of exponential growth (see below),
however the work saved by this method is enough to make the algorithm much more
tractable and proved sufficient, in 1996, to make the difference between being able
to calculate j19 and j100 (see [8]).

The amount of work saved by the above optimisation is entirely dependent on
the choice of initial upper bound. An excellent candidate for a good such bound is
given by the family of sets described as follows:

Definition 11 (L-sets). Let k ≥ 5 then

L5 := {5, 7} and Lk+1 :=

{
Lk ∪ qk if this set is normal,

Lk otherwise.

In every computation we have performed for depths d > 5 the value of jd has
been given by these sets. That is to say that jd = jd(Ld) for all 5 ≤ d ≤ 311.

These L-sets lead to an interesting observation: the algorithm described here
is exhaustible. The first of these sets to have a reciprocal sum greater than 1 is
the set L27,692, which has 8,135 elements. Note that the primes in L27,692 are
not the factors of a counterexample to Giuga’s conjecture. Nonetheless, it must
be the case that jd ≤ 8,135 for all d ≥ 27,692, and so our algorithm can never
compute an exclusion bound higher than 8,135 prime factors, even if it turns out
that j27,692 < j27,692(L27,692). It is the sincerest hope of the authors to eventually
exhaust this algorithm, although given the apparently exponential growth of even
the trimmed tree, it is exceptionally unlikely to happen.

INTEGERS: 13 (2013) 8

It was with this algorithm in 1996 that Borwein et al [6] were able to compute
j135 = 3,459. Similarly, it is with this algorithm that the present authors have been
able to compute j311 = 4,771 thus obtaining the following result.

Theorem 12. Any counterexample to Giuga’s primality conjecture is an odd square-
free number with at least 4,771 prime factors and so must exceed 1019,907.

3. Computation Improvements, Implementation Details, and Technical
Challenges

In 1996, Borwein et al [6] were able to compute j100 in Maple using the algorithm
described above. Borwein reports in [8] that the computation required “a few CPU
hours for each k” for values of k near 100. Using a C++ implementation (which
took two months to produce) they were able to compute j135, taking “303 CPU
hours” [6]. The C++ implementation then crashed irrevocably before doing any
extra work [8]. Thus, in 1996, the best results for exclusion bounds for Giuga’s
conjecture were

j135 = 3,459 P135 > 1013,886

No further work on these computations was done by any of the present authors
until mid-2009. Effort was spent to reduce the number of operations in the imple-
mentation, without deviating from the algorithm. In early 2011, j173 was computed
in approximately thirty five hours using Maple, obtaining:

j173 = 3,795 P173 > 1015,408

The main issue with the Maple code was long run times, although memory issues
were beginning to creep in. An attempt was made to parallelise the algorithm using
an early version of Maple’s inbuilt multithreading capabilities. At the time, Maple
13 was the current version. Unfortunately this attempt failed due to poor machine
memory management, which was most likely a result of the infancy of the threading
library.

Significant execution time improvements were achieved with a C++ implementa-
tion. In contrast to the authors’ earlier experience with C++ (described above, and
in [8]) the implementation was now easy and straightforward, took only a day or
two, and worked extremely well. This implementation was able to compute j173 in a
little under ten minutes. This implementation stored only the leaves of the tree and
in the interests of simplicity of code, did not store the tree after the computation
had completed.

Remark 13. We note here that a second, equivalent approach to exploiting The-
orem 10 was experimented with at this time. The variant is to build the tree up

INTEGERS: 13 (2013) 9

from the root vertex {} by iteratively computing only the immediate children of
the vertex with the lowest j-value, favoring vertices closer to the root in the case of
a tie. This variation has the advantage that it always processes the least number
of vertices possible in any execution. In practice, it showed small (but essentially
insignificant) speed improvements over the method described above, most likely
due to the exceptionally good bounds provided by the Ld sets. Unfortunately, this
variation did not easily lend itself to a threaded (parallel) implementation and has
not been used since.

Further execution time improvements were achieved by threading the code. Thread-
ing was achieved via use of Apple’s threading library “Grand Central Dispatch”,
which conceals the traditional low-level tools of threading (semaphores, threads,
mutexes, etc) and instead presents a much more intuitive method of passing code
blocks into work queues, allowing the library to do the rest (see [3, 4] for more
information). This allowed for a quick and painless threading implementation and
avoided nearly all of the hurdles normally associated with introducing threading to
an existing program. It took approximately two days to implement the threading,
and this new threaded implementation could compute j173 in approximately two
minutes.

A grid implementation, running on an Apple X-grid cluster, was experimented
with. Unfortunately the grid facilities lacked any easy interprocess communica-
tions and the problem did not divide into evenly sized sub-problems. This avenue
was abandoned in favor of improving the already working single-machine threaded
implementation.

3.1. Final computations

With this implementation we were able to compute to depth 280 and obtained the
following results.

j280 = 4,581 P280 > 1019,023

During the computation to depth 280 our implementation was exceeding the
memory of the computer it was running on. Computation speed drastically slowed
due to excessive paging. Unfortunately, no detailed records were kept of this compu-
tation, however we know the machine had 12 or 14 gigabytes of memory. To fix the
paging problem, it was realised that much of the data in memory consisted of leaves
which had completed processing. The program was thus modified to write these
completed leaves to disk, in the form of a Berkeley database file, to save on RAM.
The Berkeley database format was chosen because it already incorporated caching,
as well as sorting of the entries (see [15] for more information). The newly modified
program was run and computed to depth 301 to obtain the following results:

j301 = 4,669 P301 > 1019,432

INTEGERS: 13 (2013) 10

The computation took approximately ninety five hours.

A side effect of the change was that, since the completed tree was now being
written to disk, later computations could pick up where previous computations had
left off1. Unfortunately, similar memory exhaustion and excessive paging problems
had crept back in by the end of the computation. To fix this problem, the program
was modified to write all leaves to disk and to only hold in memory those leaves
which were currently being processed.

The new implementation was able to compute j311 = 4,771, taking approximately
an extra six days2 and producing an output file of approximately one hundred and
twenty gigabytes.

j311 = 4,771 P311 > 1019,907

Memory issues are still present, although the most recent implementation delayed
them until approximately depth 308. The most recent memory issues appear to be
caused not by large amounts of tree data, but by large numbers of jobs waiting
to be executed by the threading API3. If this is the case, then we begin to see a
cost of the easy implementation of threading thanks to the Grand Central Dispatch
library. It may be the case, however, that the memory issues are caused by tree
data being created faster than the existing data can be written to disk, combined
with the serialised writing to disk. Efforts to identify and eradicate the memory
problems are ongoing, and no further computations have yet been performed.

We should note the diminishing returns of these fixes to memory exhaustion;
each fix has taken longer to implement and has yielded less improvement than the
fix which preceded it. Growth of execution time and file output size is discussed in
the next section.

4. Runtime Analysis

Due to the unpredictable nature of the placement of primes in general, and of nor-
mal pairs of primes in particular, it is very difficult to analyse the runtime and
space complexity of the above algorithm algebraically. However, measurements of
runtimes and file output sizes strongly suggest the trimmed tree still grows expo-
nentially.

1Unfortunately, since this was the first time this implementation was being run, it was unable
to exploit this feature and the quoted ninety five hours was to compute the tree in its entirety to
depth 301.

2That is, the computation which started at depth 301 from the output of the previous imple-
mentation and ran through to depth 311 took six days. This brings the total execution time for
depth 311 to over ten days.

3Tree data is stored on disk and not passed into processing functions. Instead, the first act of
the function which processes the leaf is to retrieve the leaf from disk.

INTEGERS: 13 (2013) 11

The following measurements were taken on a 2.8Ghz quad core i7 processor
with 16 gigabytes of RAM, running Mac OS X 10.7 (Lion). The computations
were performed by the most recent implementation as described in the previous
section—the one used to compute j311. The program computed jd for all depths
1 ≤ d ≤ 311. The ability of this implementation to begin a new computation
starting from a previously completed computation was exploited to measure the
size of the output file of the tree at each depth. Total computation time up to
depth d was calculated by adding together the times for all computations from
depth d′ to d′ + 1 for d′ < d.

The granularity of the time measurements is 1 second and as such the total
computation times for small dmay be a little unreliable, as the sub-second execution
times are rounded to 0 or 1 seconds. This should not affect our conclusions very
much when we consider that the individual execution times reach into the minutes
at around depth d = 66, hours at around depth d = 95, and eventually even days.

Of more concern is the timings for individual executions of depths d > 301. The
computer these computations were performed on was the personal computer of one
of the authors, and with the execution of a single step in depth taking close to a day
(or more for the later ones), it was sometimes necessary to pause the computation
for hours at a time to allow the computer to be used for other purposes. It is unclear
whether these pauses were included in the timings or not. As such the timings for
those computations are somewhat suspect and have not been used in any of the
following analysis. Note that these pauses will not have affected file output sizes
and so the file size data for these computations has been kept and used.

Note that for any N ∈ Nd for which N ∪{qd} is not normal, N only has one child
in the tree (namely, itself), and jd+1(N) = jd(N) as a direct result the method by
which the j-values are computed. So in the case that the vertex, N , at depth d
whose j-value realises the value jd4 (i.e., N ⊂ Nd where jd(N) = jd), if qd is not
normal to N we have that jd+1 = jd and no other computation for depth d + 1
needs to be performed. The program was modified to recognise this condition and
to simply skip ahead to the next depth, d′ > d for which N ∪ {qd′} is normal.
As such the data appears to “miss” some depths, but this is simply the program
skipping these trivial tree depths.

When we plot the log of total execution time, or the log of output file size,
against depth (see Figure 3) we see an essentially linear pattern, consistent with
exponential growth. We expect fluctuation in the number of vertices processed
due to the unpredictable nature of which primes will and will not be included in
the computation of jd(N) for any given vertex N , so the observed variation from
linear behavior is not inconsistent. Furthermore, the particulars and vagaries of the
output file format (a Berkeley database) might also be a source of some variation

4In principle there is nothing in the algorithm to prevent multiple sets realising the minimum
j-value, but in practice this has not yet been observed.

INTEGERS: 13 (2013) 12

in the file sizes.

0 50 100 150 200 250 300

0
2

4
6

8
10

12

Depth

lo
g(

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
)

0 50 100 150 200 250 300

5
10

15

Depth

lo
g(

 O
ut

pu
t F

ile
 S

ize
)

Figure 3: Log-linear plot of cumulative execution time in seconds (left) and output
file size in kilobytes (right) against tree depth.

4.1. Predicted future performance

Applying a least-squares linear model to this data, we make the following 95%
prediction intervals, for the current implementation of the algorithm running on
the machine described, above. Total computation time for j350 is expected to take
between 69 and 188 days and is expected to output a data file of between 490
gigabytes and 2.2 terabytes. We expect the total computation time for j400 to be
between 4 and 12 years and expect an output file between 7.5 and 36 terabytes in
size.

In addition, the following predictions are found by looking at the 95% prediction
intervals for predictions of all depths 312 through to 400, and choosing those depths
which contain the desired size or time respectively. We predict a terabyte sized
output file at a depth between 337 and 364, and we predict a cumulative month
long computation will be needed for depths between 321 and 337, and a cumulative
year long computation for depths between 361 and 377.

5. Further Work

The current bottleneck in computations appears to be storage; both RAM and hard
disk. However, the statistical predictions suggest that time will shortly become the
bottleneck for further computations. It is the authors’ intention to fix the RAM
issues and to compress the output file to address this growth. It is hoped that
doing so will delay memory growth enough to once again make execution time the
bottleneck . It is also the authors’ intention to re-explore grid computation, most
probably with the use of the Open MPI API in the hopes that spreading the load

INTEGERS: 13 (2013) 13

across many computers will help alleviate both the time and the storage limitations.

Acknowledgements

The authors would like to thank Dr David Allingham for his support and advice
regarding the CARMA computational infrastructure, and Dr Robert King for his
advice in interpreting the statistical results.

References

[1] Takashi Agoh. On Giuga’s conjecture. Manuscripta Math., 87(4):501–510, 1995.

[2] W. R. Alford, Andrew Granville, and Carl Pomerance. There are infinitely many Carmichael
numbers. Ann. of Math. (2), 139(3):703–722, 1994.

[3] Apple Inc. Concurrency programming guide. http://developer.apple.com/library/ios/
#documentation/General/Conceptual/ConcurrencyProgrammingGuide/, 2013. [Online; ac-
cessed 25-Jan-2013].

[4] Apple Inc. Grand central dispatch (gcd) reference. http://developer.apple.com/library/
ios/#documentation/Performance/Reference/GCD_libdispatch_Ref/, 2013. [Online; ac-
cessed 25-Jan-2013].

[5] William D. Banks, C. Wesley Nevans, and Carl Pomerance. A remark on Giuga’s conjecture
and Lehmer’s totient problem. Albanian J. Math., 3(2):81–85, 2009.

[6] D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn. Giuga’s conjecture on
primality. Amer. Math. Monthly, 103(1):40–50, 1996.

[7] J. M. Borwein and E. Wong. A survey of results relating to Giuga’s conjecture on primality.
In Advances in mathematical sciences: CRM’s 25 years (Montreal, PQ, 1994), volume 11
of CRM Proc. Lecture Notes, pages 13–27. Amer. Math. Soc., Providence, RI, 1997.

[8] Jonathan M Borwein, David H Bailey, and Roland Girgensohn. Experimentation in Mathe-
matics. Computational Paths to Discovery. A K Peters Ltd, 2004.

[9] Giuseppe Giuga. Su una presumibile proprietà caratteristica dei numeri primi. Ist. Lombardo
Sci. Lett. Rend. Cl. Sci. Mat. Nat. (3), 14(83):511–528, 1950.

[10] José Maŕıa Grau, Florian Luca, and Antonio M. Oller-Marcén. On a variant of Giuga
numbers. Acta Math. Sin. (Engl. Ser.), 28(4):653–660, 2012.

[11] José Maŕıa Grau and Antonio M. Oller-Marcén. Giuga numbers and the arithmetic derivative.
J. Integer Seq., 15(4):Article 12.4.1, 5, 2012.

[12] Jos Maŕıa Grau and Antonio M. Oller-Marcén. Generalizing Giuga’s conjecture. ArXiv
e-prints, March 2011.

[13] Glyn Harman. Watt’s mean value theorem and Carmichael numbers. Int. J. Number Theory,
4(2):241–248, 2008.

[14] Florian Luca, Carl Pomerance, and Igor Shparlinski. On Giuga numbers. Int. J. Mod. Math.,
4(1):13–18, 2009.

INTEGERS: 13 (2013) 14

[15] Oracle. Oracle berkeley db. http://www.oracle.com/technetwork/products/berkeleydb/
overview/index.html, 2013. [Online; accessed 25-Jan-2013].

[16] Vicentiu Tipu. A note on Giuga’s conjecture. Canad. Math. Bull., 50(1):158–160, 2007.

[17] E. Wong. Computations on normal families of primes. MSc, Simon Fraser University, 1997.

