Skip to main content

COHDA: A Combinatorial Optimization Heuristic for Distributed Agents

  • Conference paper
  • First Online:
Book cover Agents and Artificial Intelligence (ICAART 2013)

Abstract

Solving Distributed Constraint Optimization Problems has a large significance in today’s interconnected world. Complete as well as approximate algorithms have been discussed in the relevant literature. However, these are unfeasible if high-arity constraints are present (i.e., a fully connected constraint graph). This is the case in distributed combinatorial problems, for example in the provisioning of active power in the domain of electrical energy generation. The aim of this paper is to give a detailed formalization and evaluation of the COHDA heuristic for solving these types of problems. The heuristic uses self-organizing mechanisms to optimize a common global objective in a fully decentralized manner. We show that COHDA is a very efficient decentralized heuristic that is able to tackle a distributed combinatorial problem, without being dependent on centrally gathered knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anders, G., Hinrichs, C., Siefert, F., Behrmann, P., Reif, W., Sonnenschein, M.: On the influence of inter-agent variation on multi-agent algorithms solving a dynamic task allocation problem under uncertainty. In: Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012), pp. 29–38. IEEE Computer Society, Lyon (2012)

    Google Scholar 

  2. Bernon, C., Chevrier, V., Hilaire, V., Marrow, P.: Applications of self-organising multi-agent systems: an initial framework for comparison. Informatica 30(1), 73–82 (2006)

    Google Scholar 

  3. Bremer, J., Sonnenschein, M.: A Distributed greedy algorithm for constraint-based scheduling of energy resources. In: SEN-MAS’2012 Workshop, Proceedingsof the Federated Conference on Computer Science and Information Systems, pp. 1285–1292, Wrocław, Poland (2012)

    Google Scholar 

  4. Chapman, A.C., Rogers, A., Jennings, N.R., Leslie, D.S.: A unifying framework for iterative approximate best-response algorithms for distributed constraint optimization problems. Knowl. Eng. Rev. 26(04), 411–444 (2011)

    Article  Google Scholar 

  5. Gershenson, C.: Design and Control of Self-organizing Systems. Ph.D. Thesis, Vrije Universiteit Brussel (2007)

    Google Scholar 

  6. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012, pp. 297–302. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: Paving the Royal road for complex systems: on the influence of memory on adaptivity. In: Pelster, A., Wunner, G. (eds.) International Symposium Selforganization in Complex Systems: The Past, Present, and Future of Synergetics. Springer (2013) (in press)

    Google Scholar 

  8. Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013), vol. 1 - Agents, pp. 25–34. SciTePress (2013)

    Google Scholar 

  9. Hölldobler, B., Wilson, E.O.: The Ants. Belknap Press of Harvard University Press, Cambridge (1990)

    Book  Google Scholar 

  10. Jones, J.C., Myerscough, M.R., Graham, S., Oldroyd, B.P.: Honey Bee Nest Thermoregulation: Diversity Promotes Stability. Science (New York, N.Y.) 305(5682), 402–404 (2004)

    Article  Google Scholar 

  11. Jordan, U., Vajen, K.: Influence of the DHW load profile on the fractional energy savings: A case study of a solar combi-system with TRNSYS simulations. Solar Energy 69, 197–208 (2001)

    Article  Google Scholar 

  12. Kaddoum, E.: Optimization under Constraints of Distributed Complex Problems using Cooperative Self-Organization. Ph.D. Thesis, Université de Toulouse (2011)

    Google Scholar 

  13. Kroeker, K.L.: Biology-inspired networking. Commun. ACM 54(6), 11 (2011)

    Article  Google Scholar 

  14. Li, J., Poulton, G., James, G.: Coordination of distributed energy resource agents. Appl. Artif. Intell. 24(5), 351–380 (2010)

    Article  Google Scholar 

  15. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Modi, P., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services: An agent-based approach for smart distribution grids. Complex. Eng. (COMPENG) 2012, 1–5 (2012)

    Google Scholar 

  18. Penya, Y.: Optimal allocation and scheduling of demand in deregulated energy markets. Ph.D. Thesis, Vienna University of Technology (2006)

    Google Scholar 

  19. Pournaras, E.: Multi-level Reconfigurable Self-organization in Overlay Services. Ph.D. Thesis, Technische Universiteit Delft (2013)

    Google Scholar 

  20. Pournaras, E., Warnier, M., Brazier, F.M.: Local agent-based self-stabilisation in global resource utilisation. Int. J. Autonomic Comput. 1(4), 350 (2010)

    Article  Google Scholar 

  21. Prehofer, C., Bettstetter, C.: Self-organization in communication networks: principles and design paradigms. IEEE Commun. Mag. 43(7), 78–85 (2005). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1470824

    Article  Google Scholar 

  22. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the “Smarts” into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 55(4), 86 (2012)

    Article  Google Scholar 

  23. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  24. Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation in multi-agent systems. Knowl. Eng. Rev. 20(2), 65–189 (2005)

    Google Scholar 

  25. Strogatz, S.H.: Exploring complex networks. Nature 410(March), 268–276 (2001)

    Article  Google Scholar 

  26. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science (New York, N.Y.) 327(5964), 439–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Due to the vast amounts of simulations needed, all experiments have been conducted on HERO, a multi-purpose cluster installed at the University of Oldenburg, Germany. We would like to thank the maintenance team from HERO for their valuable service. We also thank Ontje Lünsdorf for providing the asynchronous message passing framework used in our simulation environment, and Jörg Bremer for providing the CHP simulation model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hinrichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinrichs, C., Lehnhoff, S., Sonnenschein, M. (2014). COHDA: A Combinatorial Optimization Heuristic for Distributed Agents. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2013. Communications in Computer and Information Science, vol 449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44440-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44440-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44439-9

  • Online ISBN: 978-3-662-44440-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics