Skip to main content

Rough Terrain Motion Planning for Actuated, Tracked Robots

  • Conference paper
  • First Online:
Book cover Agents and Artificial Intelligence (ICAART 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 449))

Included in the following conference series:

Abstract

Traversing challenging structures like boulders, rubble, stairs and steps, mobile robots need a special level of mobility. Robots with reconfigurable chassis are able to alter their configuration to overcome such structures.

This paper presents a two-stage motion planning scheme for reconfigurable robots in rough terrain. First, we consider the robot’s operating limits rather than the complete states to quickly find an initial path in a low dimensional space. Second, we identify path segments which lead through rough areas of the environment and refine those segments using the entire robot state including the actuator configurations. We present a roadmap and a RRT* method to perform the path refinement.

Our algorithm does not rely on any detailed structure/terrain categorization or on any predefined motion sequences. Hence, our planner can be applied to urban structures, like stairs, as well as rough unstructured environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mourikis, A.I., Trawny, N., Roumeliotis, S.I., Helmick, D.M., Matthies, L.: Autonomous stair climbing for tracked vehicles. Int. J. Robot. Res. 26, 737–758 (2007)

    Article  Google Scholar 

  2. Mihankhah, E., Kalantari, A., Aboosaeedan, E., Taghirad, H., Moosavian, S.A.A.: Autonomous staircase detection and stair climbing for a tracked mobile robot using fuzzy controller. In: IEEE International Conference on Robotics and Biomimetics (2009)

    Google Scholar 

  3. Dornhege, C., Kleiner, A.: Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  4. Rusu, R.B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J.C., Beetz, M.: Leaving flatland: efficient real-time three-dimensional perception and motion planning. J. Field Robot. 26, 841–862 (2009)

    Article  Google Scholar 

  5. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Learning, planning, and control for quadruped locomotion over challenging terrain. Int. J. Robot. Res. 30, 236–258 (2010)

    Article  Google Scholar 

  6. Molino, V., Madhavan, R., Messina, E., Downs, A., Balakirsky, S., Jacoff, A.: Traversability metrics for rough terrain applied to repeatable test methods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  7. Ratliff, N., Zucker, M., Bagnell, J. A., Srinivasa, S.: CHOMP: Gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  8. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: Stochastic trajectory optimization for motion planning. In: International Conference on Robotics and Automation (2011)

    Google Scholar 

  9. Rufli, M., Ferguson, D., Siegwart, R.: Smooth path planning in constrained environments. In: IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  10. Miro, J., Dumonteil, G., Beck, C., Dissanayake, G.: A kyno-dynamic metric to plan stable paths over uneven terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

    Google Scholar 

  11. Hait, A., Simeon, T., Taix, M.: Algorithms for rough terrain trajectory planning. Adv. Robot. 16, 673–699 (2002)

    Article  Google Scholar 

  12. Magid, E., Tusubouchi, T., Koyanagi, E., Yoshida, T., Tadokoro, S.: Controlled balance losing in random step environment for path planning of a teleoperated crawler-type vehicle. J. Field Robot. 28, 932–949 (2011)

    Article  Google Scholar 

  13. Jaillet, L., Cortes, J., Simeon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26, 35–646 (2010)

    Article  Google Scholar 

  14. Shkolnik, A., Levashov, M., Manchester, I.R., Tedrake, R.: Bounding on rough terrain with the LittleDog robot. Int. J. Robot. Res. 30, 192–215 (2011)

    Article  Google Scholar 

  15. Ettlin, A., Bleuler, H.: Rough-terrain robot motion planning based on obstacleness. In: 9th International Conference on Control, Automation, Robotics and Vision (2006)

    Google Scholar 

  16. Magid, E., Ozawa, K., Tsubouchi, T., Koyanagi, E., Yoshida, T.: Rescue robot navigation: static stability estimation in random step environment. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 305–316. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26, 141–166 (2007)

    Article  Google Scholar 

  18. Araujo, R., Gouveia, G., De Almeida, A.: Learning variable-resolution maps for navigation in dynamic worlds. In: IEEE Industrial Electronics Society 28th Annual Conference, vol. 3, pp. 2403–2408 (2002)

    Google Scholar 

  19. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: IEEE International Conference on Robotics and Automation (ICRA) (2001)

    Google Scholar 

  20. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30, 846–894 (2011)

    Article  Google Scholar 

  21. Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2640–2645 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brunner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunner, M., Brüggemann, B., Schulz, D. (2014). Rough Terrain Motion Planning for Actuated, Tracked Robots. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2013. Communications in Computer and Information Science, vol 449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44440-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44440-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44439-9

  • Online ISBN: 978-3-662-44440-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics