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Abstract. Let G be an edge-bicolored graph where each edge is colored
either red or blue. We study problems of obtaining an induced subgraph
H from G that simultaneously satisfies given properties for H ’s red graph
and blue graph. In particular, we considerDually Connected Induced

Subgraph problem — find from G a k-vertex induced subgraph whose
red and blue graphs are both connected, and Dual Separator problem
— delete at most k vertices to simultaneously disconnect red and blue
graphs of G.

We will discuss various algorithmic and complexity issues for Du-

ally Connected Induced Subgraph and Dual Separator prob-
lems: NP-completeness, polynomial-time algorithms, W[1]-hardness, and
FPT algorithms. As by-products, we deduce that it is NP-complete and
W[1]-hard to find k-vertex (resp., (n− k)-vertex) strongly connected in-
duced subgraphs from n-vertex digraphs. We will also give a complete
characterization of the complexity of the problem of obtaining a k-vertex
induced subgraph H from G that simultaneously satisfies given heredi-
tary properties for H ’s red and blue graphs.

Keywords: Edge-bicolored graph, dually connected, dual separator.

1 Introduction

Edge-colored graphs are fundamental in graph theory and have been extensively
studied in the literature, especially for alternating cycles, monochromatic sub-
graphs, heterchromatic subgraphs and partitions [1,12]. In this paper, we focus
on edge-bicolored graphs — simple undirected graphs G where each edge is
uniquely colored by either blue or red, and we use Gb and Gr to denote the
red and blue graphs of G respectively. We are interested in finding an induced
subgraph from G that simultaneously satisfies specified properties for its red
and blue graphs. In particular, we study the following three closely related prob-
lems concerning the fundamental property of being connected for edge-bicolored
graphs G.
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• Dually Connected Induced Subgraph: Does G contain exactly k ver-
tices V ′ such that both Gb[V

′] and Gr[V
′] are connected?

• Dually Connected Deletion: Does G contain exactly k vertices V ′ such
that both Gb − V ′ and Gr − V ′ are connected?

• Dual Separator: Does G contain at most k vertices V ′ such that both
Gb − V ′ and Gr − V ′ are disconnected?

Related Work: In connection with our dually connected subgraph problems,
Gai et al. [7] defined a common connected component of two graphs G1 and G2 on
the same vertex set V as a maximal subset V ′ ∈ V such that induced subgraphs
G1[V

′] and G2[V
′] are both connected, and they also mentioned three typical

applications in computational biology. Using partition refinement to maintain
connectivity dynamically, they obtained an algorithm for finding all common
connected components in O(n log n + m log2 n) time. For the same problem,
Bin-Xuan et al. [2] used their technique of competitive graph search to produce
an algorithm with running time O(n +m log2 n). We also note that when both
G1 and G2 are paths, the problem of finding all common connected subgraphs
coincides with the well studied problem of finding all common intervals of two
permutations [18], a problem with many applications.

On the other hand, despite an enormous amount of work on induced subgraph
and vertex deletion problems on uncolored graphs, we are unaware of any sys-
tematic investigation of the type of problems we study in this paper.

Our Contributions:We study both traditional and parameterized complexities
of the above three problems, which has further inspired general induced subgraph
problems on edge-bicolored graphs. The following list summarizes our results.

1. Dually Connected Induced Subgraph is NP-complete and W[1]-hard
even when both Gb and Gr are trees, but is solvable in O(n2α(n2, n)) time
when G is a complete graph, where α(n2, n) is inverse of Ackermann’s func-
tion.

2. Dually Connected Deletion is NP-complete and W[1]-hard but admits
an FPT algorithm when both Gb and Gr are trees.

3. Dual Separator is NP-complete.
4. It is NP-complete and W[1]-hard to obtain k-vertex (resp. (n − k)-vertex)

strongly connected induced subgraphs from n-vertex digraphs.
5. We give a complete characterization of both classical and parameterized

complexities of the Induced (Πb, Πr)-Subgraph problem for hereditary
properties Πb and Πr: Does an edge-bicolored graph G contain a k-vertex
induced subgraph whose blue and red graphs simultaneously satisfy proper-
ties Πb and Πr respectively?

6. We give FPT algorithms for parametric dual problems of Induced (Πb, Πr)-
Subgraph when properties Πb and Πr admit finite forbidden induced sub-
graph characterizations.

Notation and Definitions: For a graph G, V (G) and E(G) denote its vertex
set and edge set respectively, and n and m, respectively, are numbers of vertices
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and edges of G. For a subset V ′ ⊆ V (G), NG(V
′) denotes the neighbors of V ′ in

V (G)−V ′ and G[V ′] the subgraph of G induced by V ′. A graph property Π is a
collection of graphs, and it is hereditary if every induced subgraph of a graph in
Π also belongs to Π . It is well-known that Π is hereditary iff it has a forbidden
induced subgraph characterization.

For an edge-bicolored graph G = (V,Eb∪Er), Gb = (V,Eb) and Gr = (V,Er),
respectively, denote the blue graph and red graph of G. We say that G is dually
connected if both Gb and Gr are connected, and a dual tree if both Gb and Gr are
trees. A dually connected component of G is a maximal dually connected induced
subgraph of G. A subset V ′ ⊆ V (G) is a dual separator of G if both Gb−V ′ and
Gr − V ′ are disconnected. We use α(n2, n) for inverse of Ackermann’s function.

Remark: In this paper we require monochromatic subgraphs to be spanning
subgraphs of G, but for some applications we may disregard isolated vertices
in monochromatic subgraphs. For example, we can define Gb = G[Eb] or Gb =
(Vb, Eb) with Vb ⊆ V . Our results in the paper are also valid for these two
alternative definitions of monochromatic subgraphs, except our FPT algorithm
for Dually Connected Deletion on dual trees (see Problem 1 in Section 5).

2 Dually Connected Induced Subgraphs

Although all dually connected components in an edge-bicolored graph can be
found in O(n+m log2 n) time [2], it is surprisingly difficult to determine whether
an edge-bicolored graph contains a dually connected induced subgraph on exactly
k vertices. We will show that Dually Connected Induced Subgraph is
solvable in O(n2α(n2, n)) time when G is a complete graph, but NP-complete
and W[1]-hard when G is a dual tree, i.e., both blue and red graphs of G are
trees, which rules out efficient ways to list all common connected subgraphs of
two trees. We begin with a lemma for edge-bicolored complete graphs.

Lemma 1. A dually connected edge-bicolored complete graph G contains, for
every 4 ≤ k ≤ n, a k-vertex dually connected induced subgraph.

Proof. For a vertex v, if G − v remains dually connected, we can delete v from
G and regard the smaller graph as G. Therefore, we need only consider the case
that G contains a vertex v such that G − v is not dually connected. W.l.o.g.,
we may assume that v is a cut vertex of Gb. Since Gr is connected, v is not an
isolated vertex of Gr and hence not adjacent to all vertices of Gb. Therefore Gb

has a vertex x such that dGb
(v, x) = 2. Let y be a vertex of Gb − v not in the

component containing x. Then we have dGb
(x, y) ≥ 3.

We now use a breadth-first search from v to obtain k ≥ 4 vertices S, including
{v, x, y}, such that Gb[S] is connected. Since dGb[S](x, y) ≥ dGb

(x, y) ≥ 3, we see
that in Gb[S], no vertex is adjacent to both x and y, and hence every vertex is
adjacent to at least one of x and y in the complement of Gb[S], i.e., graph Gr[S].
Since {x, y} is an edge in Gr[S], any pair of vertices in Gr[S] has distance at
most 3 and hence Gr[S] is connected, implying that G[S] is dually connected.
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Theorem 1. Dually Connected Induced Subgraph can be solved in
O(n2α(n2, n)) time for edge-bicolored complete graphs G.

Proof. First we find a largest dully connected component H in G. If G itself is
dully connected, then set H to G. Otherwise, one of Gb or Gr is disconnected,
and G’s dually connected components are equivalent to its maximal strong mod-
ules [11], which can be found in linear time by modular decomposition [11]. If
k ≤ 3 or |V (H)| < k, then the answer is “No”; otherwise the answer is “Yes” by
Lemma 1.

Now we discuss how to find a k-vertex dully connected subgraph inside H . Or-
der vertices of H as v1, v2, . . . , vh with h = |V (H)| > k, and let Vi = {v1, . . . , vi}.
By Lemma 1, we only need to find the smallest index i > k such that H [Vi] is du-
ally connected but H [Vi−1] is not, and then find our required k-vertex subgraph
inside H [Vi].

For this purpose, we construct H by adding v1, v2, . . . , vh one by one in this
order and, in the process, we use disjoint sets to dynamically maintain compo-
nents of Hb[Vi] and Hr[Vi]. For the blue graph Hb (similar for the red graph Hr),
blue sets are components of Hb[Vk] initially. In adding vertex vi to H (i > k), we
create a blue singleton set {vbi } for vertex vi, and for each blue edge vivj with
j < i, we merge {vbi } with the blue set containing vbj . The procedure stops once
there is only one blue set and one red set, i.e., H [Vi] is dually connected but
H [Vi−1] is not. Now we can use the proof of Lemma 1 to find a k-vertex dually
connected subgraph in O(n2) time. Using standard Union-Find data structure,
we can find the required H [Vi] in O(n2α(n2, n)) time, which is also an upper
bound of our algorithm.

We now introduce a structure called dual 2t-path that will be useful in prov-
ing the intractability of Dually Connected Induced Subgraph and also
Dually Connected Deletion in the next section. For any t ≥ 3, a dual
2t-path P ∗ is the edge-bicolored graph formed by taking the union of a blue
path Pb = v1v2 . . . v2t and red path Pr = v2tv2t−2 . . . v4v2v2t−1v2t−3 . . . v3v1 (see
Figure 1 for an example). We denote the two ends v1 and v2t of P ∗ by vb and
vr respectively.

v2 v3 v4 v5 v6v1

v1 = vb v6 = vr
vb vr

Represented by

Blue edge

Red edge

Fig. 1. Dual 2t-path for t = 3

Lemma 2. In an edge-bicolored graph G = (V,Eb ∪ Er), if V
∗ ⊆ V induces a

dual 2t-path P ∗ with ends vb and vr such that the only edges between V ∗ and
V −V ∗ are blue edges (resp., red edges) between vb (resp., vr) and V −V ∗, then
for any dually connected induced subgraph G′ of G that contains a vertex in V ∗

and a vertex in V − V ∗, G′ must contain all vertices of V ∗.
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Proof. Deleting some but not all vertices in V ∗ of P ∗ will disconnect the blue
or red graph of G′.

Theorem 2. Dually Connected Induced Subgraph is NP-complete and
W[1]-hard for dual trees.

Proof. The problem is clearly in NP, and we give a polynomial and FPT re-
duction from the classical NP- and W[1]-complete Clique problem [8] to prove
the theorem. For an instance (G, k) of Clique, we construct an edge-bicolored
graph G′ such that both G′

b and G′
r are trees (see Figure 2 for an example):

1. Set p = k(k − 1) and create a new vertex v∗.
2. Replace every vertex v of G by a dual p-path P ∗

v with end vertices vb and
vr, and refer to vertices in P ∗

v as path-vertices. Add blue edge vbv∗ and red
edge vrv∗.

3. For each edge e = uv of G, create edge-vertex ẽ, and replace e by blue edge
ubẽ and red edge vr ẽ.

da b c

G

ar ab br bb cr cb dr db˜ab ˜bc ˜cd

v∗

˜ac
G′

Red edge

Blue edge

Dual p-path

Fig. 2. Construction of G′ from G

It is easy to see that the construction of G′ takes polynomial time, and that G′
b

and G′
r are both trees. We claim that G has a k-clique iff G′ has k′ = 1+kp+p/2

vertices S such that G′[S] is dually connected.
Assume that G has a k-clique {v1, v2, . . . , vk}. Let S be the union of {v∗},

path-vertices of all vi and edge-vertices of all vivj . The size of |S| is 1 + kp +
k(k−1)/2 = k′. Since edge-vertex of each vivj is dually connected to v∗ through
vbi and vrj , G

′[S] is dually connected.
Conversely, suppose that G′ contains k′ vertices S such that G′[S] is du-

ally connected. Since all dual p-paths are dually connected through v∗, S must
contain v∗. Also by Lemma 2, S contains either all or no vertices of any dual
p-path P ∗

v . Therefore S contains path-vertices of at most k dual p-paths as
|S| = 1 + kp + p/2. Furthermore, since an edge-vertex x̃y is dually connected
to v∗ through both vertices xb and yr, S must contain both xb and yr when S
contains an edge-vertex x̃y. Thus S contains at most k(k − 1)/2 edge-vertices.
It follows that S contains path-vertices of exactly k dual p-paths, and their
corresponding vertices in G form a k-clique of G.

We can regard the complement graph of G′ in the above proof as a graph
with the third color, and obtain the following result to complement Theorem 1.
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Corollary 1. Given an edge-tricolored complete graph, it is NP-complete and
W[1]-hard to find an induced subgraph on exactly k vertices that is connected in
every monochromatic graph.

3 Dual Connectedness by Vertex Deletion

The intractability of Dually Connected Induced Subgraph calls for an in-
vestigation of the parameterized complexity of its dual problem Dually Con-

nected Deletion: Can we delete exactly k vertices from an edge-bicolored
graph so that the resulting graph is dually connected?

We show that Dually Connected Deletion is also W[1]-hard but be-
comes FPT for dual trees, which is in contrast to the W[1]-hardness of Dually

Connected Induced Subgraph on dual trees. Our FPT algorithm uses the
following connection with a vertex cover problem that is solvable by the random
separation method of Cai, Chan and Chan [4].

Lemma 3. For any dual tree T and k vertices S of T , T − S is a dual tree iff
S covers exactly 2k edges.

Proof. Note that both blue and red graphs of T − S are forests, and an n-
vertex dual tree contains 2(n − 1) edges. Therefore T − S contains at most
2(n − k − 1) = 2(n − 1) − 2k edges, and thus S covers at least 2k edges. This
min-max relation implies our lemma.

Theorem 3. Dually Connected Deletion is NP-complete and W[1]-hard,
but FPT on dual trees.

Proof. We start with an FPT algorithm for the problem on dual trees T . By
Lemma 3, it suffices to find k vertices in T that cover exactly 2k edges. We use
a modification of the random separation algorithm of Cai, Chan and Chan [4]
for finding a subset of vertices to cover exactly k edges.

First, we regard T as an uncolored graph and produce a random black-white
coloring for the vertices of T . We begin by using black to color all vertices
with degree more than 2k, and then we randomly and independently color each
uncolored vertex by black or white with probability 1

2 . Given a black-white
coloring of vertices of T , a set S of k vertices is a well-colored solution if

1. S covers exactly 2k edges, and
2. all vertices in S are white and all vertices in NT (S) are black.

Let Vw denote the set of white vertices, and refer to connected components
of T [Vw] as white components. For a white component Hi, let ni be the number
of vertices in Hi and ei the number of edges covered by vertices of Hi. Then a
well-colored solution consists of a collection H′ of white components satisfying

∑

Hi∈H′
ni = k and

∑

Hi∈H′
ei = 2k.
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Therefore we can easily formulate the problem of finding a well-colored solution
as a 0-1 knapsack problem, and solve it in O(kn) time using the standard dy-
namic programming algorithm for the 0-1 knapsack problem. Note that it takes
O(n) time to compute all ni and ei.

Since a well-colored solution S satisfies |S ∪NT (S)| ≤ 3k, our random black-
white coloring has probability at least 2−3k to produce a well-colored solution.
Therefore when T has a solution, we can find it with probability at least 2−3k in
O(kn) time. We can derandomize the algorithm by a family of (n, 3k)-universal
sets of size 8kkO(log k) logn [16], and thus obtain a deterministic FPT algorithm
running in time 8kkO(log k)n logn.

For our problem on general edge-bicolored graphs, we give an FPT reduction
from the classical W[1]-complete Independent Set problem [6] to show W[1]-
hardness. For an arbitrary instance (G, k) of Independent Set, we construct
an edge-bicolored graph G′ from G as follows (see Figure 3 for an example):

1. Replace each edge uv of G by the replacement gadget Huv in Figure 3.
2. Create a dual 2k-path P ∗ with end vertices vb and vr, and connect every

vertex of G to vb by a blue edge and to vr by a red edge.

d

a

cb

G

vr

G′d

b

a

c

vb

P ∗

Replacement gadget Huv

Blue edge

Red edge

Dual 2k-path

u v

Fig. 3. Construction of G′ by using the replacement gadget Huv

The construction clearly takes polynomial time, and we show that G has
an independent k-set iff we can deleting k vertices from G′ to obtain a dually
connected graph.

If G contains an independent set S with k vertices, then for each edge e of G,
at least one end-vertex, say v, of e remains in G′ − S. It is easy to verify that
G′ − S is dually connected as all vertices of He in G′ − S are dually connected
to v, which is dully connected to the dual path P ∗ in Step 2.

Conversely, suppose that G′ contains k vertices S such that G′ − S is dually
connected. By the property of dual paths (Lemma 2), neither dual 2k-path P ∗

nor dual 2k-path in any He contains any vertex from S. Therefore all vertices
in S are vertices of G, and we show that S is an independent set of G. For any
two vertices u, v ∈ S, if uv is an edge of G, then the dual 2k-path in Huv is
disconnected from G′ after deleting S, contrary to the assumption that G′ − S
is dually connected. Therefore no two vertices in S are adjacent in G, and thus
S is an independent k-set of G.
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4 Dual Separators

Complimenting dual connectedness, we now consider problems of disconnecting
blue and red graphs simultaneously by vertex deletion. In particular, we study
Dual Separator and Dual Separator For Two Terminals: Is it possible
to disconnect two given vertices s and t in both Gb and Gr of an edge-bicolored
graph G by removing ≤ k vertices?

Although minimum separators in uncolored graphs can be found in polynomial
time, it is intractable to find minimum-size dual separators in edge-bicolored
graphs as we will show that both dual separator problems are NP-complete.
However, the parameterized complexity of these two problems remain open.

Theorem 4. Dual Separator For Two Terminals is NP-complete.

Proof. The problem is clearly in NP, and we prove the theorem by a reduction
from Vertex Cover on cubic graphs, whose NP-completeness was established
by Garey, Johnson and Stockmeyer [9]. Given a cubic graph G = (V,E), we
construct an edge-bicolored graph G′ as follows (see Figure 4 for an example):

1. Partition edges of G into two bipartite graphs Gb = (Xb, Yb;Eb) and Gr =
(Xr, Yr;Er), and color all edges of Gb blue and all edges of Gr red.

2. Introduce two new vertices s and t as terminals.
3. Connect s with every vertex in Xb by a blue edge and every vertex in Xr by

a red edge. Similarly, connect t with every vertex in Yb by a blue edge and
every vertex in Yr by a red edge.

4. Turn the above multigraph into a simple graph by subdividing each blue
edge incident with s or t.

G

a

G′

s tcb

d

a

b
c

d

Fig. 4. In graph G′, blue edges are solid and red edges are dashed

The above construction takes polynomial time since we can partition edges of
any cubic graph G into two bipartite graphs Gb and Gr in polynomial time by
using, for instance, a proper edge 4-coloring of G.

In G′, it is easy to see that every monochromatic (s, t)-path goes through some
edge of G, and every edge of G is contained in some monochromatic (s, t)-path
of G′. This clearly implies that for any set S of vertices of G, S is a vertex cover
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of G iff it is a dual (s, t)-separator of G′. Furthermore, we notice that if an (s, t)-
separator S′ of G′ involves some vertices V ∗ used for subdividing blue edges, we
can always replace V ∗ by its neighbors in Xb ∪ Yb to get an (s, t)-separator S
with |S| ≤ |S′|. Therefore we can conclude that G admits a vertex cover with
≤ k vertices iff G′ has an (s, t)-separator with ≤ k vertices, and hence we have
a required polynomial reduction.

The above theorem enables us to show the hardness of Dual Separator.

Theorem 5. Dual Separator is NP-complete.

Proof. We give a polynomial reduction fromDual Separator For Two Ter-

minals by constructing a new graph G′′ from the graph G′ in the proof of Theo-
rem 4. Let S′

b (resp., T
′
b) denote vertices that subdivide blue edges incident with

s and t in G′. To duplicate a vertex v, we create a new vertex v′ and add all
blue (resp., red) edges between v and vertices corresponding to NG′

b
(v) (resp.,

NG′
r
(v)). We construct G′′ as follows:

1. Take graph G′, and duplicate k copies of s and t. Denote by S vertex s and
its k duplicates, and denote by T vertex t and its k duplicates.

2. Make k duplicates of each vertex in S′
b (resp., T

′
b). Denote by S′′

b (resp., T ′′
b )

vertices S′
b (resp., T ′

b) and all their duplicates.
3. Between S′′

b (resp., T ′′
b ) and T (resp., S), add all possible edges and color

them red.

It is easy to see that G′ has a dual (s, t)-separator of size k iff G′′ has a dual
(S, T )-separator of size k. We claim that G′′ has a dual (S, T )-separator of size
k iff it has a dual separator of size k, which will prove the theorem.

A dual (S, T )-separator is certainly a dual separator of G′′. Conversely, sup-
pose that G′′ does not have a dual (S, T )-separator of size k. Then after deleting
k vertices V ∗, we will get a graph G∗ such that S and T are connected in G∗

b or
G∗

r . Note that each vertex in W = S ∪ T ∪ S′′
b ∪ T ′′

b has k+1 copies, and thus it
is useless to delete any vertices in W . Hence we can assume that V ∗ ∩W = ∅.
Suppose that S and T are connected in G∗

r . Since V (G) = Xr∪Yr, each vertex in
V (G)∩ V (G∗) is adjacent to a vertex in S or T with red edges. Furthermore all
vertices in S′′

b ∪T ′′
b are adjacent to S or T with red edges by Step 3 in construct-

ing G′′, implying that G∗
r is connected. By a similar argument, we can deduce

that G∗
b is connected when S and T are connected in G∗

b . Thus we have proved
this theorem.

5 Concluding Remarks

Results on connectedness and separators for edge-bicolored graphs have shown a
rich diversity of the complexity of induced subgraph problems on edge-bicolored
graphs, which extends an invitation for studying various induced subgraph prob-
lems on edge-bicolored graphs. In fact we have obtained a complete characteri-
zation of Induced (Πb, Πr)-Subgraph on edge-bicolored graphs for hereditary
properties Πb and Πr, and also obtained FPT algorithms for its parametric dual
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problems for properties with finite forbidden induced subgraph characterizations.
Furthermore, the work in the paper also enables us to obtain some results for
digraphs. Due to space limit, proofs for the following theorems are omitted and
will appear in the full paper.

Building on a characterization of Khot and Raman [13] for induced subgraph
problems on uncolored graphs and Ramsey’s theorem, we completely character-
ize the complexity of Induced (Πb, Πr)-Subgraph on edge-bicolored graphs for
hereditary properties Πb and Πr, which depends on whether Πb and Πr include
all complete graphs Ki or trivial graphs Ki (see Figure 5 for an illustration).

Poly

NP-hard

but FPT

NP-hard &

W[1]-hard

¬∀Ki

∀Ki

¬∀Ki

¬∀Ki

∀Ki

¬∀Ki

∀Ki

∀Ki

∀Ki

∀Ki

∀Ki

¬∀Ki

¬∀Ki

∀Ki

¬∀Ki

¬∀Ki

Πb

Πr

Fig. 5. For a property Π , ∀Ki = “Π includes all complete graphs” and ¬∀Ki = “Π
excludes some complete graphs”. Similar for trivial graphs Ki.

Theorem 6. For hereditary properties Πb and Πr, the complexity of Induced
(Πb, Πr)-Subgraph is completely determined as follows:

1. NP-hard and W[1]-hard if one of Πb and Πr includes all trivial graphs, and
the other excludes some complete graphs but includes all trivial graphs or
vice versa.

2. NP-hard but FPT if both Πb and Πr include all complete graphs and all
trivial graphs.

3. Polynomial-time solvable if both Πb and Πr exclude some trivial graphs, or
one of Πb and Πr excludes some complete graphs and some trivial graphs.

We remark that the above theorem implies a complete characterization of the
Dual Π-Subgraph problem, i.e., Induced (Π,Π)-Subgraph, for hereditary
Π (see the main diagonal of Figure 5).

For the parametric dual problem of Induced (Πb, Πr)-Subgraph, i.e., delet-
ing k vertices to obtain an induced (Πb, Πr)-graph, we can easily deduce the fol-
lowing general result on edge-colored multigraphs as a corollary of a well-known
result of the first author regarding graph modification problems [3].

Theorem 7. Let G1, . . . , Gt be graphs, and Π1, . . . , Πt graph properties charac-
terizable by finite forbidden induced subgraphs. It is FPT to determine whether
there are k vertices in V =

⋃t
i=1 V (Gi) such that G[V (Gi) ∩ V ] is a Πi-graph

for every 1 ≤ i ≤ t.
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Edge-bicolored graphs also have close connections with digraphs, and dually
connected graphs resemble strongly connected digraphs. We may use ideas in
this paper to study subgraph problems on digraphs. In particular, we can easily
modify proofs of Theorem 2 and Theorem 3 to obtain the following results for
strongly connected subgraphs.

Theorem 8. It is NP-complete and W[1]-hard to determine whether a digraph
G contain exactly k vertices V ′ such that G[V ′] (resp., G− V ′) is strongly con-
nected.

We hope that our work will stimulate further research on simultaneous sub-
graph problems for edge-bicolored graphs and edge-bicolored multigraphs in gen-
eral. Indeed, many fundamental and interesting problems are awaiting to be
investigated, and we list some open problems here.

Problem 1. Determine whether Dually Connected Deletion is FPT on
“dual trees” when blue and red graphs are defined by G[Eb] and G[Er ], instead
of (V,Eb) and (V,Er).

Problem 2. Determine the parameterized complexity of Dual Separator and
Dual Separator For Two Terminals.

For hereditary properties Π not covered by Theorem 7, the parameterized
complexity ofDual Π-Graph Deletion is open for various fundamental prop-
erties Π . We note that for every property Π in the following problem, FPT
algorithm exists for turning an uncolored graph into a Π-graph by deleting k
vertices [10,5,17,14,15].

Problem 3. Determine parameterized complexities of Dual Π-Graph Dele-

tion for Π being acyclic, bipartite, chordal, and planar graphs, respectively.

For a different flavor, we may also consider modifying an edge-bicolored graph
into a required graph by edge recoloring. We have obtained some interesting
results in connection with dual connectedness and separators, and we will report
our findings in a separate paper.

Problem 4. Determine complexities of turning an edge-bicolored graph into a
dual Π-graph for Π being acyclic, bipartite, chordal, and planar graphs, respec-
tively, by edge recoloring.

We expect many exciting results concerning simultaneous subgraphs in edge-
bicolored graphs and edge-colored multigraphs in general, which may also shed
light on other graph problems such as problems on digraphs.

Acknowledgement. We are grateful to Michel Habib for bringing our attention
to the work on common connected components and common intervals.
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