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Abstract. Obtaining lower bounds for NP-hard problems has for a long time
been an active area of research. Recent algebraic techniques introduced by Jon-
sson et al. (SODA 2013) show that the time complexity of the parameterized
SAT(·) problem correlates to the lattice of strong partial clones.With this or-
dering they isolated a relationRsuch that SAT(R) can be solved at least as fast as
any other NP-hard SAT(·) problem. In this paper we extend this method and show
that such languages also exist for themax ones problem(MAX -ONES(Γ )) and the
Boolean valued constraint satisfaction problemover finite-valued constraint lan-
guages (VCSP(∆ )). With the help of these languages we relate MAX -ONESand
VCSP to the exponential time hypothesis in several different ways.

1 Introduction

A superficial analysis of the NP-complete problems may lead one to think that they are
a highly uniform class of problems: in fact, under polynomial-time reductions, the NP-
complete problems may be viewed as asingleproblem. However, there are many indi-
cations (both from practical and theoretical viewpoints) that the NP-complete problems
are a diverse set of problems with highly varying properties, and this becomes visible
as soon as one starts using more refined methods. This has inspired a strong line of
research on the “inner structure” of the set of NP-complete problem. Examples include
the intensive search for faster algorithms for NP-completeproblems [23] and the highly
influential work on theexponential time hypothesis(ETH) and its variants [14]. Such
research might not directly resolve whether P is equal to NP or not, but rather attempts
to explain the seemingly large difference in complexity between NP-hard problems
and what makes one problem harder than another. Unfortunately there is still a lack of
general methods for studying and comparing the complexity of NP-complete problems
with more restricted notions of reducibility. Jonsson et al. [10] presented a framework
based onclone theory, applicable to problems that can be viewed as “assigning values
to variables”, such as constraint satisfaction problems, the vertex cover problem, and
integer programming problems. To analyze and relate the complexity of these problems
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in greater detail we utilize polynomial-time reductions which increase the number of
variables by a constant factor (linear variable reductionsor LV-reductions) and reduc-
tions which increases the amount of variables by a constant (constant variable reduc-
tions or CV-reductions). Note the following: (1) if a problemA is solvable inO(cn)
time (wheren denotes the number of variables) for allc > 1 and if problemB is LV-
reducible toA thenB is also solvable inO(cn) time for allc> 1 and (2) ifA is solvable
in time O(cn) and if B is CV-reducible toA thenB is also solvable in timeO(cn). Thus
LV-reductions preserve subexponential complexity while CV-reductions preserve exact
complexity. Jonsson et al. [10] exclusively studied the Boolean satisfiability SAT(·)
problem and identified an NP-hard SAT({R}) problem CV-reducible to all other NP-
hard SAT(·) problems. Hence SAT({R}) is, in a sense, theeasiestNP-complete SAT(·)
problem since if SAT(Γ ) can be solved inO(cn) time, then this holds for SAT({R}),
too. With the aid of this result, they analyzed the consequences of subexponentially
solvable SAT(·) problems by utilizing the interplay between CV- and LV-reductions.
As a by-product, Santhanam and Srinivasan’s [17] negative result on sparsification of
infinite constraint languages was shown not to hold for finitelanguages.

We believe that the existence and construction of such easiest languages forms an
important puzzle piece in the quest of relating the complexity of NP-hard problems
with each other, since it effectively gives a lower bound on the time complexity of a
given problem with respect to constraint language restrictions. As a logical continua-
tion on the work on SAT(·) we pursue the study of CV- and LV-reducibility in the con-
text of Boolean optimization problems. In particular we investigate the complexity of
MAX -ONES(·) and VCSP(·) and introduce and extend several non-trivial methods for
this purpose. The results confirms that methods based on universal algebra are indeed
useful when studying broader classes of NP-complete problems. The MAX -ONES(·)
problem [11] is a variant of SAT(·) where the goal is to find a satisfying assign-
ment which maximizes the number of variables assigned the value 1. This problem
is closely related to the 0/1 LINEAR PROGRAMMING problem. The VCSP(·) prob-
lem is a function minimization problem that generalizes theMAX -CSP and MIN-CSP
problems [11]. We treat both the unweighted and weighted versions of these problems
and use the prefixU to denote the unweighted problem andW to denote the weighted
version. These problems are well-studied with respect to separating tractable cases from
NP-hard cases [11,22] but much less is known when considering the weaker schemes of
LV-reductions and CV-reductions. We begin (in Section 3.1)by identifying the easiest
language forW-MAX -ONES(·). The proofs make heavy use of thealgebraic method
for constraint satisfaction problems [7,8] and theweak base method[20]. The algebraic
method was introduced for studying the computational complexity of constraint satsi-
faction problems up to polynomial-time reductions while the weak base method [19]
was shown by Jonsson et al. [10] to be useful for studying CV-reductions. To prove
the main result we however need even more powerful reductiontechniques based on
weighted primitive positive implementations[9,21]. For VCSP(·) the situation differs
even more since the algebraic techniques developed for CSP(·) are not applicable —
instead we usemultimorphisms[2] when considering the complexity of VCSP(·). We
prove (in Section 3.2) that the binary functionf 6= which returns 0 if its two arguments
are different and 1 otherwise, results in the easiest NP-hard VCSP(·) problem. This
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problem is very familiar since it is the MAX CUT problem slightly disguised. The com-
plexity landscape surrounding these problems is outlined in Section 3.3.

With the aid of the languages identified in Section 3, we continue (in Section 4) by
relating MAX -ONES and VCSP with LV-reductions and connect them with the ETH.
Our results imply that (1) if the ETH is true then no NP-complete U-MAX -ONES(Γ ),
W-MAX -ONES(Γ ), or VCSP(∆) is solvable in subexponential time and (2) that if the
ETH is false thenU-MAX -ONES(Γ ) andU-VCSPd(∆) are solvable in subexponential
time for every choice ofΓ and∆ andd ≥ 0. HereU-VCSPd(∆) is theU-VCSP(∆)
problem restricted to instances where the sum to minimize contains at mostdn terms.
Thus, to disprove the ETH, our result implies that it is sufficient to find a single lan-
guageΓ or a set of cost functions∆ such thatU-MAX -ONES(Γ ), W-MAX -ONES(Γ )
or VCSP(∆) is NP-hard and solvable in subexponential time.

2 Preliminaries

Let Γ denote a finite set of finitary relations overB = {0,1}. We callΓ a constraint
language. GivenR⊆ Bk we let ar(R) = k denote its arity, and similarly for functions.
WhenΓ = {R} we typically omit the set notation and treatR as a constraint language.

2.1 Problem Definitions

Theconstraint satisfaction problemoverΓ (CSP(Γ )) is defined as follows.

INSTANCE: A set V of variables and a setC of constraint applicationsR(v1, . . . ,vk)
whereR∈ Γ , k= ar(R), andv1, . . . ,vk ∈V.
QUESTION: Is there a functionf : V → B such that( f (v1), . . . , f (vk)) ∈ R for each
R(v1, . . . ,vk) in C?

For the Boolean domain this problem is typically denoted as SAT(Γ ). By SAT(Γ )-
B we mean the SAT(Γ ) problem restricted to instances where each variable can occur
in at mostB constraints. This restricted problem is occasionally useful since each in-
stance contains at mostBn constraints. Theweigthed maximum ones problemoverΓ
(W-MAX -ONES(Γ )) is an optimization version of SAT(Γ ) where we for an instance
on variables{x1, . . . ,xn} and weightswi ∈ Q≥0 want to find a solutionh for which
∑n

i=1wi h(xi) is maximal. Theunweigthed maximum ones problem(U-MAX -ONES(Γ ))
is theW-MAX -ONES(Γ ) problem where all weights have the value 1. Afinite-valued
cost functiononB is a functionf : Bk →Q≥0. Thevalued constraint satisfaction prob-
lemover a finite set of finite-valued cost functions∆ (VCSP(∆)) is defined as follows.

INSTANCE: A setV = {x1, . . . ,xn} of variables and the objective functionfI (x1, . . . ,xn)=

∑q
i=1wi fi(xi) where, for every 1≤ i ≤ q, fi ∈ ∆ ,xi ∈Var( fi), andwi ∈Q≥0 is a weight.

GOAL : Find a functionh : V → B such thatfI (h(x1), . . . ,h(xn)) is minimal.

When the set of cost functions is singleton VCSP({ f}) is written as VCSP( f ). We
let U-VCSP be the VCSP problem without weights andU-VCSPd (for d ≥ 0) denote
the U-VCSP problem restricted to instances containing at mostd |Var(I)| constraints.
Many optimization problems can be viewed as VCSP(∆) problems for suitable∆ :
well-known examples are the MAX -CSP(Γ ) and MIN-CSP(Γ ) problems where the
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number of satisfied constraints in a CSP instance are maximized or minimized. For
eachΓ , there obviously exists sets of cost functions∆min,∆max such that MIN-CSP(Γ )
is polynomial-time equivalent to VCSP(∆min) and MAX -CSP(Γ ) is polynomial-time
equivalent to VCSP(∆max). We have defined the problemsU-VCSP, VCSP,U-MAX -ONES

andW-MAX -ONES as optimization problems, but to obtain a more uniform treatment
we often view them as decision problems, i.e. givenk we ask if there is a solution with
objective valuek or better.

2.2 Size-Preserving Reductions and Subexponential Time

If A is a computational problem we letI(A) be the set of problem instances and‖I‖ be
the size of anyI ∈ I(A), i.e. the number of bits required to representI . Many problems
can in a natural way be viewed as problems of assigning valuesfrom a fixed finite set
to a collection of variables. This is certainly the case for SAT(·), MAX -ONES(·) and
VCSP(·) but it is also the case for various graph problems such as MAX -CUT and
MAX INDEPENDENT SET. We call problems of this kindvariable problemsand let
Var(I) denote the set of variables of an instanceI .

Definition 1. Let A1 and A2 be variable problems in NP. The function f from I(A1) to
I(A2) is a many-one linear variable reduction(LV-reduction) with parameter C≥ 0 if:
(1) I is a yes-instance of A1 if and only if f(I) is a yes-instance of A2, (2) |Var( f (I))|=
C · |Var(I)|+O(1), and (3) f(I) can be computed in time O(poly(‖I‖)).

LV-reductions can be seen as a restricted form of SERF-reductions [6]. The term
CV-reduction is used to denote LV-reductions with parameter 1, and we writeA1≤

CV A2

to denote that the problemA1 has an CV-reduction toA2. If A1 andA2 are two NP-hard
problems we say thatA1 is at least as easyas (ornot harder than) A2 if A1 is solvable in
O(c|Var(I)|) time wheneverA1 is solvable inO(c|Var(I)|) time. By definition ifA1 ≤

CV A2

thenA1 is not harder thanA2 but the converse is not true in general. A problem solvable
in time O(2c|Var(I)|) for all c > 0 is a subexponential problem, and SE denotes the
class of all variable problems solvable in subexponential time. It is straightforward to
prove that LV-reductions preserve subexponential complexity in the sense that ifA is
LV-reducible toB thenA ∈ SE if B ∈ SE. Naturally, SE can be defined using other
complexity parameters than|Var(I)| [6].

2.3 Clone Theory

An operationf : Bk → B is apolymorphismof a relationR if for every t1, . . . , tk ∈ R it
holds thatf (t1, . . . , tk) ∈ R, wheref is applied element-wise. In this caseR is closed, or
invariant, under f . For a set of functionsF we define Inv(F) (often abbreviated asIF)
to be the set of all relations invariant under all functions in F. Dually Pol(Γ) for a set
of relationsΓ is defined to be the set of polymorphisms ofΓ . Sets of the form Pol(Γ)
are known asclonesand sets of the form Inv(F) are known asco-clones. The reader
unfamiliar with these concepts is referred to the textbook by Lau [13]. The relationship
between these structures is made explicit in the followingGalois connection[13].

Theorem 2. LetΓ , Γ ′ be sets of relations. ThenInv(Pol(Γ′))⊆ Inv(Pol(Γ)) if and only
if Pol(Γ)⊆ Pol(Γ′).
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Co-clones can equivalently be described as sets containingall relationsR definable
throughprimitive positive(p.p.) implementations over a constraint languageΓ , i.e. def-
initions of the formR(x1, . . . ,xn)≡ ∃y1, . . . ,ym.R1(x1)∧ . . .∧Rk(xk), where eachRi ∈
Γ ∪{eq} and eachxi is a tuple overx1, . . . ,xn, y1, . . . ,ym and where eq= {(0,0),(1,1)}.
As a shorthand we let〈Γ 〉= Inv(Pol(Γ)) for a constraint languageΓ , and as can be ver-
ified this is the smallest set of relations closed under p.p. definitions overΓ . In this case
Γ is said to be abaseof 〈Γ 〉. It is known that ifΓ ′ is finite and Pol(Γ) ⊆ Pol(Γ′)
then CSP(Γ ′) is polynomial-time reducible to CSP(Γ ) [7]. With this fact and Post’s
classification of all Boolean clones [15] Schaefer’s dichotomy theorem [18] for SAT(·)
follows almost immediately. See Figure 2 and Table 1 in Appendix A.1 for a visual-
ization of this lattice and a list of bases. The complexity ofMAX -ONES(Γ ) is also
preserved under finite expansions with relations p.p. definable in Γ , and hence follow
the standard Galois connection [11]. Note however that Pol(Γ′) ⊆ Pol(Γ) does not im-
ply that CSP(Γ ′) CV-reduces to CSP(Γ ) or even that CSP(Γ ′) LV-reduces to CSP(Γ )
since the number of constraints is not necessarily linearlybounded by the number of
variables.

To study these restricted classes of reductions we are therefore in need of Galois
connections with increased granularity. In Jonsson et al. [10] the SAT(·) problem is
studied with the Galois connection between closure under p.p. definitions without exis-
tential quantification andstrong partial clones. We concentrate on the relational descrip-
tion and present the full definitions of partial polymorphisms and the aforementioned
Galois connection in Appendix A.2. IfR is an n-ary Boolean relation andΓ a con-
straint language thenR has aquantifier-free primitive positive(q.p.p.) implementation
in Γ if R(x1, . . . ,xn) ≡ R1(x1)∧ . . .∧Rk(xk), where eachRi ∈ Γ ∪{eq} and eachxi is
a tuple overx1, . . . ,xn. We use〈Γ 〉∄ to denote the smallest set of relations closed under
q.p.p. definability overΓ . If IC = 〈IC〉∄ thenIC is aweak partial co-clone. In Jonsson et
al. [10] it is proven that ifΓ ′ ⊆ 〈Γ 〉∄ and ifΓ andΓ ′ are both finite constraint languages
then CSP(Γ ′) ≤CV CSP(Γ ). It is not hard to extend this result to the MAX -ONES(·)
problem since it follows the standard Galois connection, and therefore we use this fact
without explicit proof. Aweak base Rw of a co-cloneIC is then a base ofIC with the
property that for any finite baseΓ of IC it holds thatRw ∈ 〈Γ 〉∄. In particular this means
that SAT(Rw) and MAX -ONES(Rw) CV-reduce to SAT(Γ ) and MAX -ONES(Γ ) for
any baseΓ of IC, andRw can therefore be seen as the easiest language in the co-clone.
The formal definition of a weak base is included in Appendix A.2 together with a table
of weak bases for all Boolean co-clones with a finite base. These weak bases have the
additional property that they can be implemented without the equality relation [12].

2.4 Operations and Relations

An operationf is calledarithmeticalif f (y,x,x) = f (y,x,y) = f (x,x,y) = y for every
x,y∈ B. The max function is defined as max(x,y) = 0 if x= y= 0 and 1 otherwise. We
often express a Boolean relationR as a logical formula whose satisfying assignment
corresponds to the tuples ofR. F and T are the two constant relations{(0)} and{(1)}
while neq denotes inequality, i.e. the relation{(0,1),(1,0)}. The relation EVENn is
defined as{(x1, . . . ,xn)∈Bn |∑n

i=1xi is even}. The relation ODDn is defined dually. The
relations ORn and NANDn are the relations corresponding to the clauses(x1∨ . . .∨xn)
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and (x1 ∨ . . .∨ xn). For anyn-ary relation andR we let Rm6=, 1 ≤ m≤ n, denote the
(n+m)-ary relation defined asRm6=(x1, . . . ,xn+m)≡ R(x1, . . . ,xn)∧neq(x1,xn+1)∧ . . .∧

neq(xn,xn+m). We useR1/3 for the relation{(0,0,1),(0,1,0),(1,0,0)}. Variables are
typically namedx1, . . . ,xn or x except when they occur in positions where they are
forced to take a particular value, in which case they are named c0 andc1 respectively to
explicate that they are in essence constants. As conventionc0 andc1 always occur in the
last positions in the arguments to a predicate. We now see that RII2

(x1, . . . ,x6,c0,c1)≡

R1/3
3 6= (x1, . . . ,x6)∧ F(c0)∧ T(c1) and RIN2

(x1, . . . ,x8) ≡ EVEN4
4 6=(x1, . . . ,x8)∧ (x1x4 ↔

x2x3) from Table 2 in Appendix A.1 are the two relations (where the tuples in the
relations are listed as rows)

RII2
=
{

0 0 1 1 1 0 0 1
0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 1

}

and RIN2
=







0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1







.

3 The Easiest NP-Hard MAX -ONES and VCSP Problems

We will now study the complexity ofW-MAX -ONES and VCSP with respect to CV-
reductions. We remind the reader that constraint languagesΓ and sets of cost functions
∆ are always finite. We prove that for both these problems thereis a single language
which is CV-reducible to every other NP-hard language. Out of the infinite number
of candidate languages generating different co-clones, the language{RII2

} defines the
easiestW-MAX -ONES(·) problem, which is the same language as for SAT(·) [10].
This might be contrary to intuition since one could be led to believe that the co-clones
in the lower parts of the co-clone lattice, generated by verysimple languages where the
corresponding SAT(·) problem is in P, would result in even easier problems.

3.1 The MAX -ONES Problem

Here we use a slight reformulation of Khanna et al. ’s [11] complexity classification of
the MAX -ONES problem expressed in terms of polymorphisms.

Theorem 3 ([11]).Let Γ be a finite Boolean constraint language.MAX -ONES(Γ ) is
in P if and only ifΓ is 1-closed,max-closed, or closed under an arithmetical operation.

The theorem holds for both the weighted and the unweighted version of the problem
and showcases the strength of the algebraic method since it not only eliminates all
constraint languages resulting in polynomial-time solvable problems, but also tells us
exactly which cases remain, and which properties they satisfy.

Theorem 4. U-MAX -ONES(R)≤CV U-MAX -ONES(Γ ) for some R∈ {R
IS

2
1

, RII
2
, RIN

2
,

RIL
0
, RIL

2
, RIL

3
, RID

2
} wheneverU-MAX -ONES(Γ ) is NP-hard.

Proof. By Theorem 3 in combination with Table 1 and Figure 2 in Appendix A.1
it follows that U-MAX -ONES(Γ ) is NP-hard if and only if〈Γ 〉 ⊇ IS

2

1 or if 〈Γ 〉 ∈
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{IL0, IL3, IL2, IN2}. In principle we then for every co-clone have to decide whichlan-
guage is CV-reducible to every other base of the co-clone, but since a weak base al-
ways have this property, we can eliminate a lot of tedious work and directly consult
the precomputed relations in Table 2. From this we first see that 〈R

IS2
1

〉∄ ⊂ 〈RISn
1
〉∄,

〈R
IS2

12

〉∄ ⊂ 〈RISn
12
〉∄, 〈R

IS2
11

〉∄ ⊂ 〈RISn
11
〉∄ and〈R

IS2
10

〉∄ ⊂ 〈RISn
10
〉∄ for everyn≥ 3. Hence

in the four infinite chainsISn

1, IS
n

12, IS
n

11, IS
n

10 we only have to consider the bottom-
most co-clonesIS21, IS

2

12, IS
2

11, IS
2

10. Observe that ifR andR′ satisfiesR(x1, . . . ,xk) ⇒
∃y0,y1.R′(x1, . . . ,xk,y0,y1)∧F(y0)∧T(y1) andR′(x1, . . . ,xk,y0,y1) ⇒ R(x1, . . . ,xk)∧
F(y0), and it moreover holds thatR′(x1, . . . ,xk,y0,y1)∈ 〈Γ 〉∄, thenU-MAX -ONES(R)≤CV

U-MAX -ONES(Γ ), since we can usey0 andy1 as global variables and because an opti-
mal solution to the instance we construct will always mapy1 to 1 if the original instance
is satisfiable. ForR

IS2
1

(x1,x2,c0) we can q.p.p. define predicatesR′
IS2

1

(x1,x2,c0,y0,y1)

with R
IS2

12

,R
IS2

11

,R
IS2

10

,RIE
2
,RIE

0
satisfying these properties as follows:

– R′
IS

2
1

(x1,x2,c0,y0,y1)≡ R
IS2

12

(x1,x2,c0,y1)∧R
IS2

12

(x1,x2,y0,y1),

– R′
IS

2
1

(x1,x2,c0,y0,y1)≡ R
IS2

11

(x1,x2,c0,c0)∧R
IS2

11

(x1,x2,y0,y0),

– R′
IS2

1

(x1,x2,c0,y0,y1)≡ R
IS2

10

(x1,x2,c0,c0,y1)∧R
IS2

10

(x1,x2,c0,y0,y1),

– R′
IS2

1

(x1,x2,c0,y0,y1)≡ RIE
2
(c0,x1,x2,c0,y1)∧RIE

2
(c0,x1,x2,y0,y1),

– R′
IS2

1

(x1,x2,c0,y0,y1)≡ RIE
0
(c0,x1,x2,y1,c0)∧RIE

0
(y0,x1,x2,y1,y0),

and similarly a relationR′
II2

usingRII0 as followsR′
II2
(x1,x2,x3,x4,x5,x6,c0,c1,y0,y1)≡

RII0(x1,x2,x3,c0)∧RII0(c0,c1,y1,y0)∧RII0(x1,x4,y1,y0)∧RII0(x2,x5,y1,y0)∧RII0(x3,x6,
y1,y0). By Figure 2 in Appendix A.1 we then see that the only remaining cases forΓ
when〈Γ 〉 ⊃ IS

2

1 is when〈Γ 〉= II2 or when〈Γ 〉= ID2. This concludes the proof. ⊓⊔

Using q.p.p. implementations to further decrease the set ofrelations in Theorem 4
appears difficult and we therefore make use of more powerful implementations. Let
Optsol(I) be the set of all optimal solutions of aW-MAX -ONES(Γ ) instanceI . A re-
lation R has aweighted p.p. definition(w.p.p. definition) [9,21] inΓ if there exists an
instanceI of W-MAX -ONES(Γ ) on variablesV such thatR= {(φ(v1), . . . ,φ(vm)) | φ ∈
Optsol(I)} for somev1, . . . ,vm ∈V. The set of all relations w.p.p. definable inΓ is de-
noted〈Γ 〉w and we furthermore have that ifΓ ′ ⊆〈Γ 〉w is a finite thenW-MAX -ONES(Γ ′)
is polynomial-time reducible toW-MAX -ONES(Γ ) [9,21]. If there is aW-MAX -ONES(Γ )
instanceI onV such thatR= {(φ(v1), . . . ,φ(vm)) | φ ∈ Optsol(I)} for v1, . . . ,vm ∈ V
satisfying{v1, . . . ,vm} = V, then we say thatR is q.w.p.p. definable inΓ . We use
〈Γ 〉∄,w for set of all relations q.w.p.p. definable inΓ . It is not hard to check that if
Γ ′ ⊆ 〈Γ 〉∄,w, then every instance is mapped to an instance of equally manyvariables —
henceW-MAX -ONES(Γ ′) is CV-reducible toW-MAX -ONES(Γ ) wheneverΓ ′ is finite.

Theorem 5. LetΓ be a constraint language such thatW-MAX -ONES(Γ ) is NP-hard.
Then it holds thatW-MAX -ONES(RII2

)≤CV W-MAX -ONES(Γ ).
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Proof. We utilize q.w.p.p. definitions and note that the following holds.

RII2
= arg maxx∈B8:(x7,x1,x2,x6,x8,x4,x5,x3)∈RIN2

x8,

RII2
= arg maxx∈B8:(x5,x4,x2,x1,x7,x8),(x6,x4,x3,x1,x7,x8),(x6,x5,x3,x4,x7,x8)∈RID2

(x1+ x2+ x3),

RII2
= arg maxx∈B8:(x4,x5,x6,x1,x2,x3,x7,x8)∈RIL2

(x4+ x5+ x6),

RIL2
= arg maxx∈B8:(x7,x1,x2,x3,x8,x4,x5,x6)∈RIL3

x8,

RIL2
= arg maxx∈B8:(x4,x5,x6,x7),(x8,x1,x4,x7),(x8,x2,x5,x7),(x8,x3,x6,x7)∈RIL0

x8,

RII2
= arg maxx∈B8:(x1,x2,x7),(x1,x3,x7),(x2,x3,x7),(x1,x4,x7),(x2,x5,x7),(x3,x6,x7)∈R

IS2
1

(x1+ · · ·+ x8).

Hence,RII2
∈ 〈R〉∄,w for everyR∈ {R

IS2
1

,RIN
2
,RIL

0
,RIL

2
,RIL

3
,RID

2
} which by Theo-

rem 4 completes the proof. ⊓⊔

3.2 The VCSP Problem

Since VCSP does not adhere to the standard Galois connectionin Theorem 2, the weak
base method is not applicable and alternative methods are required. For this purpose we
usemultimorphismsfrom Cohen et al. [2]. Let∆ be a set of cost functions onB, let p
be a unary operation onB, and letf ,g be binary operations onB. We say that∆ admits
the binarymultimorphism( f ,g) if it holds thatν( f (x,y)) + ν(g(x,y)) ≤ ν(x) + ν(y)
for everyν ∈ ∆ andx,y∈ Bar(ν). Similarly ∆ admits the unarymultimorphism(p) if it
holds thatν(p(x)) ≤ ν(x) for everyν ∈ ∆ andx ∈ Bar(ν). Recall that the functionf 6=
equals{(0,0) 7→ 1,(0,1) 7→ 0,(1,0) 7→ 0,(1,1) 7→ 1} and that the minimisation problem
VCSP( f 6=) and the maximisation problem MAX CUT are trivially CV-reducible to each
other. We will make use of (a variant of) the concept ofexpressibility[2]. We say that
a cost functiong is ∄-expressiblein ∆ if g(x1, . . . ,xn) = ∑i wi fi(si)+w for some tuples
si over{x1, . . . ,xn}, weightswi ∈ Q≥0, w ∈ Q and fi ∈ ∆ . It is not hard to see that if
every function in a finite set∆ ′ is ∄-expressible in∆ , then VCSP(∆ ′)≤CV VCSP(∆).
Note that if the constants 0 and 1 are expressible in∆ then we may allow tuplessi over
{x1, . . . ,xn,0,1}, and still obtain a CV-reduction.

Theorem 6. Let∆ be a set of finite-valued cost functions onB. If the problemVCSP(∆)
is NP-hard, thenVCSP( f 6=)≤CV VCSP(∆).

Proof. Since VCSP(∆) is NP-hard (and since we assume P6= NP) we know that∆ does
not admit the unary(0)-multimorphism or the unary(1)-multimorphism [2]. There-
fore there areg,h ∈ ∆ and u ∈ Bar(g), v ∈ Bar(h) such thatg(0) > g(u) and h(1) >
h(v). Let w ∈ arg minx∈Bb(g(x1, . . . ,xa) + h(xa+1, . . . ,xb)) and then defineo(x,y) =
g(z1, . . . ,za) + h(za+1, . . . ,zb) wherezi = x if wi = 0 and zi = y otherwise. Clearly
(0,1) ∈ arg minx∈B2 o(x), o(0,1) < o(0,0), ando(0,1) < o(1,1). We will show that
we always can force two fresh variablesv0 andv1 to 0 and 1, respectively. Ifo(0,0) 6=
o(1,1), then assume without loss of generality thato(0,0) < o(1,1). In this case we
forcev0 to 0 with the (sufficiently weighted) termo(v0,v0). Defineg′(x)= g(z1, . . . ,zar(g))
wherezi = x if ui =1 andzi = v0 otherwise. Note thatg′(1)< g′(0) which means that we
can forcev1 to 1. Otherwiseo(0,0) = o(1,1). If o(0,1) = o(1,0), then f 6= = α1o+α2,
otherwise assume without loss of generality thato(0,1)< o(1,0). In this casev0,v1 can
be forced to 0,1 with the help of the (sufficiently weighted) termo(v0,v1).
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We also know that∆ does not admit the(min,max)-multimorphism [2] since VCSP(∆)
is NP-hard by assumption. Hence, there exists ak-ary function f ∈ ∆ ands, t ∈ Bk such
that f (min(s, t)) + f (max(s, t)) > f (s) + f (t). Let f1(x) = α1o(v0,x) +α2 for some
α1 ∈Q≥0 andα2 ∈Q such thatf1(1) = 0 andf1(0) = 1. Let alsog(x,y) = f (z1, . . . ,zk)
wherezi = v1 if min(si , t i) = 1, zi = v0 if max(si , t i) = 0, zi = x if si > ti and zi =
y otherwise. Note thatg(0,0) = f (min(s, t)), g(1,1) = f (max(s, t)), g(1,0) = f (s)
andg(0,1) = f (t). Seth(x,y) = g(x,y)+g(y,x). Now h(0,1) = h(1,0) < 1

2(h(0,0)+
h(1,1)). If h(0,0)= h(1,1), then f 6= =α1h+α2 for someα1 ∈Q≥0 andα2 ∈Q. Hence,
we can without loss of generality assume thath(1,1)− h(0,0) = 2. Note now that
h′(x,y) = f1(x)+ f1(y)+ h(x,y) satisfiesh′(0,0) = h′(1,1) = 1

2(h(0,0)+ h(1,1)+ 2)
andh′(0,1) = h′(1,0) = 1

2(2+h(0,1)+h(1,0)). Hence,h′(0,0) = h′(1,1)> h′(0,1) =
h′(1,0). So f 6= = α1h′+α2 for someα1 ∈Q≥0 andα2 ∈Q. ⊓⊔

3.3 The Broader Picture

Theorems 5 and 6 does not describe the relative complexity between the SAT(·), MAX -
ONES(·) and VCSP(·) problems. However we readily see (1) that SAT(RII2

) ≤CV

W-MAX -ONES(RII2
), and (2) thatW-MAX -ONES(RII2

) ≤CV W-MAX INDEPENDENT

SET sinceW-MAX INDEPENDENTSET can be expressed byW-MAX -ONES(NAND2).
The problem W-MAX -ONES(NAND2) is in turn expressible by MAX -CSP({NAND2,
T,F}). To show thatW-MAX INDEPENDENT SET ≤CV VCSP( f 6=) it is in fact, since
MAX -CSP(neq) and VCSP( f 6=) is the same problem, sufficient to show that MAX -
CSP({NAND2,T,F}) ≤CV MAX -CSP(neq). We do this as follows. Letv0 andv1 be
two global variables. We forcev0 andv1 to be mapped to different values by assign-
ing a sufficiently high weight to the constraint neq(v0,v1). It then follows that T(x) =
neq(x,v0), F(x) = neq(x,v1) and NAND2(x,y) = 1

2(neq(x,y)+F(x)+F(y)) and we are
done. It follows from this proof that MAX -CSP({NAND2,T,F}) and VCSP( f 6=) are
mutually CV-interreducible. Since MAX -CSP({NAND2,T,F}) can also be formulated
as a VCSP it follows that VCSP(·) does not have a unique easiest set of cost functions.
The complexity results are summarized in Figure 1. Some trivial inclusions are omitted
in the figure: for example it holds that SAT(Γ )≤CV W-MAX -ONES(Γ ) for all Γ .

4 Subexponential Time and the Exponential-Time Hypothesis

The exponential-time hypothesis states that 3-SAT/∈ SE [5]. We remind the reader that
the ETH can be based on different size parameters (such as thenumber of variables or
the number of clauses) and that these different definitions often coincide [6]. In this sec-
tion we investigate the consequences of the ETH for theU-MAX -ONES andU-VCSP
problems. A direct consequence of Section 3 is that if there exists any finite constraint
languageΓ or set of cost functions∆ such thatW-MAX -ONES(Γ ) or VCSP(∆) is
NP-hard and in SE, then SAT(RII2

) is in SE which implies that the ETH is false [10].
The other direction is interesting too since it highlights the likelihood of subexponential
time algorithms for the problems, relative to the ETH.

Lemma 7. If U-MAX -ONES(Γ ) is in SE for some finite constraint languagesΓ such
that U-MAX -ONES(Γ ) is NP-hard, then the ETH is false.
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SAT(RII2
)

SAT(Γ ) W-MAX -ONES(RII2
)

W-MAX -ONES(Γ ) W-MAX INDEPENDENTSET

VCSP( f 6=)

VCSP(∆ )

W-MAX CUT

1

2

3

1. Holds for everyΓ such that
SAT(Γ ) is NP-hard.

2. Holds for every Γ such
that W-MAX -ONES(Γ ) is
NP-hard.

3. Holds for every finite-valued
∆ such that VCSP(∆ ) is NP-
hard.

Fig. 1. The complexity landscape of some Boolean optimization and satisfiability problems. A
directed arrow from one nodeA to B means thatA≤CV B.

Proof. From Jonsson et al. [10] it follows that 3-SAT is in SE if and only if SAT (RII2
)-

2 is in SE. Combining this with Theorem 4 we only have to prove that SAT(RII2
)-2

LV-reduces toU-MAX -ONES(R) for R∈ {R
IS2

1

,RIN
2
,RIL

0
,RIL

2
,RIL

3
,RID

2
}. We provide

an illustrative reduction from SAT(RII2
)-2 to U-MAX -ONES(R

IS
2
1

); the remaining re-
ductions are presented in Lemmas 11–15 in Appendix A.3. Since R

IS2
1

is the NAND

relation with one additional constant column, theU-MAX -ONES(R
IS2

1

) problem is ba-
sically the maximum independent set problem or, equivalently, the maximum clique
problem in the complement graph. Given an instanceI of CSP(RII2

)-2 we create for
every constraint 3 vertices, one corresponding to each feasible assignment of values to
the variables occurring in the constraint. We add edges between all pairs of vertices that
are not inconsistent and that do not correspond to the same constraint. The instanceI is
satisfied if and only if there is a clique of sizem wherem is the number of constraints
in I . Sincem≤ 2n this implies that the number of vertices is≤ 2n. ⊓⊔

Theorem 8. The following statements are equivalent.

1. The exponential-time hypothesis is false.
2. U-MAX -ONES(Γ ) ∈ SE for every finiteΓ .
3. U-MAX -ONES(Γ )∈ SEfor some finiteΓ such thatU-MAX -ONES(Γ ) is NP-hard.
4. U-VCSP(∆)d ∈ SE for every finite set of finite-valued cost functions∆ and d≥ 0.

Proof. The implication 1⇒ 2 follows from Lemma 16 in Appendix A.3, 2⇒ 3 is
trivial, and 3⇒ 1 follows by Lemma 7. The implication 2⇒ 4 follows from Lemma 17
in Appendix A.3. We finish the proof by showing 4⇒ 1. LetI = (V,C) be an instance of
SAT(RII2

)-2. Note thatI contains at most 2|V| constraints. Letf be the function defined
by f (x) = 0 if x ∈ RII2

and f (x) = 1 otherwise. Create an instance ofU-VCSP2( f )
by, for every constraintCi = RII2

(x1, . . . ,x8) ∈ C, adding to the cost function the term
f (x1, . . . ,x8). This instance has a solution with objective value 0 if and only if I is
satisfiable. Hence, SAT(RII2

)-2∈ SE which contradicts the ETH [10]. ⊓⊔
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5 Future Research

Other problems.The weak base method naturally lends itself to other problems param-
eterized by constraint languages. In general, one has to consider all co-clones where the
problem is NP-hard, take the weak bases for these co-clones and find out which of
these are CV-reducible to the other cases. The last step is typically the most challenging
— this was demonstrated by theU-MAX -ONES problems where we had to introduce
q.w.p.p. implementations. An example of an interesting problem where this strategy
works is thenon-trivial SAT problem (SAT∗(Γ )), i.e. the problem of deciding whether
a given instance has a solution in which not all variables aremapped to the same value.
This problem is NP-hard in exactly six cases [3] and by following the aforementioned
procedure one can prove that the relationRII2

results in the easiest NP-hard SAT∗(Γ )
problem. Since SAT∗(RII2

) is in fact the same problem as SAT(RII2
) this shows that

restricting solutions to non-trivial solutions does not make the satisfiability problem
easier. This result can also be extended to the co-NP-hardimplication problem[3] and
we believe that similar methods can also be applied to give new insights into the com-
plexity of e.g.enumeration, which also follows the same complexity classification [3].
Such results would naturally give us insights into the structure of NP but also into the
applicability of clone-based methods.

Weighted versus unweighted problems.Theorem 8 only applies to unweighted prob-
lems and lifting these results to the weighted case does not appear straightforward. We
believe that some of these obstacles could be overcome with generalized sparsification
techniques. We provide an example by proving that if any NP-hardW-MAX -ONES(Γ )
problem is in SE, then MAX -CUT can be approximated within a multiplicative error
of (1± ε) (for any ε > 0) in subexponential time. Assume thatW-MAX -ONES(Γ )
is NP-hard and a member of SE, and arbitrarily chooseε > 0. Let MAX -CUTc be
the MAX -CUT problem restricted to graphsG = (V,E) where|E| ≤ c · |V|. We first
prove that MAX -CUTc is in SE for arbitraryc ≥ 0. By Theorem 5, we infer that
W-MAX -ONES(RII2

) is in SE. Given an instance(V,E) of MAX -CUTc, one can intro-
duce one fresh variablexv for eachv∈V and one fresh variablexe for each edgee∈ E.
For each edgee= (v,w), we then constrain the variablesxv,xw andxe asR(xv,xw,xe)
whereR= {(0,0,0),(0,1,1),(1,0,1),(1,1,0)}∈ 〈RII2

〉. It can then be verified that, for
an optimal solutionh, that the maximum value of∑e∈E weh(xe) (wherewe is the weight
associated with the edgee) equals the weight of a maximum cut in(V,E). This is an
LV-reduction since|E| = c · |V|. Now consider an instance(V,E) of the unrestricted
MAX -CUT problem. By Batson et al. [1], we can (in polynomial time) compute acut
sparsifier(V ′,E′) with only Dε ·n/ε2 edges (whereDε is a constant depending only on
ε), which approximately preserves the value of the maximum cut of (V,E) to within a
multiplicative error of(1± ε). By using the LV-reduction above from MAX -CUTDε/ε2

to W-MAX -ONES(Γ ), it follows that we can approximate the maximum cut of(V,E)
within (1± ε) in subexponential time.
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A Appendix

A.1 Bases of Boolean Clones and the Clone Lattice

In Table 1 we present a full table of bases for all Boolean clones. These were first
introduced by Post [15] and the lattice is hence known asPost’s lattice. It is visualized
in Figure 2.

Table 1. List of all Boolean clones with definitions and bases, where id(x) = x and
hn(x1, . . . ,xn+1) =

∨n+1
i=1 x1 · · ·xi−1xi+1 · · ·xn+1, dual( f )(a1, . . . ,an) = 1− f (a1, . . . ,an).

Clone Definition Base
BF All Boolean functions {x∧y,¬x}
R0 { f | f is 0-reproducing} {x∧y,x⊕y}
R1 { f | f is 1-reproducing} {x∨y,x⊕y⊕1}
R2 R0∩R1 {x∨y,x∧ (y⊕z⊕1)}
M { f | f is monotonic} {x∨y,x∧y,0,1}
M1 M∩R1 {x∨y,x∧y,1}
M0 M∩R0 {x∨y,x∧y,0}
M2 M∩R2 {x∨y,x∧y}
Sn

0 { f | f is 0-separating of degreen} {x→ y,dual(hn)}
S0 { f | f is 0-separating} {x→ y}
Sn

1 { f | f is 1-separating of degreen} {x∧¬y,hn}
S1 { f | f is 1-separating} {x∧¬y}
Sn

02 Sn
0∩R2 {x∨ (y∧¬z),dual(hn)}

S02 S0∩R2 {x∨ (y∧¬z)}
Sn

01 Sn
0∩M {dual(hn),1}

S01 S0∩M {x∨ (y∧z),1}
Sn

00 Sn
0∩R2∩M {x∨ (y∧z),dual(hn)}

S00 S0∩R2∩M {x∨ (y∧z)}
Sn

12 Sn
1∩R2 {x∧ (y∨¬z),hn}

S12 S1∩R2 {x∧ (y∨¬z)}
Sn

11 Sn
1∩M {hn,0}

S11 S1∩M {x∧ (y∨z),0}
Sn

10 Sn
1∩R2∩M {x∧ (y∨z),hn}

S10 S1∩R2∩M {x∧ (y∨z)}
D { f | f is self-dual} {(x∧¬y)∨ (x∧¬z)∨ (¬y∧¬z)}
D1 D∩R2 {(x∧y)∨ (x∧¬z)∨ (y∧¬z)}
D2 D∩M {h2}
L { f | f is affine} {x⊕y,1}
L0 L∩R0 {x⊕y}
L1 L∩R1 {x⊕y⊕1}
L2 L∩R2 {x⊕y⊕z}
L3 L∩D {x⊕y⊕z⊕1}
V { f | f is a disjunction or constants} {x∨y,0,1}
V0 V∩R0 {x∨y,0}
V1 V∩R1 {x∨y,1}
V2 V∩R2 {x∨y}
E { f | f is a conjunction or constants} {x∧y,0,1}
E0 E∩R0 {x∧y,0}
E1 E∩R1 {x∧y,1}
E2 E∩R2 {x∧y}
N { f | f depends on at most one variable} {¬x,0,1}
N2 N∩R2 {¬x}
I { f | f is a projection or a constant} {id,0,1}
I0 I∩R0 {id,0}
I1 I∩R1 {id,1}
I2 I∩R2 {id}
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Fig. 2. The lattice of Boolean clones.
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A.2 Weak Bases

We extend the definition of a polymorphism and say that a partial function f is apartial
polymorphismto a relationR if R is closed underf for every sequence of tuples for
which f is defined. A set of partial functionsF is said to be astrong partial cloneif it
contains all (total and partial) projection functions and is closed under composition of
functions. By pPol(Γ) we denote the set of partial polymorphisms to the set of relations
Γ . Obviously sets of the form pPol(Γ) always form strong partial clones and again we
have a Galois connection between clones and co-clones.

Theorem 9. [16] Let Γ andΓ ′ be two sets of relations. Then〈Γ 〉∄ ⊆ 〈Γ ′〉∄ if and only
if pPol(Γ′)⊆ pPol(Γ).

We define theweak baseof a co-cloneIC to be the base of the smallest member of
the intervalI (IC) = {ID | ID = 〈ID〉∄ and〈ID〉 = IC}. Weak bases were first intro-
duced in Schnoor and Schnoor [19,20] but their constructionresulted in relations that
were in many cases exponentially larger than the plain baseswith respect to arity. Weak
bases fulfilling additional minimality conditions was given in Lagerkvist [12] using re-
lational descriptions. By construction the weak base of a co-clone is always a single
relation.

Theorem 10 ([19]).Let Rw be the weak base of some co-cloneIC. Then for any finite
baseΓ of IC it holds that Rw ∈ 〈Γ 〉∄.

See Table 2 for a complete list of weak bases.

A.3 Additional Proofs for Section 4

Lemma 11. SAT(RII2
)-2 LV-reduces toU-MAX -ONES(RIL2

).

Proof. We reduce an instanceI of SAT(RII2
)-2 onn variables constraints to an instance

of U-MAX -ONES(RIL2
) containing at most 2+ 8n variables. Letv0,v1 be two fresh

global variables constrained asRIL2
(v0,v0,v0,v1,v1,v1,v0,v1). Note that this forcesv0 to

0 andv1 to 1 in any satisfying assignment. Now, for every variablex in the SAT-instance
we create an additional variablex′ which we constrain asRIL2

(x′,x,v1,x,x′,v0,v0,v1).
This correctly implements neq(x,x′). For thei-th constraint,RII2

(x1, . . . ,x6,c0,c1), in I
we create three variablesz1

i ,z
2
i ,z

3
i and constrain them asRIL2

(z1
i ,z

2
i ,z

3
i ,x1,x2,x3,c0,c1),

we also add the constraintRIL2
(x4,x5,x6,x1,x2,x3,c0,c1). Since every variable in the

SAT-instanceI can occur in at most two constraints we have thatm≤ 2n. Hence the
resultingU-MAX -ONES instance contains at most 2+2n+ 3 · 2n = 2+8n variables.
Sincex andx′, andv0 andv1, must take different values it holds that the measure of a
solution of this new instance is exactly the number of variableszj

i that are mapped to 1.
Hence, for an optimal solution the objective value is≥ 2m if and only if I is satisfiable.

⊓⊔

Lemma 12. U-MAX -ONES(RIL2
) LV-reduces toU-MAX -ONES(RIL0

).
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Table 2.Weak bases for all Boolean co-clones with a finite base

Co-clone Weak base
IBF Eq(x1,x2)
IR0 F(c0)
IR1 T(c1)
IR2 F(c0)∧T(c1)
IM (x1 → x2)
IM0 (x1 → x2)∧F(c0)
IM1 (x1 → x2)∧T(c1)
IM2 (x1 → x2)∧F(c0)∧T(c1)
IS

n
0 ,n≥ 2 ORn(x1, . . . ,xn)∧T(c1)

IS
n

02,n≥ 2 ORn(x1, . . . ,xn)∧F(c0)∧T(c1)
IS

n
01,n≥ 2 ORn(x1, . . . ,xn)∧ (x→ x1 · · ·xn)∧T(c1)

IS
n

00,n≥ 2 ORn(x1, . . . ,xn)∧ (x→ x1 · · ·xn)∧F(c0)∧T(c1)
IS

n

1 ,n≥ 2 NANDn(x1, . . . ,xn)∧F(c0)
IS

n

12,n≥ 2 NANDn(x1, . . . ,xn)∧F(c0)∧T(c1)
IS

n

11,n≥ 2 NANDn(x1, . . . ,xn)∧ (x→ x1 · · ·xn)∧F(c0)
IS

n
10,n≥ 2 NANDn(x1, . . . ,xn)∧ (x→ x1 · · ·xn)∧F(c0)∧T(c1)

ID (x1 6= x2)
ID1 (x1 6= x2)∧F(c0)∧T(c1)
ID2 OR2

26=(x1,x2,x3,x4)∧F(c0)∧T(c1)

IL EVEN4(x1,x2,x3,x4)
IL0 EVEN3(x1,x2,x3)∧F(c0)
IL1 ODD3(x1,x2,x3)∧T(c1)
IL2 EVEN3

36=(x1, . . . ,x6)∧F(c0)∧T(c1)

IL3 EVEN4
46=(x1, . . . ,x8)

IV (x1 ↔ x2x3)∧ (x2∨x3 → x4)
IV0 (x1 ↔ x2x3)∧F(c0)
IV1 (x1 ↔ x2x3)∧ (x2∨x3 → x4)∧T(c1)
IV2 (x1 ↔ x2x3)∧F(c0)∧T(c1)
IE (x1 ↔ x2x3)∧ (x2∨x3 → x4)
IE0 (x1 ↔ x2x3)∧ (x2∨x3 → x4)∧F(c0)
IE1 (x1 ↔ x2x3)∧T(c1)
IE2 (x1 ↔ x2x3)∧F(c0)∧T(c1)
IN EVEN4(x1,x2,x3,x4)∧x1x4 ↔ x2x3

IN2 EVEN4
46=(x1, . . . ,x8)∧x1x4 ↔ x2x3

II (x1 ↔ x2x3)∧ (x4 ↔ x2x3)
II0 (x1∨x2)∧ (x1x2 ↔ x3)∧F(c0)
II1 (x1∨x2)∧ (x1x2 ↔ x3)∧T(c1)

II2 R1/3
36= (x1, . . . ,x6)∧F(c0)∧T(c1)
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Proof. We reduce an instanceI of U-MAX -ONES(RIL2
) on n variables to an instance

of U-MAX -ONES(RIL0
) on 2+2n variables. Letv0,v1,y1, . . . ,yn be fresh variables and

constrain them asRIL0
(v0,v0,v0,v0)∧RIL0

(v1,v0,y1,v0)∧ . . .∧RIL0
(v1,v0,yn,v0). Note

that this forcesv0 to 0, and that ifv1 is mapped to 0, then so are the variablesy1, . . . ,yn.
If v1 is mapped to 1 on the other hand, theny1, . . . ,yn can be mapped to 1. For every
constraintRIL2

(x1,x2,x3,x4,x5,x6,c0,c1) we create the constraintsRIL0
(x1,x2,x3,v0)∧

RIL0
(v1,x1,x4,v0)∧RIL0

(v1,x2,x5,v0)∧RIL0
(v1,x3,x6,v0)∧RIL0

(v1,c0,c1,v0). The re-
sultingU-MAX -ONES(RIL0

) instance has 2+2n variables and has a solution with mea-
suren+1+ k if and only if I has a solution with measurek. ⊓⊔

Lemma 13. U-MAX -ONES(RII2
) LV-reduces toU-MAX -ONES(RIN2

).

Proof. We reduce an instanceI of U-MAX -ONES(RII2
) overn variables to an instance

of U-MAX -ONES(RIN2
) over 2+3n variables. Create two fresh variablesv0,v1 and con-

strain them asRIN2
(v0,v0,v0,v0,v1,v1,v1,v1) in order to forcev0 andv1 to be mapped

to different values. We then create the 2n variablesy1, . . . ,y2n and constrain them as
∧2n

i=1RIN2
(v0,v0,v0,v0,yi ,yi ,yi ,yi). This forces all of the variablesyi to be mapped to

the same value asv1. We can now expressRII2
(x1,x2,x3,x4,x5,x6,c0,c1) using the im-

plementationRIN2
(v0,x1,x2,x6,v1,x4,x5,x3)∧RIN2

(v0,c0,c0,v0,v1,c1,c1,v1). Note that
in any optimal solution of the new instancev1 will be mapped to 1 which means that the
implementation ofRII2

given above will be correct. The resulting instance has a solution
with measure 1+2n+ k if and only if I has a solution with measurek. ⊓⊔

Lemma 14. U-MAX -ONES(R
IS2

1

) LV-reduces toU-MAX -ONES(RID2
).

Proof. We reduce an instance ofU-MAX -ONES(R
IS

2
1

) on n variables to an instance

of U-MAX -ONES(RID2
) on 2+ 3n variables. Create two new variablesv0 andv1 and

constrain them asRID2
(v1,v1,v0,v0,v0,v1). Note that this forcesv0 to 0 andv1 to 1.

For every variablex we introduce two extra variablesx′ and x′′ and constrain them
asRID2

(x,x′,x′,x,v0,v1)∧RID2
(x′,x′′,x′′,x′,v0,v1). Note that this implements the con-

straints neq(x,x′) and neq(x′,x′′), and that no matter whatx is mapped to exactly one
of x′ andx′′ is mapped to 1. For every constraintR

IS2
1

(x,y,c0) we then introduce the

constraintRID2
(x′,y′,x,y,c0,v1). The resulting instance has a solution with measure

1+n+ k if and only if I has a solution with measurek. ⊓⊔

Lemma 15. U-MAX -ONES(RIL2
) LV-reduces toU-MAX -ONES(RIL3

).

Proof. We reduce an instance ofU-MAX -ONES(RIL2
) on n variables to an instance

of U-MAX -ONES(RIL3
) on 2+ 3n variables. Create two new variablesv0 andv1 and

constrain them asRIL3(v0,v0,v0,v0,v1,v1,v1,v1). Note that this forcesv0 and v1 to
be mapped to different values. We then introduce fresh variablesy1, . . . ,y2n and con-
strain them as

∧2n
i=1RIL3(v0,v0,v0,v0,yi ,yi ,yi ,yi). This will ensure that every variables

yi is mapped to the same value asv1 and therefore that in every optimal solutionv0 is
mapped to 0 andv1 is mapped to 1. For every constraintRIL2(x1, . . . ,x6,c0,c1) we intro-
duce the constraintsRIL3(c0,x1,x2,x3,c1,x4,x5,x6)∧RIL3(c0,c0,c0,c0,v1,v1,v1,v1)∧
RIL3(v0,v0,v0,v0,c1,c1,c1,c1). The resulting instance has a solution with measure 1+
2n+ k if and only if I has a solution with measurek. ⊓⊔
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Lemma 16. If the ETH is false, thenU-MAX -ONES(Γ ) ∈ SE for every finite Boolean
constraint languageΓ .

Proof. Define SNP to be the class of properties expressible by formulas of the type
∃S1 . . .∃Sn∀x1 . . .∀xm.F whereF is a quantifier-free logical formula,∃S1 . . .∃Sn are
second order existential quantifiers, and∀x1 . . .∀xm are first-order universal quantifiers.
Monadic SNP (MSNP) is the restriction of SNP where all second-order predicates are
required to be unary [4]. The associated search problem tries to identify instantiations
of S1, . . . ,Sn that make the resulting first-order formula true. We will be interested in
properties that can be expressed by formulas that additionally containsize-constrained
existential quantifier. A size-constrained existential quantifier is of the form∃S, |S|⊕s,
where|S| is the number of inputs where relationS holds, and⊕ ∈ {=,≤,≥}. Define
size-constrained SNP as the class of properties of relations and numbers that are ex-
pressible by formulas∃S1 . . .∃Sn∀x1 . . .∀xm.F where the existential quantifiers are al-
lowed to be size-constrained.

If the ETH is false then 3-SAT is solvable in subexponential time. By Impagli-
azzo et al. [6] this problem is size-constrained MSNP-complete under size-preserving
SERF reductions. Hence we only have to prove thatU-MAX -ONES(·) is included in
size-constrained MSNP for it to be solvable in subexponential time. Impagliazzo et
al. [6] shows thatk-SAT is in SNP by providing an explicit formula∃S.F whereF is
a universal formula andSa unary predicate interpreted such thatx∈ S if and only if x
is true. Letk be the highest arity of any relation inΓ . Sincek-SAT can q.p.p. imple-
ment anyk-ary relation it is therefore sufficient to prove thatU-MAX -ONES(Γ k

SAT) is
in size-constrained MSNP, whereΓ k

SAT is the language corresponding to all satisfying
assignments ofk-SAT. This is easy to do with the formula

∃S, |S| ≥ K.F

whereK is the parameter corresponding to the number of variables that has to be
assigned 1. ⊓⊔

Lemma 17. If U-MAX -ONES(Γ )∈ SEfor every finite Boolean constraint languageΓ ,
thenU-VCSPd(∆) ∈ SE for every finite set of Boolean cost functions∆ and arbitrary
d ≥ 0.

Proof. We first show that if everyU-MAX -ONES(Γ ) ∈ SE, then the minimization vari-
antU-M IN-ONES(Γ )∈ SE for allΓ , too. Arbitrarily choose a finite constraint language
Γ overB. We present an LV-reduction fromU-M IN-ONES(Γ ) to U-MAX -ONES(Γ ∪
{neq}). Let ({v1, . . . ,vn},C) be an arbitrary instance ofU-M IN-ONES(Γ ) with optimal
valueK. Consider the following instanceI ′ of U-MAX -ONES(Γ ∪{neq}):

({v1,v
′
1,v

′′
1, . . . ,vn,v

′
n,v

′′
n},C∪{neq(v1,v

′
1),neq(v1,v

′′
1), . . . ,neq(vn,v

′
n),neq(vn,v

′′
n}).

For each variablevi ∈ {v1, . . . ,vn} that is assigned 0, the corresponding variablesv′i ,v
′′
i

are assigned 1, and vice-versa. It follows that the optimal value ofI ′ is 2n−K. Hence,
U-M IN-ONES(Γ ) ∈ SE sinceU-MAX -ONES(Γ ∪{neq}) ∈ SE.
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Now, arbitrarily choosed ≥ 0 and a finite set of Boolean cost functions∆ . Since
∆ is finite, we may without loss of generality assume that each function f ∈ ∆ has its
range in{0,1,2, . . .}.

We show thatU-VCSPd(∆)∈SE by exhibiting an LV-reduction fromU-VCSPd(∆)
to U-M IN-ONES(Γ ) whereΓ is finite and only depends on∆ . Given a tuplea =
(a1, . . . ,ak) ∈ Bk, let val(a) = 1+∑ j :a j=12 j−1. For eachf ∈ ∆ of arity k, define

Rf =

{

(x1, . . . ,xk,y1, . . . ,y2k) ∈ Bk+2k

∣

∣

∣

∣

∣

f (x1, . . . ,xk)> 0,

{i : yi 6= 0}= {val(x1, . . . ,xk)}

}

∪{(x1, . . . ,xk,0, . . . ,0) ∈ Bk+2k
| f (x1, . . . ,xk) = 0},

and letΓ = {eq,neq}∪{Rf | f ∈ ∆}.
One may interpretRf as follows: for each(x1, . . . ,xk) ∈ Bk the relationRf con-

tains exactly one tuple(x1, . . . ,xk,y1, . . . ,y2k). If f (x1, . . . ,xk) = 0, then this is the tuple
(x1, . . . ,xk,0, . . . ,0). If f (x1, . . . ,xk)> 0, then this is the tuple(x1, . . . ,xk,0, . . . ,1, . . . ,0)
where the 1 is in positionk+ val(x1, . . . ,xk). We show below howRf can be used for
“translating” eachx ∈ Bk into its corresponding weight as prescribed byf .

Let (V,∑m
i=1 fi(xi)) be an arbitrary instance ofU-VCSPd(∆)whereV = {v1, . . . ,vn}.

Let ar( fi) denote the arity of functionfi . Assume the instance has an optimal solution
with valueK. For each termfi(v1, . . . ,vk) in the sum, do the following:

1. introduce 2k fresh variablesv′1, . . . ,v
′
2k,

2. introducek fresh variablesw1, . . . ,wk,
3. for eacha∈Bk such thatf (a)> 1, introducen′ = f (a) fresh variablesu0, . . . ,un′−1,
4. introduce the constraintRf (v1, . . . ,vk,v′1, . . . ,v

′
2k),

5. introduce the constraints neq(v1,w1), . . . ,neq(vk,wk), and
6. for eacha ∈ Bk, let n′ = f (a) and do the following ifn′ > 1: let p = val(a) and

introduce the constraints eq(v′p,u0),eq(u0,u1), . . . ,eq(un′−2,un′−1).

It is not difficult to realize that the resulting instance hasoptimal valueK+∑m
i=1ar(Ci)

given the interpretation ofRf and the following motivation of step 5: the neq constraints
introduced in step 5 ensure that the weight of(x1, . . . ,xk) does not influence the weight
of the construction and this explains that we need to adjust the optimal value with
∑m

i=1ar(Ci).
Furthermore, the instance contains at most

|V|+ |C| · (2s+ t · (2s+1))

variables wheres= max{ar( f ) | f ∈ ∆} andt = max{ f (a) | f ∈ ∆ anda∈ Bar( f )}.
By noting that|C| ≤ d|V| and thats, t are constants that only depend on∆ , it follows
that the reduction is an LV-reduction. ⊓⊔
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