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Abstract. Obtaining lower bounds for NP-hard problems has for a lonteti
been an active area of research. Recent algebraic techrigipeduced by Jon-
sson et al.(SODA 2013) show that the time complexity of theapeterized
SAT(-) problem correlates to the lattice of strong partial clon®h this or-
dering they isolated a relatiddsuch that SATR) can be solved at least as fast as
any other NP-hard SAT) problem. In this paper we extend this method and show
that such languages also exist for thex ones problerfMAx -ONES(I" )) and the
Boolean valued constraint satisfaction problerrer finite-valued constraint lan-
guages (VCSR)). With the help of these languages we relateMONESand
VCSP to the exponential time hypothesis in several diffeveys.

1 Introduction

A superficial analysis of the NP-complete problems may lesalto think that they are
a highly uniform class of problems: in fact, under polynohrtiae reductions, the NP-
complete problems may be viewed asiragle problem. However, there are many indi-
cations (both from practical and theoretical viewpoirtsitthe NP-complete problems
are a diverse set of problems with highly varying propertiesl this becomes visible
as soon as one starts using more refined methods. This hastsapstrong line of
research on the “inner structure” of the set of NP-compleddlem. Examples include
the intensive search for faster algorithms for NP-compdeddlems|[28] and the highly
influential work on theexponential time hypothegiETH) and its variantd [14]. Such
research might not directly resolve whether P is equal to Nffog but rather attempts
to explain the seemingly large difference in complexitywrstn NP-hard problems
and what makes one problem harder than another. Unfortyriheze is still a lack of
general methods for studying and comparing the complexilyfcomplete problems
with more restricted notions of reducibility. Jonsson efB0] presented a framework
based orclone theoryapplicable to problems that can be viewed as “assigningegal
to variables”, such as constraint satisfaction probletms vertex cover problem, and
integer programming problems. To analyze and relate theotedty of these problems
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in greater detail we utilize polynomial-time reductionsigiincrease the number of
variables by a constant factdingar variable reduction®r LV-reduction$ and reduc-
tions which increases the amount of variables by a constamntstant variable reduc-
tions or CV-reductiony Note the following: (1) if a problenf\ is solvable inO(c")
time (wheren denotes the number of variables) for al- 1 and if problenB is LV-
reducible toA thenB is also solvable iD(c") time for allc > 1 and (2) ifAis solvable
in time O(c") and if B is CV-reducible toA thenB is also solvable in tim®(c"). Thus
LV-reductions preserve subexponential complexity whilér€ductions preserve exact
complexity. Jonsson et al._[10] exclusively studied the IBan satisfiability SAT")
problem and identified an NP-hard SXR}) problem CV-reducible to all other NP-
hard SAT-) problems. Hence SAKR}) is, in a sense, theasiesNP-complete SAT:)
problem since if SATI) can be solved iD(c") time, then this holds for SAKR}),
too. With the aid of this result, they analyzed the conseqgesmf subexponentially
solvable SAT-) problems by utilizing the interplay between CV- and LV-retlans.
As a by-product, Santhanam and Srinivasan’s [17] negagiselt on sparsification of
infinite constraint languages was shown not to hold for filsityuages.

We believe that the existence and construction of such daigguages forms an
important puzzle piece in the quest of relating the compjeaf NP-hard problems
with each other, since it effectively gives a lower bound loa time complexity of a
given problem with respect to constraint language resgtrist As a logical continua-
tion on the work on SAT:) we pursue the study of CV- and LV-reducibility in the con-
text of Boolean optimization problems. In particular weestigate the complexity of
MAX-ONES(-) and VCSR-) and introduce and extend several non-trivial methods for
this purpose. The results confirms that methods based oersaialgebra are indeed
useful when studying broader classes of NP-complete pmuhl@he Max-ONES(+)
problem [11] is a variant of SAF) where the goal is to find a satisfying assign-
ment which maximizes the number of variables assigned theevh This problem
is closely related to the 0/1INEAR PROGRAMMING problem. The VCSP) prob-
lem is a function minimization problem that generalizeskhex-CSP and MN-CSP
problems[[11]. We treat both the unweighted and weightediors of these problems
and use the prefiy to denote the unweighted problem ando denote the weighted
version. These problems are well-studied with respectdarsging tractable cases from
NP-hard cases [11,22] but much less is known when consgldreweaker schemes of
LV-reductions and CV-reductions. We begin (in Secfiod &y )dentifying the easiest
language fow-MAX-ONES(+). The proofs make heavy use of thigebraic method
for constraint satisfaction problenis([7,8] and theak base methd@0]. The algebraic
method was introduced for studying the computational cexipl of constraint satsi-
faction problems up to polynomial-time reductions while theak base method [19]
was shown by Jonsson et dl. [10] to be useful for studying €ltctions. To prove
the main result we however need even more powerful redutgiciniques based on
weighted primitive positive implementatiof@21]. For VCSR:) the situation differs
even more since the algebraic techniques developed for( ¢ &f not applicable —
instead we usenultimorphismg2] when considering the complexity of VC$#. We
prove (in Sectior[_3]2) that the binary functiépa which returns 0 if its two arguments
are different and 1 otherwise, results in the easiest NB-R&SR-) problem. This



problem is very familiar since it is the M< CuT problem slightly disguised. The com-
plexity landscape surrounding these problems is outlinegkictior, 3..

With the aid of the languages identified in Sec{idn 3, we cargi(in Sectionl4) by
relating Max-ONEs and VCSP with LV-reductions and connect them with the ETH.
Our results imply that (1) if the ETH is true then no NP-cont@le-MAX-ONES(I™),
w-MAx-ONES(I"), or VCSRA) is solvable in subexponential time and (2) that if the
ETH is false theru-MAax-ONES(I" ) andu-VCSP4(A) are solvable in subexponential
time for every choice of andA andd > 0. Hereu-VCSPy(4A) is theu-VCSPA)
problem restricted to instances where the sum to miniming¢ades at mostn terms.
Thus, to disprove the ETH, our result implies that it is sidfit to find a single lan-
guagel” or a set of cost functiond such thatu-MAx-ONES(I" ), w-MAX-ONES(I")
or VCSRA) is NP-hard and solvable in subexponential time.

2 Preliminaries

Let I denote a finite set of finitary relations ovgr= {0,1}. We calll" a constraint
language GivenR C B we let afR) = k denote its arity, and similarly for functions.
Whenl" = {R} we typically omit the set notation and tréfs a constraint language.

2.1 Problem Definitions

Theconstraint satisfaction problewver” (CSRI)) is defined as follows.

INSTANCE: A setV of variables and a sét of constraint application®(vy, ..., V)
whereRe I, k= ar(R), andvy,...,w € V.
QUESTION: Is there a functionf : V — B such that(f(v1),...,f(w)) € R for each
R(vy,..., %) InC?

For the Boolean domain this problem is typically denoted &A% (& ). By SAT(I")-
B we mean the SA(T) problem restricted to instances where each variable caurocc
in at mostB constraints. This restricted problem is occasionally wisshce each in-
stance contains at moBtn constraints. Theveigthed maximum ones problewer I
(w-MAXx-ONES(IM)) is an optimization version of SAT ) where we for an instance
on variables{xs,...,xn} and weightsw; € Qo want to find a solutiorh for which
S, wi h(xi) is maximal. Theunweigthed maximum ones problémMAX-ONES(I"))
is thew-MAax-ONES(I") problem where all weights have the value 1fidite-valued
cost functioron B is a functionf ; BK — Q>o. Thevalued constraint satisfaction prob-
lemover a finite set of finite-valued cost functiocA{VCSP(A)) is defined as follows.

INSTANCE: AsetV = {xy,...,X} of variables and the objective functidi(xs, ..., Xn) =
s, wi fi(x) where, for every K i < g, fi € A,x € V&) andw; € Qo is a weight.
GoAL: Find a functiorh : V — B such thatf; (h(x1),...,h(X,)) is minimal.

When the set of cost functions is singleton VG$P}) is written as VCSPf). We
let u-VCSP be the VCSP problem without weights and/ CSPy (for d > 0) denote
the u-VCSP problem restricted to instances containing at do®r(1)| constraints.
Many optimization problems can be viewed as VG8P problems for suitableA:
well-known examples are the Ax-CSR") and MIN-CSRT") problems where the



number of satisfied constraints in a CSP instance are masthoz minimized. For
eachl™, there obviously exists sets of cost functidign, Amax such that MN-CSRT™)

is polynomial-time equivalent to VCSBy,in) and Max-CSRT™) is polynomial-time
equivalentto VCSPAmax). We have defined the problemasVCSP, VCSPyU-MAX-ONES
andw-MAX-ONES as optimization problems, but to obtain a more uniform treatt
we often view them as decision problems, i.e. gikeme ask if there is a solution with
objective valu& or better.

2.2 Size-Preserving Reductions and Subexponential Time

If Ais a computational problem we IgtA) be the set of problem instances dfi¢l be

the size of any € I (A), i.e. the number of bits required to represkrilany problems
can in a natural way be viewed as problems of assigning vétagsa fixed finite set
to a collection of variables. This is certainly the case f&T%), MAX-ONES(-) and

VCSH-) but it is also the case for various graph problems such ag{@uT and

MAX INDEPENDENT SET. We call problems of this kindiariable problemsand let

Var(l) denote the set of variables of an instahce

Definition 1. Let Ay and A be variable problems in NP. The function f frofi\{) to
I (A2) is amany-one linear variable reducti¢bV-reduction) with parameter G 0 if:
(1) I is a yes-instance of Af and only if f(1) is a yes-instance of A(2) |Var(f(1))| =
C-|Var(l)]+0(1), and (3) f(I) can be computed in time(@oly(||I|])).

LV-reductions can be seen as a restricted form of SERF-t&hsc[€]. The term
CV-reduction is used to denote LV-reductions with paramktand we writed; <€V A,
to denote that the problefy has an CV-reduction té,. If A; andA; are two NP-hard
problems we say tha is at least as easgs (omot harder thaf A, if A; is solvable in
O(clVa 1) time wheneves is solvable inO(c/Va()l) time. By definition ifA; <€V A,
thenA; is not harder thai, but the converse is not true in general. A problem solvable
in time O(2¢/V (] for all ¢ > 0 is asubexponential problemand SE denotes the
class of all variable problems solvable in subexponeritia It is straightforward to
prove that LV-reductions preserve subexponential coniiyléx the sense that iA is
LV-reducible toB thenA € SE if B € SE. Naturally, SE can be defined using other
complexity parameters thawar(l)| [€].

2.3 Clone Theory

An operationf : B — B is apolymorphisnof a relationR if for everyt!,... .t ¢ Rit
holds thatf (t%,...,tK) € R, wheref is applied element-wise. In this caRés closed or
invariant, underf. For a set of functions we define In¢F) (often abbreviated a§)
to be the set of all relations invariant under all functiom& i Dually PolI") for a set
of relationsr” is defined to be the set of polymorphismsafSets of the form PeI')
are known aglonesand sets of the form In¥) are known ago-clones The reader
unfamiliar with these concepts is referred to the textbopkdu [13]. The relationship
between these structures is made explicit in the follov@adpis connectioffil3].

Theorem 2. Letl", I’ be sets of relations. Thenv(Pol(I'")) C Inv(Pol(I")) if and only
if Pol(I") C Pol(I'").



Co-clones can equivalently be described as sets contaalinglationsR definable
throughprimitive positive(p.p.) implementations over a constraint languBgee. def-
initions of the formR(xy, ..., Xa) = 3y1,...,Ym. R (X)) A ... AR(X¥), where eaclR; €

I U{eq} and eack! is a tuple oveky, ..., %n, Y1,...,Ym and where ee- {(0,0), (1,1)}.
As a shorthand we I€l”) = Inv(Pol(I")) for a constraint languade, and as can be ver-
ified this is the smallest set of relations closed under gefindions over. In this case
I is said to be aaseof (I). It is known that if ' is finite and Pdll’) C Pol(l'")
then CSRI'’) is polynomial-time reducible to CSP) [[7]. With this fact and Post's
classification of all Boolean clon€s [15] Schaefer’s dicimoy theorem([18] for SAT)
follows almost immediately. See Figure 2 and TdHle 1 in ApjpeAT] for a visual-
ization of this lattice and a list of bases. The complexityMAx -ONES(I") is also
preserved under finite expansions with relations p.p. deténia I, and hence follow
the standard Galois connection[11]. Note however thaffPpC Pol(I") does not im-
ply that CSRI"') CV-reduces to CSf ) or even that CSE ') LV-reducesto CSH")
since the number of constraints is not necessarily lindaslynded by the number of
variables.

To study these restricted classes of reductions we areftinerie need of Galois
connections with increased granularity. In Jonsson etld] the SAT-) problem is
studied with the Galois connection between closure ungedefinitions without exis-
tential quantification anstrong partial clonesWe concentrate on the relational descrip-
tion and present the full definitions of partial polymorphsand the aforementioned
Galois connection in Append[x’A.2. R is ann-ary Boolean relation anfi a con-
straint language theR has aquantifier-free primitive positivég.p.p.) implementation
in I if R(Xq,..., %)) = R (X} A... AR(XK), where eactR € I' U{eq} and each! is
atuple ovewy,...,xn. We use(" )3 to denote the smallest set of relations closed under
g.p.p. definability ovef . If IC = (IC) thenIC is aweak partial co-cloneln Jonsson et
al. [10] itis proventhatif”’ C (I" )3 and if andl"’ are both finite constraint languages
then CSRIr’) <V CSRI). It is not hard to extend this result to theAM-ONES(-)
problem since it follows the standard Galois connectiod, taierefore we use this fact
without explicit proof. Aweak base R of a co-clondC is then a base diC with the
property that for any finite bage of IC it holds thatRy, € (I ). In particular this means
that SAT(Ry) and Max-ONES(Ry) CV-reduce to SATI) and Max-ONEeS(I") for
any basd™ of IC, andR,, can therefore be seen as the easiest language in the co-clone
The formal definition of a weak base is included in Appendig fagether with a table
of weak bases for all Boolean co-clones with a finite bases&heak bases have the
additional property that they can be implemented withoatatuality relation [12].

2.4 Operations and Relations

An operationf is calledarithmeticalif f(y,x,x) = f(y,x,y) = f(x,x,y) =y for every
X,y € B. The max function is defined as mayy) = 0 if x=y = 0 and 1 otherwise. We
often express a Boolean relatiéhas a logical formula whose satisfying assignment
corresponds to the tuples Bf F and T are the two constant relatiof(®)} and{(1)}
while neq denotes inequality, i.e. the relatipf0,1),(1,0)}. The relation EVEN is
defined ag (x1,...,%n) €B"| T; X is ever}. The relation ODDis defined dually. The
relations OR and NAND" are the relations corresponding to the clauses ...V X,)



and (XL V...V X,). For anyn-ary relation ancdR we letRy:, 1 < m < n, denote the
(n+m)-ary relation defined &y (X1, . .., Xnrm) = R(X1,. .., Xn) AN€YX1, Xny1) A. .. A
neqXn, Xn m). We useR/3 for the relation{(0,0,1),(0,1,0),(1,0,0)}. Variables are
typically namedx;, ..., X, or x except when they occur in positions where they are
forced to take a particular value, in which case they are wlamnandc; respectively to
explicate that they are in essence constants. As convemtammdc; always occur in the
last positions in the arguments to a predicate. We now se&{héxi, ..., Xs,Co,C1) =

R’ (Xa,...,%6) AF(Co) AT(C1) andRin, (Xa,...,Xs) = EVENG, (Xq,...,Xg) A (XoXa ¢
XoX3) from Table[2 in AppendiX’/All are the two relations (where thplés in the
relations are listed as rows)

001

00111001
ab::{0101010ﬁ> and Rin, =4 9719
1000110 110
101

3 The Easiest NP-Hard Max-ONES and VCSP Problems

We will now study the complexity ofv-MAx-ONES and VCSP with respect to CV-
reductions. We remind the reader that constraint languagesl sets of cost functions
A are always finite. We prove that for both these problems tlseaesingle language
which is CV-reducible to every other NP-hard language. Guhe infinite number
of candidate languages generating different co-cloneslaihguagg R, } defines the
easiestw-MAX-ONES(-) problem, which is the same language as for $ATLO0].
This might be contrary to intuition since one could be led étidve that the co-clones
in the lower parts of the co-clone lattice, generated by génple languages where the
corresponding SAT) problem is in P, would result in even easier problems.

3.1 The MAX-ONES Problem

Here we use a slight reformulation of Khanna et al.’s [11] ptexity classification of
the Max-ONES problem expressed in terms of polymorphisms.

Theorem 3 ([11]).Let" be a finite Boolean constraint languadd Ax-ONES(I") is
in P if and only if is 1-closedmaxclosed, or closed under an arithmetical operation.

The theorem holds for both the weighted and the unweightesioreof the problem
and showcases the strength of the algebraic method sina# @inty eliminates all
constraint languages resulting in polynomial-time solggiyoblems, but also tells us
exactly which cases remain, and which properties theyfgatis

Theorem 4. U-MAX-ONES(R) <®Y u-MAx-ONES(I") for some R {Ris2: Riys R,
Ri,: Ri,, Ri,, Rp,} wheneveu-MAx-ONES(I") is NP-hard.

Proof. By Theorem B in combination with Tabld 1 and Figlie 2 in Appri@ 1]
it follows that u-MAX-ONES(I") is NP-hard if and only if(l) D 1S? or if (I') €



{ILy,IL5,1L5,IN,}. In principle we then for every co-clone have to decide wHait
guage is CV-reducible to every other base of the co-clonesinge a weak base al-
ways have this property, we can eliminate a lot of tediouskvard directly consult
the precomputed relations in Talile 2. From this we first see <ﬂqs§)ﬂ C (Rsn),
(R 12, )3 C (Rsn, )3, <R,S%1>£ C (Risp, )% and(R,S%Oﬁj C (Risp, )3 for everyn > 3. Hence
in the four infinite chaindSy, 1S7,, 1S7;, 1S7, we only have to consider the bottom-
most co-clonesS?, IS3,, ISH, IS3,. Observe that iR andR’ satisfiesR(xy, ..., X) =

3yo,y1-R(xq,... ,Xk,)/o,)&) AF(Yo) AT (y1) and R/ (Xa, ..., X, Yo,Y1) = R(X1, ..., %) A

F (Yo), and it moreover holds th& (x1, ..., X, Yo, ¥1) € (I )3, thenu-MAX-ONES(R) <V
U-MAax-ONES(IM), since we can usg andy; as global variables and because an opti-
mal solution to the instance we construct will always ngafo 1 if the original instance

is satisfiable. FoR,S% (X1,X2,Cp) We can g.p.p. define predicatBE% (X1,X2,Co, Y0, Y1)

with Rz ,Ris2 »Risz R, R, satisfying these properties as follows:

— Riga (X1, %2, C0.¥0.¥1) = Risz, (X1, %2, C0,¥1) ARz, (X1, %2, Y0: Y1)
— R (x1,%2,Co,Yo,¥1) = Rz, (X1, X2, €0, C0) ARz, (X1, X2, Yo, Yo),
— R (x1,%2,C0,Y0,y1) = Risp (X1, %2, €0, Co,Y1) ARisa (¥1,%2, o, Y0, Y1),
( )
( )

- R;S% X1,%2,Co0,Y0,Y1 R|E2(COaX17X27Canl)/\R|E2(COaX17X25y07yl):
— R (x1,%2,C0,Yo,y1) = Rie, (Co, X1, X2, Y1, C0) A\ R, (Yo, X1, X2, Y1, Yo)

and similarly a relatiof),, usingRu, as followsR|, (X1, X2, X3, X4, Xs, X6, €0, C1, Yo, Y1) =
Rllo(X17X27X3ch)/\R||o(007Claylayo)/\R||0(X17X47y17y0)/\R||0(X25X57y17y0)/\R||0(X37X67
y1,¥0). By Figurel2 in AppendiX’All we then see that the only remajriases forl”
when(") O 152 is when(I") = Il, or when(I") = ID,. This concludes the proof. 0O

Using q.p.p. implementations to further decrease the setlafions in Theoreril4
appears difficult and we therefore make use of more poweriplémentations. Let
Optsoll) be the set of all optimal solutions ofva-MAX-ONES(I") instancel. A re-
lation R has aweighted p.p. definitiofw.p.p. definition) [9,21] in™ if there exists an
instancd of w-MAX-ONES(I") on variable®/ such thaR= {(@(v1),...,0(vm)) | @ €
Optsoll)} for somevs,...,vm € V. The set of all relations w.p.p. definablefinis de-
noted(I" )y, and we furthermore have thatif C (I ),y is a finite therw-MAX-ONES(I"")
is polynomial-time reducible tar-Max-ONES(I") [921]. If there is av-M AX -ONES(I")
instancel onV such thaR = {(@(v1),...,0(vm)) | @ € Optsoll)} for vq,...,vm €V
satisfying {v1,...,vm} =V, then we say thaR is q.w.p.p. definable il . We use
(I )3,w for set of all relations g.w.p.p. definable In. It is not hard to check that if
" C (I )3.w, then every instance is mapped to an instance of equally vengbles —
hencew-MAaXx-ONES(I") is CV-reducible ton-MAx-ONES(I" ) whenever’ is finite.

Theorem 5. Letl™ be a constraint language such thatMax-ONES(I" ) is NP-hard.
Then it holds thav-MAx-ONES(Ryj,) <Y w-MAX-ONES(I").



Proof. We utilize q.w.p.p. definitions and note that the followingds.

Ry, = arg max gs. Xg,

X7,X1,X2,X6,Xg,X4,X5.,X3) ERIN,,

Ri, = arg max.gs X5,X4,X2,X1,X7,X8),(X6:X4,X3,X1,X7.X8)(X6,X5,X3,X4,X7:X8) ERID, (X1 +X2+X3),

R, = arg maxps X4,X5,X6,X1,X2,%3:X7,X8) ERIL (Xa+X5+Xs),

(
(
(
R, = arg ma&E]BSI(X7,X1,X2,X3,X8,X4,X5,X6)€R||_3 X8,
(
(

RiL, = arg max gs. Xg,

4:X5,X6,X7),(X8,X1,X4,X7),(X8,X2,X5.X7),(X8,X3,X6,X7) ERIL

Ril, = arg max g, X1,%2,X7),(X1,X3,X7),(X2,%3,X7), (X1,X4,X7),(X2,X5,X7), (X3,X6,X7) ER o2 X1+ +Xg).
1

Hence,R, € (R)zw for everyR e {Rls%,R|N2,R|LO7R|L2,R|L3,R|D2} which by Theo-
rem[4 completes the proof. a0

3.2 The VCSP Problem

Since VCSP does not adhere to the standard Galois conneciitieoreni 2, the weak
base method is not applicable and alternative methodsquéee. For this purpose we
usemultimorphismgrom Cohen et al.[2]. LefA be a set of cost functions dh let p
be a unary operation d, and letf, g be binary operations di. We say thatA admits
the binarymultimorphism(f,g) if it holds thatv(f(x,y)) + v(g(x,y)) < v(X) + v(y)
for everyv € A andx,y € B2), Similarly A admits the unarynultimorphism(p) if it
holds thatv(p(x)) < v(x) for everyv € A andx € B3). Recall that the functior..
equals{(0,0) —1,(0,1)—0,(1,0) — 0,(1,1) — 1} and that the minimisation problem
VCSH(f,) and the maximisation problemAX CuT are trivially CV-reducible to each
other. We will make use of (a variant of) the conceperpressibility[2]. We say that
a cost functiorg is #-expressiblén A if g(xy, ..., X)) = ¥iwi fi(s) +wfor some tuples
g over{xi,...,%n}, weightswi € Qso, w € Q and f; € A. It is not hard to see that if
every function in a finite sed’ is #-expressible im, then VCSRA’) <V VCSP(4).
Note that if the constants 0 and 1 are expressibi then we may allow tuples over
{Xa,-..,%n,0,1}, and still obtain a CV-reduction.

Theorem 6. LetA be a set of finite-valued cost functionsi®rif the probleniVCSP(A)
is NP-hard, theVCSP(f) <€V VCSPA).

Proof. Since VCSRA) is NP-hard (and since we assumgRP) we know thaiA does
not admit the unary0)-multimorphism or the unaryl)-multimorphism [2]. There-
fore there argg,h € A andu € B9, v € B¥ such thatg(0) > g(u) andh(1) >
h(v). Let w € arg min go(9(X1,...,Xa) + N(Xat1,...,Xp)) and then defin@(x,y) =
9(z,...,Za) + h(Zat1,...,2) wherez = x if wy = 0 andz =y otherwise. Clearly
(0,1) € arg minz20(x), 0(0,1) < 0(0,0), ando(0,1) < o(1,1). We will show that
we always can force two fresh variablesandv; to 0 and 1, respectively. (0,0) #
0(1,1), then assume without loss of generality tiogd, 0) < o(1,1). In this case we
forcevo to 0 with the (sufficiently weighted) tero{vo, Vo). Defineg' (x) = 9(z, - - -, Zar(g))
wherez = xif u; = 1 andz = vp otherwise. Note thay (1) < g'(0) which means that we
can forcev; to 1. Otherwise(0,0) = o(1,1). If 0(0,1) = 0(1,0), thenf.. = a10+ ay,
otherwise assume without loss of generality 1@ 1) < o(1,0). In this case/p, v, can
be forced to 01 with the help of the (sufficiently weighted) temvp, v1 ).



We also know thaft does not admit thémin, max)-multimorphism([2] since VCSRA)
is NP-hard by assumption. Hence, there existsagy functionf € A ands,t € BX such
that f(min(s;t)) + f(max(s;t)) > f(s) + f(t). Let f1(x) = a10(vo,X) + a2 for some
01 € Qspanday € Q such thatf1(1) = 0 andf;(0) = 1. Let alsog(x,y) = f(z,...,%)
wherez = v if min(s,tj)) =1,z = v if max(s,tj)) =0,z =xif § >t andz =
y otherwise. Note thag(0,0) = f(min(s,t)), g(1,1) = f(maxs,t)), g(1,0) = f(s)
andg(0,1) = f(t). Seth(x,y) = g(x,y) +g(y.x). Now h(0,1) = h(1,0) < 3(h(0,0) +
h(1,1)).1f h(0,0) =h(1,1), thenf. = aih+ ax for somea; € Qo anda, € Q. Hence,
we can without loss of generality assume thét,1) — h(0,0) = 2. Note now that
W (x,y) = f1(X) + f1(y) + h(x,y) satisfiest(0,0) = I/(1,1) = 2(h(0,0) + h(1,1) +2)
andh'(0,1) = h'(1,0) = 3(2+h(0,1) + h(1,0)). HenceY(0,0) = '(1,1) > I/ (0,1) =
h'(1,0). Sof. = a;i + a, for somea; € Qg anda; € Q. |

3.3 The Broader Picture

Theorem§b and 6 does not describe the relative complexityeles the SAT:), MAX-
ONES(-) and VCSR-) problems. However we readily see (1) that SRF,) <V
w-MAX-ONES(Ry1,), and (2) thatv-MAx-ONES(Ry,) <V w-MAX INDEPENDENT
SET sincew-MAX INDEPENDENTSET can be expressed by-MAx -ONES(NAND?).
The problem W-Mx-ONES(NAND?) is in turn expressible by Mx-CSR{NAND?,
T,F}). To show thatv-MAX INDEPENDENTSET <V VCSP(f..) it is in fact, since
MAx-CSRneq and VCSRf.) is the same problem, sufficient to show thatit
CSR{NANDZT, F}) <V Max-CSRneq. We do this as follows. Lety andv; be
two global variables. We forcey andv; to be mapped to different values by assign-
ing a sufficiently high weight to the constraint riggj v1). It then follows that Tx) =
neqx, Vo), F(x) = neqx,v1) and NAND?(x,y) = 3 (neqx,y) + F(x) + F(y)) and we are
done. It follows from this proof that Mx-CSR{NAND? T,F}) and VCSRf.) are
mutually CV-interreducible. Since Mx-CSR{NAND? T,F}) can also be formulated
as a VCSP it follows that VCSP) does not have a unique easiest set of cost functions.
The complexity results are summarized in Fidure 1. Somatiivclusions are omitted
in the figure: for example it holds that SAT) <V w-MaAx-ONES(I") for all I".

4 Subexponential Time and the Exponential-Time Hypothesis

The exponential-time hypothesis states that 3-$/9E [5]. We remind the reader that
the ETH can be based on different size parameters (such asithizer of variables or
the number of clauses) and that these different definitibes coincide([6]. In this sec-
tion we investigate the consequences of the ETH foruld Ax -ONES andu-VCSP
problems. A direct consequence of Secfibn 3 is that if theissany finite constraint
languagel” or set of cost functiond such thatw-MAx-ONES(I") or VCSRA) is
NP-hard and in SE, then SAR,,) is in SE which implies that the ETH is false [10].
The other direction is interesting too since it highlights tikelihood of subexponential
time algorithms for the problems, relative to the ETH.

Lemma 7. If u-MAX-ONES(I") is in SE for some finite constraint languag€ssuch
thatu-MAXx-ONES(I") is NP-hard, then the ETH is false.



VCSRA)

N

W-MAX CuTt VCSR(f,) 1. Holds fqr everyl” such that
— SAT(I") is NP-hard.

\ 2. Holds for every I' such

that w-MAX-ONES(I") is

W-MAX-ONES(I") w-MAX INDEPENDENTSET NP-hard.

\2 / 3. Holds for every finite-valued
A such that VCSRA) is NP-

SAT(I) w-MAX-ONES(Ry,) hard.
N
SAT(Ry1,)

Fig. 1. The complexity landscape of some Boolean optimization atigfiability problems. A
directed arrow from one nod&to B means thaf <CV B.

Proof. From Jonsson et al. [10] it follows that 3-SAT is in SE if andydh SAT (Ry, )-

2 is in SE. Combining this with Theorelm 4 we only have to prdvat ISAT(R,)-2
LV-reduces tau-MAXx-ONES(R) for Re {R,si, Rin,; RiL» Ri,s Rics R|D2}. We provide
an illustrative reduction from SAR,)-2 to U-MAX-ONES(RlS%); the remaining re-
ductions are presented in Lemnias$[11-15 in Appehdik A.3.e8?,g? is the NAND
relation with one additional constant column, lb?d\/lAX-ONES(R,Si) problem is ba-
sically the maximum independent set problem or, equivBletite maximum clique
problem in the complement graph. Given an instahoé CSRR;,)-2 we create for
every constraint 3 vertices, one corresponding to eaclibleasssignment of values to
the variables occurring in the constraint. We add edgesd®all pairs of vertices that
are not inconsistent and that do not correspond to the sanstramt. The instanckeis
satisfied if and only if there is a clique of sisewherem s the number of constraints
in |. Sincem < 2n this implies that the number of vertices<s2n. O

Theorem 8. The following statements are equivalent.

. The exponential-time hypothesis is false.

. U-MAX-ONES(I") € SEfor every finitel" .

. U-MAX-ONES(I") € SEfor some finitd~ such thatu-MAax-ONES(I") is NP-hard.
. U-VCSP(A)4 € SEfor every finite set of finite-valued cost functiahgnd d> 0.

A WDNPFP

Proof. The implication[1={2 follows from Lemmd_16 in Appendix Al3]2 3 is
trivial, and3={Tl follows by Lemm&T. The implicatidd2{4 follows from Lemm& 1I7
in AppendiX/A3. We finish the proof by showihig=41l. Letl = (V,C) be an instance of
SAT(Ru,)-2. Note that contains at most[¥/ | constraints. Lef be the function defined
by f(x) =0 if x € Ry, and f(x) = 1 otherwise. Create an instancewfVCSP(f)
by, for every constrainC; = Ry, (X4, ...,Xg) € C, adding to the cost function the term
f(x1,...,%g). This instance has a solution with objective value O if anfydhl is
satisfiable. Hence, SARy,)-2 € SE which contradicts the ETH [L0]. O
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5 Future Research

Other problems. The weak base method naturally lends itself to other problesnam-
eterized by constraint languages. In general, one has sidmrall co-clones where the
problem is NP-hard, take the weak bases for these co-clargk$ired out which of
these are CV-reducible to the other cases. The last stepitatly the most challenging
— this was demonstrated by theM AX-ONES problems where we had to introduce
g.w.p.p. implementations. An example of an interestingofa where this strategy
works is thenon-trivial SAT problem (SAT (")), i.e. the problem of deciding whether
a given instance has a solution in which not all variablesvapped to the same value.
This problem is NP-hard in exactly six cases [3] and by follaythe aforementioned
procedure one can prove that the relatiyg results in the easiest NP-hard SAT )
problem. Since SAT(R,,) is in fact the same problem as SfRj,) this shows that
restricting solutions to non-trivial solutions does notkaahe satisfiability problem
easier. This result can also be extended to the co-NP#mguiitation problen{3] and
we believe that similar methods can also be applied to giveinsights into the com-
plexity of e.g.enumerationwhich also follows the same complexity classificatioh [3].
Such results would naturally give us insights into the strrecof NP but also into the
applicability of clone-based methods.

Weighted versus unweighted problemsTheoreni 8 only applies to unweighted prob-
lems and lifting these results to the weighted case doesppaaa straightforward. We
believe that some of these obstacles could be overcome efiterglized sparsification
techniques. We provide an example by proving that if any HRw-MAX-ONES(I")
problem is in SE, then MXx-CuT can be approximated within a multiplicative error
of (1£¢) (for any € > 0) in subexponential time. Assume thatMAX-ONES(I")

is NP-hard and a member of SE, and arbitrarily choose 0. Let MAX-CuT; be
the Max-CuT problem restricted to graphs = (V,E) where|E| < c- |V|. We first
prove that Max-CuT. is in SE for arbitraryc > 0. By Theoren{ b, we infer that
w-MAX-ONES(Ry,) is in SE. Given an instand®/, E) of MAX-CuT, one can intro-
duce one fresh variablg for eachv € V and one fresh variabbe for each edge € E.
For each edge = (v,w), we then constrain the variablgg x, andxe asR(Xy, Xw, Xe)
whereR= {(0,0,0),(0,1,1),(1,0,1),(1,1,0)} € (Ru,). It can then be verified that, for
an optimal solutiorh, that the maximum value &f g Weh(Xe) (Wherew is the weight
associated with the edg® equals the weight of a maximum cut {0, E). This is an
LV-reduction sincelE| = c- |V|. Now consider an instano®/,E) of the unrestricted
MAX-CuT problem. By Batson et al.[1], we can (in polynomial time) qorte acut
sparsifier(V’, E’) with only D, - n/e? edges (wher®; is a constant depending only on
€), which approximately preserves the value of the maximutrot(V, E) to within a
multiplicative error of(1+ €). By using the LV-reduction above from M-CuTp, /2

to w-MAx-ONES(I"), it follows that we can approximate the maximum cutgfE)
within (14 €) in subexponential time.
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A Appendix

A.1 Bases of Boolean Clones and the Clone Lattice

In Table[1 we present a full table of bases for all Boolean etorThese were first
introduced by Post [15] and the lattice is hence knowRa@st’s lattice It is visualized
in Figurel2.

Table 1. List of aII Boolean clones with definitions and bases, whedéx)i= x and

hn(X17~-~7Xn+1): | 1X1 Xi—1Xi41° " Xnt1, duaKf)(alan)_lif( an)
Clone Definition Base
BF  All Boolean functions {XAy,—x}
Ro  {f| fis O-reproducing {XAy,x@&y}
Ry {f| fis 1-reproducing {xvy,xeyo1}
Rz  RoNR: {XVY,xA (yoza1)}
M {f | f is monotoni¢ {xVy,xAy,0,1}
M; MNRy {xVy,xAy,1}
Mo MNRg {xVy,xAy,0}
M, MNRy {XVy,xAy}
S {f|fisO-separating of degreg {x—y,dualh,)}
So  {f| fis O-separating {x—=vy}
S?  {f|fis 1-separating of degreg {xA=y,hn}
S1 {f|fis1l-separating {xA -y}
S§,  SgNR2 {xV (yA-z),dualhy)}
Sz SoNR: {xv(yrn-2)}
8 SiNM {duaihy), 1}
Sor1 SoNM {XV(y/\Z) l}
Sgo  SoNR2NM {xV (yAz),dualhn)}
Soo SoNRoaNM {XV(y/\Z}
T SINR: {XA(yV=2),hn}
Si2 S1NRe {xA(yv-2)}
ST, STnMm {hn,0}
S11 SinM {x/\(yv ) }
Sty SINR.NM {XA(yVv2),h}
S0 S1NRpNM {xA(yvz)}
D {f | f is self-dua} {(XA=y)V (XA=2Z)V (-yA—2)}
D1 DNR; {(XAY)V (XA=2Z)V (YA—2Z)}
D, DNM {hz}
L {f | f is affine} {xoy,1}
Lo LNRo {x@y}
Ly LNRy {x@y% l}
L LNRz {xey®z}
L3 LND {xoy®oze 1}
\Y, {f | f isadisjunction or constarits ~ {xVy,0,1}
Vo VNRo {va,o}
Vi VNR; {va, l}
V, VNRy {va}
E {f | f isa conjunction or constarjts  {xAy,0,1}
Eo ENRg {x/\y,O}
E; ENR; {X/\y, l}
E, ENR; {X/\y}
N {f | f depends on at most one variaplé-x,0,1}
N, NNR, {ﬁX}
| {f | f is a projection or aconstant  {id,0,1}
lo INRy {Ido}
Iy INRy {Id 1}
I INR, {Id}
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A.2 Weak Bases

We extend the definition of a polymorphism and say that agldttnctionf is apartial
polymorphismo a relationR if R is closed undeif for every sequence of tuples for
which f is defined. A set of partial functiorfsis said to be atrong partial clonef it
contains all (total and partial) projection functions asdliosed under composition of
functions. By pPdIl") we denote the set of partial polymorphisms to the set ofioglat
I". Obviously sets of the form pP@l) always form strong partial clones and again we
have a Galois connection between clones and co-clones.

Theorem 9. [16] Let " andl"’ be two sets of relations. Théf )z C (') if and only
if pPol’) C pPolT).

We define thaveak basef a co-clondC to be the base of the smallest member of
the interval.# (IC) = {ID | ID = (ID)z and(ID) = IC}. Weak bases were first intro-
duced in Schnoor and Schnoor [19,20] but their construstsnlted in relations that
were in many cases exponentially larger than the plain batlesespect to arity. Weak
bases fulfilling additional minimality conditions was givin Lagerkvist[12] using re-
lational descriptions. By construction the weak base of-@loae is always a single
relation.

Theorem 10 ([19]).Let Ry be the weak base of some co-cléGeThen for any finite
basel” of IC it holds that B, € (I" ).

See Tablgl2 for a complete list of weak bases.

A.3 Additional Proofs for Section[4
Lemma 11. SAT(Ry,)-2 LV-reduces tw-MAX-ONES(Ry, ).

Proof. We reduce an instan¢ef SAT(Ry1,)-2 onn variables constraints to an instance
of U-MAX-ONES(R,) containing at most 2 8n variables. Letvg, v, be two fresh
global variables constrainedBg, (Vo, Vo, Vo, V1, V1, V1, Vo, V1). Note that this forceg, to
0 andvs to 1 in any satisfying assignment. Now, for every variatitethe SAT-instance
we create an additional variabtewhich we constrain aR, (X, X, v1,X, X, Vo, Vo, V1).
This correctly implements néx x'). For thei-th constraintRy, (X1, . .., Xs, Co,C1), in |
we create three variables, z2,Z and constrain them &, (z!, 7, 2%, x1, X2, X3, Co, C1),
we also add the constraif, (X4, Xs, Xs, X1, X2,X3,Co,C1). Since every variable in the
SAT-instancd can occur in at most two constraints we have that 2n. Hence the
resultingu-MAX-ONES instance contains at mosti22n+ 3-2n = 2+ 8n variables.
Sincex andx/, andvp andv;, must take different values it holds that the measure of a
solution of this new instance is exactly the number of vaeiatﬂ that are mapped to 1.
Hence, for an optimal solution the objective valuei2mif and only if | is satisfiable.

a

Lemma 12. u-MAX-ONES(Ry.,) LV-reduces taJ-MAX-ONES(R,)-
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Table 2. Weak bases for all Boolean co-clones with a finite base

Co-clone Weak base

IBF Eq(x1,%2)

IR, F(Co)

IR, T(c)

IR, F(co) AT(c1)

IM (X1 — X2)

1M, (X1 — X2) AF(co)

1M, (X1 = %2) AT(c1)

M, (X1 = X2) AF(Co) AT

1S3:n>2 OR'(xq,..., %) AT(C )

IS5,n > 2 OR(X0,...,¥n) A F(Go) AT (1)

YA
YA
1S81,n > 2 ORY(Xq,...,%1) A (X— X1+ Xn) AT(C1)
|Sooan >2 0R1(X1,~~~,Xn)/\

A (K= Xg++¥n) AF(Co)

Ism,n > 2 NAND"(Xq, ..., X A (X=X Xn) AF(Co) AT(C1)

(X1 # %
ID1 (X1 # X2) AF(Co) AT(C1)
ID, ORS, (X1,%2,%a,Xa) AF(Co) AT(c1)
IL EVEN? (X1, %2, %3, X4)
1Ly EVEN®(xg,%2,%3) A F(Co)
IL, ODD3(><1 X2,%3) AT(cy)
IL, EVENS, (x1..... %) AF(Co) AT(cy)
1Ly EVENj#(xl.....,xs)
v (X1 %5%B) A (VG — %)
Vo (>T1<—>>TZ>T3)AF( )
\A (X1 > X%G) A (R VX — Xa) AT(C1)
IV, (%3 + %%) AF(Co) AT(cy)
IE (X1 4> XoX3) A (X2 V X3 — Xa)
IE, (%1 > XoX3) A\ (X2 V X3 — Xa) AF(Co)
IE; <X1<—>X2X3)/\T(C1)
IE, (X1 > XoX3) AF(Co) AT(C1)
IN EVEN?(Xq,%2,X3,X4) A X1 X4 ¢ XoX3
IN, EVEN, (Xa,...,X8) A XaXq < XoXa
Il (%1 4> XaX3) A\ (K ¢ Xo3)
Il (% V%) A (%% > %) AF(Co)
1 (Xl\/Xz)/\(Xle (—>X3)/\T(C1)
Il Ry (x4, ... %) A F(co) AT(cy)
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Proof. We reduce an instandeof u-MAX-ONES(R,) on n variables to an instance
of U-MAX-ONES(Ri,) on 2+ 2n variables. Lewg, V1,1, ..., Yn be fresh variables and
constrain them aBy, (Vo, Vo, Vo, Vo) A Rity (V1,V0,Y1, Vo) A - .. AR, (V1, Vo, Yn, Vo). Note
that this forcesg to 0, and that if/; is mapped to 0, then so are the variabjgs. ., yn.

If v1 is mapped to 1 on the other hand, than...,y, can be mapped to 1. For every
constraintR, (X1, X2, X3, X4, Xs, X6, Co,C1) We create the constrain®_,(x1,X2,X3,Vo) A
RiLo (V1,X1,%4,V0) A RiLg (V1,%2,%5,V0) A Ry (V1,X3, X6, Vo) A RiLy (V1, Co,C1, Vo). The re-
sultingu-MAX-ONES(R, ) instance has 2 2nvariables and has a solution with mea-
suren+ 1+ Kkif and only if| has a solution with measuke a

Lemma 13. u-MAX-ONES(Ry;,) LV-reduces taJ-MAX-ONES(Rin,).

Proof. We reduce an instandeof u-MAx-ONES(R;;,) overn variables to an instance
of u-MAXx-ONES(Rin, ) over 24+ 3nvariables. Create two fresh variablgsv, and con-
strain them a®n, (Vo, Vo, Vo, Vo, V1, V1, V1, V1) in order to forcevg andvy to be mapped
to different values. We then create the \Zariablesy,, ..., y>n, and constrain them as
/\izjl Rin, (Vo, Vo, Vo, Vo, ¥i, i, ¥i, i ). This forces all of the variableg to be mapped to
the same value ag. We can now expred®, (X1, X2, X3, X4, X5, Xs, Co, C1) Using the im-
plementatiorRin, (Vo, X1, X2, X6, V1, X4, X5, X3) A Rin, (Vo, Co, Co, Vo, V1, C1, C1, V1 ). Note that
in any optimal solution of the new instanegwill be mapped to 1 which means that the
implementation oRy;, given above will be correct. The resulting instance hasuatisol
with measure % 2n+kif and only if | has a solution with measuke a

Lemma 14. U-MAX-ONES(RlS%) LV-reduces ta-MAX-ONES(Rp, ).

Proof. We reduce an instance ofMAX-ONES(Rg2) on n variables to an instance

of u-MAX-ONES(Rp,) on 2+ 3n variables. Create two new variablesandv; and
constrain them aRip, (1, V1, Vo, Vo, Vo, Vv1). Note that this forcesp to 0 andv; to 1.
For every variablex we introduce two extra variable$ and x” and constrain them
asRip, (X, X, X, x,Vo,v1) A Rip, (X, X", X",X ,vo,v1). Note that this implements the con-
straints ne@x,x') and ne@x’,x”), and that no matter whatis mapped to exactly one
of X andx” is mapped to 1. For every constralﬁg% (%,Y,Co) we then introduce the

constraintRp, (X',Y,X,Y,Co,v1). The resulting instance has a solution with measure
1+n+kif and only if | has a solution with measuke a

Lemma 15. u-MAX-ONES(Ry.,) LV-reduces taJ-MAX-ONES(R,).

Proof. We reduce an instance ofMAX-ONES(R,) on n variables to an instance
of U-MAX-ONES(R.,) on 2+ 3n variables. Create two new variablegsandv, and
constrain them a®,(vo, Vo, Vo, Vo, V1, V1, V1, V7). Note that this forcesy andv; to
be mapped to different values. We then introduce fresh blasys,...,y,, and con-
strain them aa\izle.La(vo,vo,vo,vo,yi,yi,yi,yi). This will ensure that every variables
yi is mapped to the same value\gsand therefore that in every optimal solutiagis
mapped to 0 and; is mapped to 1. For every constraiit , (X1, .. ., Xs, Co, C1) We intro-
duce the constraint® ,(Co, X1, X2, X3, C1,X4,%s5,Xs) A RiL;(Co, Co, Co, Co, V1, V1, V1, V1) A
RiL;(Vo, Vo, Vo, Vo,€C1,€1,€1,€1). The resulting instance has a solution with measure 1
2n+kif and only if | has a solution with measuke a
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Lemma 16. If the ETH is false, them-MAx-ONES(I") € SEfor every finite Boolean
constraint languagé .

Proof. Define SNP to be the class of properties expressible by f@snod the type
35 ...3SvX1 ... Vxm.F whereF is a quantifier-free logical formulals; ... 3S, are
second order existential quantifiers, and . .. Vxm, are first-order universal quantifiers.
Monadic SNP (MSNP) is the restriction of SNP where all seeorder predicates are
required to be unary [4]. The associated search problemtigentify instantiations
of §,...,5, that make the resulting first-order formula true. We will béerested in
properties that can be expressed by formulas that addityozentainsize-constrained
existential quantifier. A size-constrained existentiauwtifier is of the forndS, |S| & s,
where|S is the number of inputs where relati®holds, ands € {=,<,>}. Define
size-constrained SNP as the class of properties of relaod numbers that are ex-
pressible by formulass; ... 35,Vx; ... Vxm.F where the existential quantifiers are al-
lowed to be size-constrained.

If the ETH is false then 3-SAT is solvable in subexponeniialet By Impagli-
azzo et al.[[5] this problem is size-constrained MSNP-catgplinder size-preserving
SEREF reductions. Hence we only have to prove thaflAX-ONES(+) is included in
size-constrained MSNP for it to be solvable in subexpomagtitne. Impagliazzo et
al. [6] shows thak-SAT is in SNP by providing an explicit formuldS.F whereF is
a universal formula an8 a unary predicate interpreted such that Sif and only if x
is true. Letk be the highest arity of any relation In. Sincek-SAT can q.p.p. imple-
ment anyk-ary relation it is therefore sufficient to prove thatMAX-ONES(I&y;) is
in size-constrained MSNP, wheﬁ§<AT is the language corresponding to all satisfying
assignments df-SAT. This is easy to do with the formula

3S,|S| > K.F

whereK is the parameter corresponding to the number of variabkgshihs to be
assigned 1. a

Lemma 17. If u-MAX-ONES(I" ) € SEfor every finite Boolean constraint language
thenu-VCSPy(A) € SEfor every finite set of Boolean cost functiahsnd arbitrary
d>0.

Proof. We first show that if every-MAx-ONES(I" ) € SE, then the minimization vari-
antu-MIN-ONES(I") € SE foralll, too. Arbitrarily choose a finite constraint language
" overB. We present an LV-reduction from-MIN-ONES(I" ) to U-MAX-ONES(I" U
{neq). Let({v1,...,vn},C) be an arbitrary instance of MIN-ONES(I" ) with optimal
valueK. Consider the following instandé of u-MAX-ONES(I" U{neq}):

({V1,V1, V4, - ,Vn, Vi, Vi },CU {neq(va, V; ), neq vy, Vi), . .. ,n€qVn, Vi, ), NEQ( Vi, Vi ).
For each variable; € {vi,...,vn} that is assigned 0, the corresponding variakjeg’

are assigned 1, and vice-versa. It follows that the optirahlesofl’ is 2n— K. Hence,
U-MIN-ONES(I") € SE sinceu-MAx-ONES(I" U{neq}) € SE.
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Now, arbitrarily choosel > 0 and a finite set of Boolean cost functiafis Since
A is finite, we may without loss of generality assume that eacletionf € A has its
range in{0,1,2,...}.

We show thati-VCSPy(A) € SE by exhibiting an LV-reduction from-VCSPy(4)
to U-MIN-ONES(I") whererl is finite and only depends oA. Given a tuplea =
(ag,...,a) € BX letvala) = 1+ zj;aj:12j*1. For eachf € A of arity k, define

ok | F(Xa,. 0 %) >0,
B {i:yi#O}_{val(xl,...,xk)}}

k
U{(X1,-..,%.0,...,0) e B"2" | f(xq,...,%) =0},

Rf = {(Xl,...,Xk,yl,...,yzk)

and letr = {egneq U{Rs | f € A}.

One may interpreR; as follows: for eachxs,...,X«) € BX the relationR; con-
tains exactly one tupléxy, ..., X, Y1,...,Yok). If f(x1,...,%) =0, then this is the tuple
(X1,...,X,0,...,0). If f(Xq,...,%) > 0, then this is the tupléx, ..., x,0,...,1,...,0)
where the 1 is in positiok+ val(xi, ..., X). We show below howR; can be used for
“translating” eachx € BX into its corresponding weight as prescribedfby

Let(V,¥"; fi(xi)) be an arbitrary instance of VCSPy(A) whereV = {v,...,Vn}.

Let an(f;) denote the arity of functiofi. Assume the instance has an optimal solution
with valueK. For each ternfi(vy,...,v) in the sum, do the following:

. introduce 2 fresh variables/, ..., Vi,
. introducek fresh variablesv, . .., W,

. for eacta € BX such thatf (a) > 1, introduceY = f(a) fresh variablesy, ..., Uy_1,
. introduce the constraif (Vi, ..., Vi, Vi, -+, V),

. introduce the constraints n@g, wi ), ..., neqVvg, wy), and

. for eacha € BX, let’ = f(a) and do the following if’ > 1: let p = val(a) and

introduce the constraints eq), Up),eq(Upg,U1),-..,eqUy_2,Uy_1).

DU WN P

Itis not difficult to realize that the resulting instance basimal valuek + 5 ; ar(Ci)
given the interpretation d®; and the following motivation of step 5: the neq constraints
introduced in step 5 ensure that the weightaf . .., x) does not influence the weight
of the construction and this explains that we need to adpestoptimal value with
it ar(Gi).

Furthermore, the instance contains at most

V[+]|C|-(2s+t-(2°+ 1))

variables where = max{ar(f) | f € A} andt = max{f(a) | f € A andac B>(")},
By noting that|C| < d|V| and thats,t are constants that only depend Anit follows
that the reduction is an LV-reduction. O
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