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Two Results about Quantum Messages

Hartmut Klauck∗ Supartha Podder†

Abstract

We show two results about the relationship between quantum and classical messages.
Our first contribution is to show how to replace a quantum message in a one-way com-
munication protocol by a deterministic message, establishing that for all partial Boolean
functions f : {0, 1}n × {0, 1}m → {0, 1} we have DA→B(f) ≤ O(QA→B,∗(f) · m). This
bound was previously known for total functions, while for partial functions this improves
on results by Aaronson [Aar05, Aar07], in which either a log-factor on the right hand is
present, or the left hand side is RA→B(f), and in which also no entanglement is allowed.

In our second contribution we investigate the power of quantum proofs over classical
proofs. We give the first example of a scenario, where quantum proofs lead to exponential
savings in computing a Boolean function. The previously only known separation between
the power of quantum and classical proofs is in a setting where the input is also quantum
[AK07].

We exhibit a partial Boolean function f , such that there is a one-way quantum com-
munication protocol receiving a quantum proof (i.e., a protocol of type QMA) that has
cost O(log n) for f , whereas every one-way quantum protocol for f receiving a classical
proof (protocol of type QCMA) requires communication Ω(

√
n/ logn).
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1 Introduction

The power of using quantum messages over classical messages is a central topic in information
and communication theory. It is always good to understand such questions well in the simplest
settings where they arise. An example is the setting of one-way communication complexity,
which is rich enough to lead to many interesting results, yet accessible enough for us to show
results about deep questions like the relationship between different computational modes,
e.g. quantum versus classical or nondeterministic versus deterministic.

1.1 One-way Communication Complexity

Perhaps the simplest question one can ask about the power of quantum messages is the
relationship between quantum and classical one-way protocols. Alice sends a message to Bob
in order to compute the value of a function f : {0, 1}n × {0, 1}m → {0, 1}. Essentially, Alice
communicates a quantum state and Bob performs a measurement, both depending on their
respective inputs. Though deceptively simple, this scenario is not at all fully understood.
Let us just mention the following open problem: what is the largest complexity gap between
quantum and classical protocols of this kind for computing a total Boolean function? The
largest gap known is a factor of 2, as shown by Winter [Win04], but for all we know there
could be examples where the gap is exponential, as it indeed is for certain partial functions
[GKK+08].

An interesting bound on such speedups can be found by investigating the effect of re-
placing quantum by classical messages. Let us sketch the proof of such a result. Suppose
a total Boolean function f has a quantum one-way protocol with communication c, namely
Alice sends c qubits to Bob, who can decide f with error 1/3 by measuring Alice’s message.
We allow Alice and Bob to share an arbitrary input-independent entangled state. Extend-
ing Nayak’s random access code bound [Nay99] Klauck [Kla00] showed that QA→B,∗(f) ≥
Ω(V C(f)), where QA→B,∗(f) denotes the entanglement-assisted quantum one-way complex-
ity of f , and V C(f) the Vapnik-Chervonenkis dimension of the communication matrix of
f . Together with Sauer’s Lemma [Sau72] this implies that DA→B(f) ≤ O(QA→B,∗(f) ·m),
where m is the length of Bob’s input. See also [JZ09] for a related result.

A result such as the above is much more interesting in the case of partial functions. The
reason is that for total functions a slightly weaker statement follows from a weak version of
the random access code bound, which can be (and indeed has been [ANTV99]) established
by the following argument: boost the quantum protocol for f until the error is below 2−2m,
where m is Bob’s input length. Measure the message sent by Alice with all the measurements
corresponding to Bob’s inputs (this can be done with small total error) in order to determine
Alice’s row of the communication matrix and hence her input. This is a hard task by standard
information theory facts (Holevo’s bound). When considering partial functions a disaster
happens: Bob does not know for which of his inputs y the value f(x, y) is defined. If Bob
measures the message for x with the observable for y and f(x, y) is undefined any acceptance
probability is possible and the message state can be destroyed.

Aaronson [Aar05] circumvented this problem in the following way: Bob now tries to
learn Alice’s message. He starts with a guess (the totally mixed state) and keeps a classical
description of his guess. Alice also always knows what Bob’s guess is. Bob can simulate
quantum measurements by brute-force calculation: for any measurement operator Bob can
simply calculate the result from his classical description. Alice can do the same. Since Bob has
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some 2m measurements he is possibly interested in, Alice can just tell him on which of these
he will be wrong. Bob can then adjust his quantum state accordingly, and Aaronson’s main
argument is that he does not have to do this too often before he reaches an approximation of
the message state. Note that Bob might never learn the message state if it so happens that
all measurements are approximately correct on his guess. But if he makes a certain number
of adjustments he will learn the message state and no further adjustments are needed.

Let us state Aaronson’s result from [Aar05].

Fact 1.1. DA→B(f) ≤ O(QA→B(f) · log(QA→B(f)) ·m) for all partial Boolean f : {0, 1}n ×
{0, 1}m → {0, 1}.

Aaronson later proved the following result, that removes the log-factor at the expense of
having randomized complexity on the left hand side.

Fact 1.2. RA→B(f) ≤ O(QA→B(f) ·m) for all partial Boolean f : {0, 1}n ×{0, 1}m → {0, 1}.
Our first result is the following improvement.

Result 1. DA→B(f) ≤ O(QA→B,∗(f)·m) for all partial Boolean f : {0, 1}n×{0, 1}m → {0, 1}.
Hence we remove the log-factor, and we allow the quantum communication complexity on

the right hand side to feature prior entanglement between Alice and Bob. Arguably, looking
into the entanglement assisted case (which is interesting for our second main result) led us to
consider a more systematic progress measure than in Aaronson’s proof, which in turn allowed
us to analyze a different update rule for Bob that also works for protocols with error 1/3,
instead of extremely small error as used in [Aar05], which is the cause of the lost log-factor.

We note that this result can be used to slightly improve on the “quantum-classical” simul-
taneous message passing lower bound for the Equality function by Gavinsky et al. [GRdW08],
establishing a tight Ω(

√
n) lower bound on the complexity of Equality in a model where

quantum Alice and classical Bob (who do not share a public coin or entanglement) each
send messages to the referee. The tight lower bound has also recently been established via
a completely different and simpler method [GK14] (as well as generalized to a nondetermin-
istic setting). Our result (as well as the one in [GK14]) allows a generalization to a slightly
stronger model: Alice and the referee may share entanglement.

1.2 The Power of Quantum Proofs

We now turn to the second result of our paper, which is philosophically the more interesting.
Interactive proof systems are a fundamental concept in computer science. Quantum proofs
have a number of disadvantages: reading them may destroy them, errors may occur during
verification, verification needs some sort of quantum machine, and it may be much harder
to provide them than classical proofs. The main hope is that quantum proofs can in some
situations be verified using fewer resources than classical proofs. Until now such a hope has
not been verified formally. In the fully interactive setting Jain et al. have shown that the set
of languages recognizable in polynomial time with the help of a quantum prover is equal to
the set where the prover and verifier are classical (i.e., IP=QIP [JJUW11]).

The question remains open in the noninteractive setting. A question first asked by
Aharonov and Naveh [AN02] and meriting much attention, is whether proofs that are quan-
tum states can ever be easier to verify than classical proofs (by quantum machines) in the
absence of interaction, i.e., whether the class QMA is larger than its analogue with classical
proofs but quantum verifiers, known as QCMA. An indication that quantum proofs may be
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powerful was given by Watrous [Wat00], who described an efficient QMA black box algorithm
for deciding nonmembership in a subgroup. However, Aaronson and Kuperberg [AK07] later
showed how to solve the same problem efficiently using a classical witness, giving a QCMA
black box algorithm for the problem. They also introduced a quantum problem, for which
they show that QMA black box algorithms are more efficient than QCMA black box algo-
rithms. Using a quantum problem to show hardness for algorithms using classical proofs
seems unfair though and a similar separation has remained open for Boolean problems.

In our second main result we compare the two modes of noninteractive proofs and quantum
verification for a Boolean function in the setting of one-way communication complexity. More
precisely we exhibit a partial Boolean function f , such that the following holds. f can be
computed in a protocol where a prover who knows x, y can provide a quantum proof to Alice,
and Alice sends quantum message to Bob, such that the total message length (proof plus
message Alice to Bob) is O(log n). In the setting where a prover Merlin (still knowing all
inputs) sends a classical proof to Alice, who sends a quantum message to Bob, the total
communication is Ω(

√
n/ log n).

Result 2. There is a partial Boolean function f such that QMAA→B(f) = O(log n), while
QCMAA→B,∗(f) = Ω(

√
n/ log n).

We note that this is the first known exponential gap between computing Boolean functions
in a QCMA and a QMA mode in any model of computation. Also, the lower bound is not too
far from being tight, since there is an obvious upper bound of O(

√
n log n) for the problem.

So where does the power of quantum proofs come from in our result? Raz and Shpilka
[RS04] show that QMA one-way protocols are as powerful as QMA two-way protocols. Their
proof uses a quantum witness that is a superposition over the messages of different rounds.
We show that for a certain problem with an efficient QMA protocol there is no efficient
one-way QCMA protocol. Hence the weakness of classical proofs here is the impossibility of
compressing interaction as in the QMA case.

2 Preliminaries

2.1 Quantum

For basic quantum background we refer to [NC00].

2.2 Communication Complexity Models

We assume familiarity with communication complexity, referring to [KN97] for more details
about classical communication complexity and [Wol02] for quantum communication complex-
ity.

For a partial Boolean function f : {0, 1}n×{0, 1}m×{0, 1,⊥}, where ⊥ stands for “unde-
fined” the communication matrix Af has rows labeled by x ∈ {0, 1}n and columns labeled by
y ∈ {0, 1}m, and entries f(x, y). A protocol for f is correct, if it gives the correct output for
all x, y with f(x, y) 6= ⊥ (with certainty for deterministic protocols, and with probability 2/3
for quantum protocols). A protocol is one-way, if Alice sends a message to Bob, who com-
putes the function value, or vice versa. We denote by DA→B(f) the deterministic one-way
communication complexity of a function f , when Alice sends the message to Bob.
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Two rows x, x′ of Af are distinct, if there is a column y, such that f(x, y) = 1 and
f(x′, y) = 0 or vice versa, i.e., the function values differ on some defined input. Note that
being not distinct is not an equivalence relation: x, x′ can be not distinct, as well as x, x′′,
while x, x′ are distinct. Nevertheless a one-way protocol for f needs to group inputs x into
messages such that no two distinct x, x′ share the same message.1

Similar to the above, we denote by QA→B(f) the quantum one-way communication com-
plexity of f with error 1/3. This notion is of course asymptotically robust when it comes to
changing the error to any other constant. QA→B,∗(f) denotes the complexity if Alice and
Bob share entanglement.

We now define some more esoteric modes of communication that extend the standard
nondeterministic mode to the quantum case. We restrict our attention to one-way protocols.

Definition 1. In a one-way MA-protocol there are 3 players Merlin, Alice, Bob. Merlin sends
a classical message to Alice, who sends a classical message to Bob, who gives the output.
Alice and Bob share a public coin, which is not seen by Merlin. For a Boolean function
f : {0, 1}n × {0, 1}m → {0, 1} the protocol is correct, if for all 1-inputs there is a message
from Merlin, such that with probability 2/3 Bob will accept, whereas for all 0-inputs, and all
messages from Merlin, Bob will reject with probability 2/3. The communication complexity
is defined as usual and denoted by MAA→B(f).

A one-way QCMA-protocol is defined similarly, but whereas Merlin’s message is still clas-
sical, Alice can send a quantum message to Bob, and Alice and Bob may share entanglement.
The complexity with shared entanglement is denoted QCMAA→B,∗(f).

In a one-way QMA-protocol also Merlin’s message may be quantum. The complexity is
denoted by QMAA→B(f) in the case where no entanglement is allowed.

2.3 Quantum Information Measures

In this paper we need only a few well established notions of information and distinguishability.
A density matrix is a positive semidefinite matrix of trace 1. Density matrices will also be
referred to as quantum states in this paper.

Definition 2. The von Neumann entropy of a quantum state ρ is S(ρ) = −Trρ log ρ.
The relative von Neumann entropy of quantum states ρ, σ is S(ρ||σ) = Trρ log ρ−Trρ log σ

if supp ρ ⊆ supp σ, otherwise S(ρ||σ) = ∞.
The relative min-entropy of ρ, σ is S∞(ρ||σ) = inf{c : σ − ρ/2c is positive semidefinite}.

It is easy to see that S(ρ||σ) ≤ S∞(ρ||σ), see [Dat09] for a proof. An important measure
of how far apart quantum states are is the trace distance.

Definition 3. The trace norm of a Hermitian operator ρ is defined as ||ρ||t = Tr
√

ρρ†.
The trace distance between ρ and σ is ||ρ− σ||t.

We list two well known facts. First, Uhlmann monotonicity.

Fact 2.1. If ρ̃, σ̃ result from measuring ρ, σ then S(ρ̃||σ̃) ≤ S(ρ||σ).
1It is instructive to consider the function f(x, i; y, j) = xi⊕j under the promise that x = y. This function

has only n distinct rows and columns, and DA→B(f) = DB→A(f) ≤ O(log n). Nevertheless Af has many
more actual rows and columns. Trying to reduce the number of actual columns to a set of distinct columns
increases the number of distinct rows. Hence one has to be careful when considering partial functions.
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Secondly, the quantum Pinsker inequality [HOT81], see also [KNTZ01].

Fact 2.2. ||ρ− σ||t ≤
√

2 ln 2 S(ρ||σ).
We note that any two states that are close in trace distance are hard to distinguish by

any measurement, namely the classical distance between the measurement results is at most
the trace distance of the measured states.

3 Making Quantum Messages Deterministic

Theorem 3.1. For every partial Boolean function f : {0, 1}n × {0, 1}m → {0, 1} we have
DA→B(f) ≤ O(QA→B,∗(f) ·m).

We note that in the case of total functions the theorem follows from a result in [Kla00]
combined with Sauer’s lemma [Sau72], and that two weaker versions of the theorem have
been proved by Aaronson: in [Aar05] he shows the result with an additional log-factor on the
right hand side, and without allowing entanglement, in [Aar07] with RA→B(f) on the left
hand side (and no additional log-factor), but again without entanglement.

Our proof follows Aaronson’s main approach in [Aar05], in which Bob maintains a classical
description of a quantum state as his guess for the message he should have received, and Alice
informs him about inputs on which this state will perform badly, so that he can adjust his
guess. His goal is to either get all measurement results approximately right, or to learn the
message state. We will refer to these states as the current guess state, and the target state.

We deviate from Aaronson’s proof in two ways. First, we work with a different progress
measure that is more transparent than Aaronson’s, namely the relative entropy between the
target state and the current guess. This already allows us to work in the entanglement-
assisted case.

Secondly, we modify the rule by which Bob updates his guess. In Aaronson’s proof Bob
projects his guess state onto the subspace on which the target state has a large projection
(because the message is accepted by the corresponding measurement with high probability).
This has the drawback that one cannot use the actual message state of the protocol as
the target state, because that state usually has considerable projection onto the orthogonal
complement of the subspace, making the relative entropy infinitely large! Hence Aaronson
uses a boosted and projected message state as the target state. This state is close to the
actual message state thanks to the boosting, and projection of the guess state now properly
decreases the relative entropy, since the target state is fully inside the subspaces. The boosting
step costs exactly the log-factor we aim to remove.

So in the situation where Bob wants to update his guess state σ, knowing that the target
state ρ will be accepted with probability 1 − ǫ when measuring the observable consisting of
subspace Vy and its complement, we let Bob replace σ with the mixture of 1 − ǫ times the
projection onto Vy and ǫ times the projection onto V ⊥

y . The main part of the proof is then
to show that this decreases the relative entropy S(ρ||σ) given that Tr(Vyσ) < 1− 10

√
ǫ, i.e.,

in case σ was not good enough already. Eventually either all measurements can be done by
Bob giving the correct result, or the current guess state σ satisfies S(ρ||σ) ≤ 5

√
ǫ, in which

case ρ and σ are also close in the trace distance meaning that any future measurement will
give almost the same results on both states.
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Proof. Fix any entanglement assisted one-way protocol with quantum communication q =
QA→B,∗(f). Using standard boosting we may assume that the error of the protocol is at most
ǫ = 10−6 for any input x, y. This increases the communication by a small constant factor at
most.

Using teleportation we can replace the quantum communication by 2q classical bits of
communication at the expense of adding q EPR-pairs to the shared entangled state. Let |φ〉
denote the entangled state shared by the new protocol. We can assume this is a pure state,
because if this is not the case we may consider any purification, and Alice and Bob can ignore
the purification part. Note that we do not restrict the number of qubits used in |φ〉.

In the protocol, for a given input x Alice has to perform a unitary transformation on her
part of |φ〉 (we assume that any extra space used is also included in |φ〉 and that measurements
are replaced by unitaries) and then sends a classical message. Bob first applies the unitary
from the teleportation protocol (which only depends on the classical message). Let’s denote
the state shared by Alice and Bob at this point by |φx〉. Following this Bob performs a
measurement (depending on his input y) on his part of |φx〉. This measurement determines
the output of the protocol on x, y. We may assume by standard techniques that Bob’s
measurements are projection measurements, and that the subspaces used in the projection
measurements have dimension d/2, where d is the dimension of the underlying Hilbert space.

Recall that |φ〉 and |φx〉 are bipartite states shared by Alice and Bob. Let ρ = TrA|φx〉〈φx|
and σ1 = TrA|φ〉〈φ|, i.e., the states when Alice’s part is traced out. Bob wants to learn ρ in
order to be able to determine all measurement results on ρ. We show how to do this with
O(m · q) bits of deterministic communication from Alice. Note that the state σ1 is known to
Bob in the sense that he knows its classical description.

Since Alice’s local operations do not change Bob’s part of |φ〉〈φ|, the difference between
ρ and σ1 is introduced via the correction operations in the teleportation protocol that Bob
applies after he receives Alice’s message. But with probability 2−2q Bob does not have to do
anything, i.e., when Alice’s message is the all 0-s string. This implies that

σ1 =
1

22q
ρ+ θ,

for some positive semidefinite θ with trace 1− 1/22q . Hence we get that

S(ρ||σ1) ≤ S∞(ρ||σ1) ≤ 2q.

In other words, Bobs target ρ and initial guess σ1 have small relative entropy.
We can now describe the protocol. Bob starts with the classical description of σ1. This

state is also known by Alice, since it does not depend on the input. Throughout the protocol
Bob will hold states σi, which will be updated when needed, using information provided by
Alice. Bob also has a set of measurement operators Py, I − Py for all his inputs y. Bob
and Alice each loop over his inputs y, and compute py = Tr(Pyσi). This is the acceptance
probability, if σi is measured with the measurement for his input y. Alice also computes
p′y = Tr(Pyρ) which is the acceptance probability of the quantum protocol. If py and p′y are
too far apart, Alice will notify Bob of the correct acceptance probability on y (with precision
ǫ2), which takes m+O(1) bits of communication.

Alice does not send a message if f(x, y) is undefined, because the acceptance probability
on such inputs is irrelevant. Suppose p′y = 1 − ǫy, where ǫy ≤ ǫ is the error on x, y (and
f(x, y) = 1), but py = 1− a for some 1 > a ≥ 10

√
ǫ. If this is not the case the measurement
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for y applied to σi already yields the correct result and no information from Alice is needed.
So if py, p

′
y are far apart Alice will send y (using m bits) and ǫy as a floating point number

with precision ǫ2 (using O(1) bits).
Bob then adjusts σi to obtain a state σi+1. Suppose he knows the correct ǫy (the dif-

ference between ǫy and its approximation sent by Alice will be irrelevant). This means that
Tr(Pyσi) = 1 − a but Tr(Pyρ) = 1 − ǫy. Py is the projector onto a subspace Vy. We have
assumed that each Vy has dimension d/2 if d is the dimension of the underlying Hilbert
space. Let Bi denote an orthonormal basis, in which the first d/2 elements span Vy, and the
remaining d/2 span V ⊥

y . Furthermore in this basis the upper left and lower right quadrants
of σi are diagonal. Hence σi will look like this:

σi =

(

A B
B∗ D

)

=





















∗ 0 0 ∗ · · · ∗
0

. . . 0 ∗ ... ∗
0 0 ∗ ∗ · · · ∗
∗ · · · ∗ ∗ 0 0

∗ ... ∗ 0
. . . 0

∗ · · · ∗ 0 0 ∗





















,

where Tr(A) = 1− a and Tr(D) = a. We can now define

σi+1 =

( 1−ǫy
1−a A 0

0
ǫy
a D

)

,

σi+1 is diagonal in our basis Bi. Clearly σi+1 would perform exactly as desired on mea-
surement Py, I − Py. But Bob already knows the function value on y and can carry on with
the next y.

Before we continue we have to argue that the case a = 1 can never happen. Since
Tr(Pyρ) = 1 − ǫy > 0 the state ρ has a nonzero projection onto Vy. If a = 1 then σi sits
entirely in V ⊥

y , and hence S(ρ||σi) = ∞. But since we start with a finite S(ρ||σ1) and only
decrease that value the situation a = 1 is impossible.

Coming back to the protocol, it is obvious that Bob will learn the correct value of f(x, y)
for all y such that f(x, y) is defined. Hence the protocol is deterministic and correct. The
remaining question is how many times Alice has to send a message to Bob. We will show
that this happens at most O(QA→B,∗(f)/

√
ǫ) times, which establishes our theorem.

The main claim that remains to be shown is the following.

Claim 3.2. S(ρ||σi) ≥ S(ρ||σi+1) + a/2 if a ≥ 10
√
ǫ.

This establishes the upper bound on the number of messages, because the relative entropy,
which starts at 2q is decreased by a/2 ≥ 5

√
ǫ for each message. After at most 2q/(5

√
ǫ)

iterations the protocol has either ended (in which case Bob might never learn ρ, but will still
know all measurement results), or we have

S(ρ||σT ) ≤ 5
√
ǫ.

To see this assume we are still in the situation of the claim. The claim states that the
relative entropy can be reduced by a/2 as long as a ≥ 10

√
ǫ. So the process stops (assuming

we don’t run out of suitable y′s) no earlier than when S(ρ||σi) < a/2 ≤ 5
√
ǫ.
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But then by the quantum Pinsker inequality we have that at the final time T : ||ρ−σT ||t ≤
√

10 ln 2
√
ǫ < 0.1 in the end, and hence for all measurements their results are close. Hence

no more than O(q/
√
ǫ) = O(q) messages have to be sent.

We now finish the proof by showing the claim.
Define another state

σ̃i =

(

A 0
0 D

)

,

i.e., the state σi with its upper right and lower left quadrants deleted. It is easy to see
that this is still a density matrix. Indeed σ̃i is the state σi after measuring Py, I − Py. Also
define ρ̃ to be the matrix ρ with its upper left and lower right quadrants replaced by 0, which
is again a density matrix resulting from measuring ρ. If

ρ =

(

E F
G H

)

then ρ̃ =

(

E 0
0 H

)

.

By Uhlmann monotonicity we have S(ρ||σi) ≥ S(ρ̃||σ̃i), and it suffices to show that
S(ρ̃||σ̃i) ≥ S(ρ||σi+1) + a/2. Note that both σ̃i and σi+1 are diagonal in the basis Bi.
Furthermore S(ρ||σi+1) = S(ρ̃||σi+1) + S(ρ̃)− S(ρ).

We first bound the term S(ρ̃)− S(ρ). In the basis Bi we may view ρ as a bipartite state
ρRQ consisting of a qubit R (corresponding to membership in Vy) and the remaining qubits
Q. In ρ̃ the qubit R has been measured. Consider attaching another qubit T , and instead of
measuring R applying the unitary that “copies” R to T . After the unitary S(ρ) = S(ρQRT ) ≥
S(ρQR)−S(ρT ) = S(ρ̃)−S(ρT ), due to the Araki-Lieb inequality and because ρQR = ρ̃. But
S(ρT ) = H(ǫy) and hence S(ρ̃)− S(ρ) ≤ H(ǫy).

We need to compare Tr(ρ̃ log σ̃i) and Tr(ρ̃ log σi+1). Note that σ̃i and σi+1 are both
diagonal.

Tr(ρ̃ log σ̃i)

=
∑

j

ρ̃(j, j) log(σ̃i(j, j))

=
∑

j≤d/2

ρ̃(j, j) log(σi+1(j, j) ·
1− a

1− ǫy
)

+
∑

j>d/2

ρ̃(j, j) log(σi+1(j, j) ·
a

ǫy
)

=
∑

j

ρ̃(j, j) log(σi+1(j, j)) + (1− ǫy) · log
1− a

1− ǫy
+ ǫy · log

a

ǫy

= Tr(ρ̃ log σi+1) +H(ǫy)−H(ǫy, a),

where H(u, v) = −u log v − (1− u) log(1− v).
Assuming that a ≥ 10

√
ǫ and ǫy ≤ ǫ = 10−6 we can estimate

H(ǫy, a) ≥ a. (1)

If a > 1/2 then (1) is true from the first term (1 − ǫy) log(1/(1 − a)) ≥ a. Otherwise for all
a ∈ [0, 1] we have − log(1− a) ≤ a, hence the first term in H(ǫy, a) is at least (1− ǫy)a. And
for the second term ǫy log(1/a) ≥ ǫy log(2) ≥ ǫy, so (1) is always true.
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Also note that H(ǫy) ≤ H(ǫ) ≤ ǫ log(ǫ−1) ≤ √
ǫ ≤ a/10.

But then

S(ρ||σi)
≥ S(ρ̃||σ̃i)
= −S(ρ̃)− Tr(ρ̃ log σ̃i)

≥ −S(ρ)−H(ǫ)− Tr(ρ̃ log σ̃i)

≥ −S(ρ)−H(ǫ)− Tr(ρ̃ log σi+1) + a−H(ǫ)

= −S(ρ)− Tr(ρ log σi+1) + a− 2H(ǫ)

≥ S(ρ||σi+1) + a/2.

4 Quantum versus Classical Proofs

Let us first define the problem for which we prove our separation result.

Definition 4. The function MajIx(x, I), where I = {i1, . . . , i√n}, each ij ∈ {1, . . . , n}, and
x ∈ {0, 1}n is defined as follows:

1. if |{j : xij = 1}| = √
n then MajIx(x, I) = 1,

2. if |{j : xij = 1}| ≤ 0.9
√
n then MajIx(x, I) = 0,

3. otherwise MajIx(x, I) is undefined.

The function has been studied in [Kla11], where it is shown that one-way MA protocols
for the problem need communication Ω(

√
n). Our main technical result here is to extend this

to one-way QCMA protocols.
It is obvious on the other hand, that there is a cheap protocol when Bob can send a

message to Alice.

Lemma 4.1. RB→A(MajIx) = O(log n).

Raz and Shpilka [RS04] show that any problem with QMA(f) = c (i.e., QMA protocol
where Alice and Bob can interact over many rounds) has a QMA protocol of cost poly(c) in
which Merlin sends a message to Alice, who sends a message to Bob. By inspection of their
proof the polynomial overhead can be removed in the case of constant rounds of interaction
between Alice and Bob.

Lemma 4.2. If QMA(f) = c and this cost can be achieved by a protocol with O(1) rounds,
then QMAA→B(f) = O(c).

We give more details in Appendix A. The lemma immediately implies the following.

Theorem 4.3. QMAA→B(MajIx) = O(log n).

We give a self-contained proof of this fact in Appendix B. Our protocol has completeness
1, hence even the one-sided error version of QMAA→B is separated from QCMAA→B by the
following lower bound.
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Theorem 4.4. QCMAA→B,∗(MajIx) ≥ Ω(
√
n/ log n).

Hence we can conclude the following.

Corollary 4.5. There is a partial Boolean function f such that QMAA→B(f) = O(log n),
while QCMAA→B,∗(f) = Ω(

√
n/ log n).

Proof. Fix any QCMA protocol P for MajIx. Furthermore define a distribution on inputs
as follows. Fix any error correcting code C ⊆ {0, 1}n with distance n/4 (i.e., every two
codewords have Hamming distance at least n/4). Such codes of size 2Ω(n) exist by the
Gilbert-Varshamov bound. We do not care about the complexity of decoding and encoding
for our code. Furthermore we require the code to be balanced, i.e., that any codeword has
exactly n/2 ones. This can also be achieved within the stated size bound. For our distribution
on inputs first choose x ∈ C uniformly, and then uniformly choose I among all subsets of
{1, . . . , n} of size

√
n. Note that the probability of 1-inputs under the distribution µ just

defined is between 2−
√
n and 2−

√
n−1 due to the balance condition on the code.

If the cost (i.e., communication from Merlin plus communication from Alice) of P is c,
then there are at most 2c different classical proofs sent by Merlin. We identify such proofs p
with the set of 1-inputs that are accepted by the protocol with probability at least 2/3 when
using the proof p. Hence there must be a proof P containing 1-inputs of measure at least
2−

√
n−c−1, because for every 1-input there is a proof with which it is accepted with probability

2/3 or more. Furthermore, given P , no 0-input is accepted with probability larger than 1/3.
Note that inputs outside of the promise, or 1-inputs outside of P can be accepted with any
probability between 0 and 1. Denote by fP the partial function {0, 1}n×{0, 1}m → {0, 1,⊥},
in which all inputs in P are accepted, and all 0-inputs of f are rejected, and the remaining
inputs have undefined function value (⊥). m = Θ(

√
n log n) is the length of Bob’s input.

Denote by M =
( n√

n

)

the number of Bob’s inputs.
Obviously fP can be computed by a one-way quantum protocol without prover using

communication c (and possibly using shared entanglement between Alice and Bob). Now
due to Theorem 3.1 this implies that DA→B(fP ) ≤ O(c ·m). We will argue that on the other
hand DA→B(fP ) ≥ Ω(n), and hence c ≥ Ω(n/m) = Ω(

√
n/ log n), which is our theorem.

Denote by A the communication matrix of fP . A row of A is fat, if it contains more than
M2−

√
n−2c 1-inputs (to fP ). Note that there can be no fewer than |C|2−c−2 fat rows, because

there are at least |C|M2−
√
n−c−1 1-inputs in P , the non-fat rows contain together at most

|C|M2−
√
n−2c 1-inputs and each fat row at most M2−

√
n 1-inputs. Let C ′ denote the row set

consisting of the fat rows only, and A′ the matrix A restricted to those rows. We claim that
A′ has C ′ distinct rows. Recall that for distinct rows there is a column, where one row has a
1 entry and the other a 0 entry. This means that DA→B(fP ) ≥ logC ′ ≥ log |C|−c−2 ≥ Ω(n)
(unless c = Ω(n) already).

To show that all pairs of rows in A′ are distinct consider two of them, named x, y. We
identify the row labeled by x with the set for which x is the characteristic vector. Recall x, y
are both codewords and are both fat. x ∩ y ≤ n(1/2 − 1/8) because x and y have Hamming
distance at least n/4. Let S ⊆ I be the set of I such that (x, I) ∈ P . Then for all I ∈ S we
have that all of the i ∈ I must satisfy xi = 1.

Furthermore let T ⊆ S be the set I ∈ S, such that |I ∩ x ∩ y| ≥ 0.9
√
n. Then

|T | ≤
√
n ·

( 3n
8

0.9
√
n

)

·
( n

8

0.1
√
n

)

≤ 2−α
√
n ·

( n
2√
n

)

,
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for some constant α > 0. Note that the binomial coefficient on the right hand side is the
number of I ∈ I such that (x, I) is a 1-input. Hence

µ(({x} × T ) ∩ P )
∑

I∈I:MajIx(x,I)=1 µ(x, I)
≤ 2−α

√
n,

i.e., a small fraction of 1-inputs (x, I) in P on row x have I ∈ T , but x is fat and has more
1-inputs. We can assume that c < α

√
n/10 and hence 2−2c ≥ 2 · 2−α

√
n, so that the set T

contributes little to the set of I ∈ I with (x, I) ∈ P . In particular there must be at least one
I 6∈ T such that (x, I) is in P , and hence fP (x, I) = 1.

So let us examine the set of all I ∈ S − T (so |I ∩ x ∩ y| < 0.9
√
n). |I ∩ x| = √

n and
hence |y ∩ I| ≤ .9

√
n, i.e., (y, I) is a 0-input. This gives us the desired column I, such that

fP (x, I) = 1 and fP (y, I) = 0, i.e., x, y are two distinct rows in A′.

5 Open Problems

• Aaronson [Aar07] argues that the bound in Theorem 3.1 is tight to within polyloga-
rithmic factors for partial functions. However, a longstanding conjecture is that for all
total Boolean functions f we have RA→B(f) = O(QA→B(f)), or something weaker, i.e.,
that for total Boolean functions we can remove the factor m completely (possibly at the
expense of increasing the dependence on QA→B(f) polynomially). An easier problem
might be to replace m by something smaller like

√
m for total functions.

• For many ”nondeterministic” modes of communication complexity one-way communi-
cation is as good as two-way communication, for instance for nondeterministic, QMA,
AM-complexity. We have proved that this is not the case for QCMA protocols (and this
was known previously for MA-protocols [Kla11]). Is there a proper round-hierarchy for
QCMA or MA protocols, i.e, is it true that there is a function that can be computed
efficiently in k rounds but not in k − 1 rounds?

• MA-communication complexity has recently been applied to the analysis of cloud-
computing on data-streams and related topics [CCM+13, CCM09]. Currently we don’t
have lower bounds larger than

√
n for MA-communication complexity of explicit func-

tions, while counting arguments show that most functions have complexity Ω(n). This
gap is quite significant in practice. Can larger bounds be shown for an explicit function,
at least in the one-way model, or the even more restricted online one-way model?

• Lower bounds for the AM-communication complexity of any explicit function remain
elusive.

• It would be interesting to separate QCMA- and QMA- communication complexity in
the general two-way communication model. Such a separation could be used in the
algebrization framework [AW09] to argue that showing QCMA=QMA (in the Turing
machine world) would require nonalgebrizing techniques, and might also be thought of
as evidence that these classes are not equal after all.
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• A similar problem, and maybe less ambitious, is to show that the QCMA- and QMA-
query complexities of a Boolean problem are very different. However, while for commu-
nication complexity we have a good candidate for such a separation (the QMA-complete
problem), we are not aware of a good candidate for the query complexity setting. Is
there a complete (promise) problem for QMA-query complexity?
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A Proof Idea of Lemma 4.2

The proof of Raz and Shpilka in [RS04] proceeds by showing that a problem LSD is complete
for QMA communication complexity. It is easy to see that LSD can be computed by a QMA
one-way protocol with logarithmic communication. The main difficulty is showing that any
problem f with QMA(f) = C can be reduced to an instance of LSD of size 2poly(C). Here
we will argue that if the QMA complexity of f is C for protocols that have only O(1) rounds
between Alice and Bob, then the constructed LSD instance has size 2O(C) only, and hence
we get that QMAA→B(f) = O(C).
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For the problem LSD (linear space distance), Alice and Bob each receive a subspace of
R
n of dimension n/4. The distance between two subspaces V,W is the minimum over all

pairs of unit vectors from V and W of the euclidean distance between the vectors. For LSD
the promise is that the spaces given to Alice and Bob are either very close (distance at most
0.1

√
2) or very far (distance at least 0.9

√
2). The 1-inputs of LSD are the pairs of spaces

that are close. Note that there is a QMA one-way protocol for this problem of logarithmic
cost: Merlin sends Alice a vector that is close to both subspaces as a quantum state, Alice
measures the state with the observable consisting of her subspace and its complement, and
if the state projects into her subspace she sends the projected state to Bob (otherwise she
rejects), who measures with his observable. If both measurements succeed, they accept.

The main lemma in the reduction of [RS04] is the following (their Lemma 19):

Lemma A.1. If f has a QMA protocol with proof length p, communication c, and r rounds
and error 1/r4, then f can be reduced (by local operation by Alice and Bob) to an instance

of LSD where the underlying space is R
(r+1)22(c+p)

, and the distance between the two spaces
is at least 1/r1.5 in the case of 0-inputs, and at most

√
2/r2.5 in the case of 1-inputs.

This lemma is then combined with standard boosting ideas to improve the gap in the
distance, but for us the fact that amplifying the success probability by parallel repetition
in a QMA one-way protocol is possible suffices. Furthermore, in the case of r = O(1), the
LSD instance provided by the above lemma already has a constant gap and the correct size
of 2O(c+p). Reducing a function f to the LSD instance, and then running O(1) times the
protocol for LSD in parallel suffices to get a one-way QMA-protocol for f .

B Proof of Theorem 4.3

We describe a protocol with constant gap, which can be amplified to have the usual soundness
using standard techniques.

Alice holds a string x ∈ {0, 1}n, Bob a set I of
√
n distinct indices. Alice receives a proof

from Merlin, which is supposed to be the uniform superposition
∑

i∈I |i〉. Alice attaches one
more qubit, applies the unitary that maps |i〉|a〉 to |i〉|xi⊕a〉, then measures that extra qubit.
If the result is 0 she rejects. Otherwise she discards the extra qubit and sends the remaining
state to Bob. Bob measures this state with the observable that consists of the subspace
spanned by the vector with 1 in all positions i ∈ I and 0 elsewhere, and its orthogonal
complement. He accepts, if this measurement projects onto the first subspace. Note that the
communication is log n qubits from both Merlin and Alice.

If Merlin is honest (and xi = 1 for all i ∈ I), he sends the uniform superposition
∑

i∈I |i〉.
Alice’s measurement will not change this state (she effectively projects into the space spanned
by the |i〉 with xi = 1). Bob’s measurement will accept with certainty. Hence the protocol
has completeness 1.

Now assume that at most 0.9
√
n of the i ∈ I satisfy that xi = 1. We may assume that

Merlin’s message is a pure state of the correct dimension. For each mixed state there is a pure
state that will perform at least as well, and states with the wrong dimension will be rejected
immediately. Again, unless Alice rejects, her measurement projects into the space spanned by
|i〉 for which xi = 1. Denote this state by |ψ〉 = ∑

i:xi=1 αi|i〉. Bob measures the observable

consisting of span(|φI〉), where |φI〉 =
∑

i∈I |i〉/n1/4, and its orthogonal complement. The
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probability of the measurement accepting is the squared inner product of |φI〉 and |ψ〉. This
value is (

∑

i∈I:xi=1 αi/n
1/4)2 ≤ (1/

√
n)(0.9

√
n)(

∑ |αi|2) ≤ 0.9. Hence the protocol has
soundness error 0.9, which can be improved by parallel repetition.
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