
Deterministic Parameterized Algorithms for the Graph
Motif ProblemI

Ron Y. Pinter, Hadas Shachnai, Meirav Zehavi∗

Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000,
Israel

Abstract

We study the classic Graph Motif problem: given a graph G = (V,E) with
a set of colors for each node, and a multiset M of colors, we seek a subtree
T ⊆ G, and a coloring of the nodes in T , such that T carries exactly (also with
respect to multiplicity) the colors in M . Graph Motif plays a central role in
the study of pattern matching problems, primarily motivated from the analysis
of complex biological networks.

Previous algorithms for Graph Motif and its variants either rely on tech-
niques for developing randomized algorithms that, if derandomized, render them
inefficient, or the algebraic narrow sieves technique for which there is no known
derandomization. In this paper, we present fast deterministic parameterized
algorithms for Graph Motif and its variants. Specifically, we give such an
algorithm for the more general Graph Motif with Deletions problem, fol-
lowed by faster algorithms for Graph Motif and other well-studied special
cases. Our algorithms make non-trivial use of representative families, and a
novel tool that we call guiding trees, together enabling the efficient construction
of the output tree.

Keywords: parameterized algorithm, graph motif, representative family,
guiding tree

1. Introduction

With the advent of network biology and complex network analysis in gen-
eral, the study of pattern matching problems in graphs has become of major
importance [1, 2]. Indeed, the term “graph motif” plays a central role in this
context, with different node colors used to model different functionalities of the

IA preliminary version of this paper appeared in the proceedings of the 39th International
Symposium on Mathematical Foundations of Computer Science (MFCS’14).

Abbreviations: Graph Motif (GM), Restricted GM (RGM).
∗Corresponding author. Phone: 972-4-8295530.
Email addresses: pinter@cs.technion.ac.il (Ron Y. Pinter),

hadas@cs.technion.ac.il (Hadas Shachnai), meizeh@cs.technion.ac.il (Meirav Zehavi)

July 30, 2014

C = { , } M = { , , , }

G

a b c d

k = 3

Solutions

a b d b c d

A

B

Figure 1: An input for GMD (A), and two possible solutions (B).

network (see, e.g., [3, 4]). Due to the generic nature of the Graph Motif
(GM) problem (also known as the Topology-Free Network Query prob-
lem), the so called motif analysis approach has become useful also in the study
of social networks (see, e.g., [5] and the references therein).

The GM problem is a natural variant of classic pattern matching problems,
where the topology of the pattern M is unknown or of lesser importance. Given
a graph G = (V,E) with a set of colors for each node, and a multiset M of
colors, we seek a subtree T ⊆ G, and a coloring of the nodes in T , such that T
carries exactly (also with respect to multiplicity) the colors in M . We call T an
occurrence ofM inG. To allow more flexibility in the definition of an occurrence,
and since biological network data often contains noise, a generalized version of
GM allows deleting colors from M .

Parameterized algorithms solve NP-hard problems by confining the combina-
torial explosion to a parameter k. More precisely, a problem is fixed-parameter
tractable (FPT) with respect to a parameter k if it can be solved in time
O∗(f(k)) for some function f , where O∗ hides factors polynomial in the in-
put size. Since GM is NP-complete [3], there is a growing body of literature
studying its parameterized complexity (see the comprehensive survey in [6]). In
this paper, we present fast deterministic parameterized algorithms for GM and
its variants.

1.1. Problem Statement

The most general variant considered in this paper is Graph Motif with
Deletions (GMD): the input is a set of colors C, a multiset M of colors
from C, and an undirected graph G = (V,E). The nodes in V are associated
with colors via a (set-)coloring Col : V → 2C . We are also given a parameter
k ≤ |M |.

We need to decide if there exists a subtree T = (VT , ET) of G on k nodes,1

and a coloring col : VT → C that assigns a color from Col(v) to each node
v ∈ VT , such that

1In an alternative definition for GMD, one seeks a connected subgraph S of G. This is
equivalent to our definition (simply consider some spanning tree T of S).

2

∀c ∈ C : |{v ∈ VT : col(v) = c}| ≤ occ(c), (1)

where occ(c) is the number of occurrences of a color c in M (see Fig. 1).

Special Cases: Restricted GMD (RGMD) is the special case of GMD

where for any node v ∈ V , |Col(v)| = 1. Also, GM and RGM are the special
cases of GMD and RGMD, respectively, where deletions are not allowed (i.e.,
the inequality in (1) is replaced by equality, and k = |M |).

1.2. Known Results and Our Contribution

GMD has received considerable attention since it was introduced by Lacroix
et al. [3]. The paper [3] also shows that RGM is NP-hard when M is a set and G
is a tree. Even seemingly simpler cases of RGM are known to be NP-hard (see
[7, 8, 9]). Moreover, a natural optimization version of RGMD, minimizing the

number of deletions from M , is hard to approximate within factor |V | 13−ε [10].
On the positive side, using techniques for developing randomized parame-

terized algorithms, many such algorithms have been obtained for GMD and its
variants [11, 12, 13, 4, 14, 15, 16, 17, 18, 19]. Some of these algorithms can
be derandomized, resulting, however, in inefficient algorithms. In particular,
Fellows et al. [15] gave a deterministic algorithm for RGM that runs in time
O∗(87k), based on a derandomization of the color coding technique [20]. Cur-
rently, the best randomized algorithm for GMD, due to Björklund et al. [13],
runs in time O∗(2k). This algorithm is based on the narrow sieves technique
[21], for which there is no known derandomization. Thus, previous studies left
open the existence of a fast deterministic parameterized algorithm for GMD.

In this paper, we present fast deterministic parameterized algorithms for
GMD and its variants. In particular, we develop an O∗(6.86k) time algorithm
for GMD, an O∗(5.22k) time algorithm for GM, and an O∗(5.18k) time algo-
rithm for RGMD.

1.3. Techniques

Our algorithms make non-trivial use of representative families, and a novel
tool that we call guiding trees, together enabling the efficient construction of
the output tree. Informally, a guiding tree is a constant-size rooted tree which
provides some structural information about the solution tree. To efficiently
compute a family S of partial solutions, we first construct a polynomial number
of suitable guiding trees. We then use these trees to generate S, by combining
previously computed families of partial solutions. Thus, we avoid iterating over
all O∗(2k) possible topologies for the solution tree.

The efficiency of our algorithms is further improved via replacement of each
family of partial solutions, S, by a subfamily Ŝ ⊆ S, which represents S. Each
representative family Ŝ contains enough sets from S; thus, we preserve the
correctness of the algorithm while improving its running time.

Building on the powerful technique of Fomin et al. [22], for efficient con-
struction of representative families, we tailor the definitions of these families to

3

the problem at hand. This also leads to replacing uniform matroids (often used
for fast computation of representative families) by partition matroids, which
capture more closely the restricted variants of GM.

2. Preliminaries

Given a graph H, let VH and EH denote its node-set and edge-set, respec-
tively.

Matroids: In deriving our results, we use two types of matroids.2 Given a
constant k, the first is defined by a pair M = (E, I), where E is an n-element
set, and I = {S ⊆ E : |S| ≤ k}. Such a pair is called a uniform matroid,
denoted by Un,k.

Given some constants ` and k1, k2, . . . , k`, the second is defined by a pair
(E, I), where E is an n-element set partitioned into disjoint sets E1, E2, . . . , E`,
and I = {S ⊆ E : |S ∩ E1| ≤ k1, |S ∩ E2| ≤ k2, . . . , |S ∩ E`| ≤ k`}. Such a pair
is called a partition matroid. Note that, when ` = 1, the definitions for the two
types of matroids coincide.

Representative Families: Given a family S of sets that are partial solutions,
we would like to replace S by a smaller subfamily Ŝ ⊆ S. If there is a partial
solution in S that can be extended to a solution, it is clearly necessary that
there would also be a partial solution in Ŝ that can be extended to a solution.
The following definition captures such a family Ŝ.

Definition 1. Given a matroid M = (E, I), and a family S of subsets of size

p of E, we say that a subfamily Ŝ ⊆ S q-represents S if for every pair of sets
X ∈ S, and Y ⊆ E \X such that |Y | ≤ q and X ∪ Y ∈ I, there is a set X̂ ∈ Ŝ
disjoint from Y such that X̂ ∪ Y ∈ I.

The next two results enable the efficient construction of small representative
families.

Theorem 1 ([22, 24]). Given a parameter c ≥ 1, a uniform matroid Un,k =

(E, I), and a family S of subsets of size p of E, a family Ŝ ⊆ S of size at

most
(ck)k

pp(ck − p)k−p
2o(k) log n that (k − p)-represents S can be found in time

O(|S|(ck/(ck − p))k−p2o(k) log n).

Theorem 2 ([22, 25]). Given constants `, k1, k2, . . . , k` and k ≤
∑̀
i=1

ki, a cor-

responding partition matroid M = (E, I), and a family S of subsets of size p

of E, a family Ŝ ⊆ S of size at most
(
k
p

)
nO(1) that (k − p)-represents S can be

found in time O(|S|
(
k
p

)w̃−1
nO(1)), where w̃ < 2.3727 is the matrix multiplication

exponent [26].

2For a broader overview of matroids, see, e.g., [23].

4

 v v v

u

u u

r r r

s

s s

t t

t

a

b c

e f

g

h

i

j

l

a

b c

e f

g

h

i

j

l

q

x

y z

G T R

Figure 2: A (v, u)-tree T , and a (v, u)-guide R, where d = 3, k = 12, and T listens to R.

Let UniRep(c, Un,k,S) and ParRep(k,M,S) be the algorithms implied by
Theorems 1 and 2, respectively.

Guiding Trees: Recall thatG = (V,E) is the input graph, and let 2 ≤ d ≤ k/2
be a constant (to be determined).3 Given a rooted tree T and a node v ∈ VT
that is not the root of T , let fT (v) be the father of v in T . Given nodes v, u ∈ V ,
we say that a tree T rooted at v is a (v, u)-tree if u ∈ VT . Furthermore, a (v, u)-
tree R is a (v, u)-guide if 3 ≤ |VR| ≤ 2d and VR ⊆ V (ER may not be contained
in E). Let Gv,u be the set of (v, u)-guides. Finally, let Tv,u,` be the set of
(v, u)-trees on ` nodes, that, when unrooted, are subtrees of G.

We now define which subtrees of G listen to the instructions of a given guide
(see Fig. 2).

Definition 2. Given v, u ∈ V and ` ≤ k, we say that T ∈ Tv,u,` listens to
R ∈ Gv,u if the following two conditions are satisfied.

1. ∀v′, u′ ∈ VR : v′ is an ancestor of u′ in R iff v′ is an ancestor of u′ in T .
2. For each tree X in the forest obtained by removing VR from T , let NX =
{v′ ∈ VR : {v′, u′} ∈ ET for some u′ ∈ VX}.
Then, |NX | ≤ 2, and [NX 6= {v} → (|VX ∪NX | ≤ k/d)].

The next lemma, which asserts that none of the subtrees of G relevant to
solving GMD is completely undisciplined, is implicit in [22].

Lemma 3. For any rooted tree T ∈ Tv,u,`, where v, u ∈ V and 3 ≤ ` ≤ k, there
exists R ∈ Gv,u to whom T listens.

Informally, given a tree T , the proof of Lemma 5.7 in [22] implies how to
find a certain set of O(1) vertices in VT that, when removed, partitions T into a
forest of “small” trees (only). Considering this proof along with our definitions,
it is straightforward to see that Lemma 3 holds.

Feasible Colorings: Given U ⊆ V , we say that a coloring col : U → C is
feasible if [∀v ∈ U : col(v) ∈ Col(v)] and [∀c ∈ C : |{v ∈ U : col(v) = c}| ≤
occ(c)]. Denote by ima(col) the image of col.

3See Section 3.3.

5

3. An Algorithm for GMD

In this section we solve GMD in time O∗(6.86k). Since in GMD each node is
assigned a set of colors whose size can be greater than 1, we may assume w.l.o.g
that M is a set equal to C (a formal proof is given, e.g., in [19]).

The main idea of the algorithm is to iterate over all pairs of nodes v, u ∈ V ,
and all values 1 ≤ ` ≤ k. When we reach such v, u and `, we have already
computed, for all v′, u′ ∈ V and 1 ≤ `′ < `, representative families for families
of corresponding “partial solutions”. Each such partial solution is a union of
a set A containing exactly `′ nodes, and a set B containing exactly `′ colors.
The sets A and B correspond to a pair of a rooted tree T ∈ Tv′,u′,`′ satisfying
A = VT , and a feasible coloring col : A→ B.

To compute a family of partial solutions corresponding to v, u and `, we
iterate over all (v, u)-guides in Gv,u. We follow the instructions of the current
guide R by using another, internal dynamic programming-based computation.
At each stage of this computation, we have a family of partial solutions lis-
tening to a certain subtree of R. We unite these partial solutions with other
small partial solutions, according to the instructions of R, thus efficiently con-
structing a family of partial solutions listening to a greater subtree of R. For
this family, we compute a smaller representative family, so that the following
stage can be executed efficiently. After iterating over all relevant guides, we
find a family representing the union of the families returned by the internal
dynamic programming-based computations. This family includes enough, but
not too many, partial solutions corresponding to v, u and `, which ensures the
correctness of the algorithm.

3.1. The Algorithm

We now describe GMD-Alg, our algorithm for GMD (see the pseudocode
below). GMD-Alg first generates a matrix M, where each entry [v, u, cv, cu, `]
holds a family that represents Solv,u,cv,cu,`, the family of every set (X ∪ Y)
satisfying |X| = |Y | = `, for which there exist T ∈ Tv,u,` such that X = VT ,
and a feasible col : X → Y satisfying col(v) = cv and col(u) = cu.

Then, in Steps 2–4, GMD-Alg computes all “basic” entries of M, i.e., entries
of the form [v, u, cv, cu, `], where ` ≤ 2. Next, in Step 5, GMD-Alg iterates over
all values v, u, cv, cu and ` that define an entry of M that is not basic, in an
order that guarantees that when we reach an entry [$] of M, we have already
computed entries of M that are relevant to [$]. Now, consider a specific iteration
of Step 5, and note that the goal of this iteration is to compute M[v, u, cv, cu, `].

GMD-Alg, in Step 6, generates a matrix N. Each entry [R, colR] holds a family
that represents a subfamily of Solv,u,cv,cu,`. A set (X∪Y) ∈ Solv,u,cv,cu,` belongs
to this subfamily if its corresponding (v, u)-tree T ∈ Tv,u,` and feasible coloring
col also satisfy the requirements that T listens to R, and col colors the nodes
in VR exactly as colR colors them. Now, consider a specific iteration of Step
7, and note that the goal of this iteration is to compute N[R, colR]. To this
end, GMD-Alg performs an internal dynamic programming-based computation,
which takes place in Steps 9–14.

6

Algorithm 1: GMD-Alg(C,G = (V,E), Col, k)

1: let M be a matrix that has an entry [v, u, cv, cu, `] for all v, u ∈ V , cv ∈
Col(v), cu ∈ Col(u), and 1 ≤ ` ≤ k, initialized to ∅.

2: M[v, v, c, c, 1]⇐ {{v, c}} for all v ∈ V and c ∈ Col(v).
3: M[v, v, c, c, 2]⇐ {{v, u, c, c′} : {v, u} ∈ E, c′ ∈ Col(u) \ {c}} for all v ∈ V

and c ∈ Col(v).
4: M[v, u, c, c′, 2]⇐ {{v, u, c, c′}} for all {v, u} ∈ E, c ∈ Col(v) and c′ ∈
Col(u) \ {c}.

5: for all ` = 3, . . . , k, v, u ∈ V , cv ∈ Col(v), and cu ∈ Col(u) do
6: let N be a matrix that has an entry [R, colR] for all R ∈ Gv,u, and feasible

colR : VR → C satisfying colR(v) = cv and colR(u) = cu, initialized to ∅.
7: for all [R, colR] ∈ N do
8: let w1, . . . , w|VR| be a preorder on VR, where w1 = v.
9: let L be a matrix that has an entry [i, `′] for all 1 ≤ i ≤ |VR| and

1 ≤ `′ ≤ `, initialized to ∅.
10: L[1, `′]⇐ M[v, v, cv, cv, `

′] for all 1 ≤ `′ < `.
11: for i = 2, . . . , |VR|, and `′ = 2, . . . , ` do
12: let A include all sets (U ∪W) for which there is 2 ≤ `′′ ≤ min{`′,

`− 1, k/d} satisfying (1) or (2):

(1) U ∩W = {fR(wi), colR(fR(wi))},
U ∈ M[fR(wi), wi, colR(fR(wi)), colR(wi), `

′′], and
W ∈ L[i− 1, `′ − `′′ + 1].

(2) U ∩W = {wi, colR(wi)},
U ∈ M[wi, wi, colR(wi), colR(wi), `

′′], and
W ∈ L[i, `′ − `′′ + 1].

13: L[i, `′]⇐ UniRep(1.447, U(|V |+|C|),2k,A).
14: end for
15: N[R, colR]⇐ L[|VR|, `].
16: end for
17: M[v, u, cv, cu, `]⇐ UniRep(1.447, U(|V |+|C|),2k,

⋃
[R,colR]∈N N[R, colR]).

18: end for
19: accept iff (

⋃
v∈V,cv∈Col(v) M[v, v, cv, cv, k]) 6= ∅.

7

First, in Step 9, GMD-Alg generates a matrix L. Almost every entry [i, `′]
holds a family that represents Soli,`′ ,

4 the family including every set (X ∪ Y)
satisfying |X| = |Y | = `′, for which there exist a (v, wi)-tree T ∈ Tv,wi,`′ and a
feasible coloring col : X → Y , satisfying the following conditions. The subtree
T listens to the subtree of R induced by {w1, . . . , wi}, X = VT , and col colors
the nodes in {w1, . . . , wi} exactly as colR colors them. Note that the subgraph
of R induced by {w1, . . . , wi} is a tree because of the preorder defined in Step
8. Then, in Step 10, GMD-Alg computes all “basic” entries of L, i.e., entries of
the form [1, `′]. Next, in Step 11, GMD-Alg iterates over all values i and `′ that
define an entry of L that is not basic, in an order that guarantees that when we
reach an entry [$] of L, we have already computed entries of L that are relevant
to [$]. Now, consider a specific iteration of Step 11, and note that the goal of
this iteration is to compute L[i, `′].

GMD-Alg, in Step 12, computes a family A that represents Soli,`′ . The
computation involves uniting sets U , found in previous stages of the external
dynamic programming-based computation (i.e., U belongs to an entry of M),
with sets W , found in previous stages of the internal dynamic programming-
based computation (i.e., W belongs to an entry of L). It is easy to verify that the
restrictions posed on the choices of U and W guarantee that their union indeed
belongs to Soli,`′ , noting the following observations. The restriction `′′ ≤ k/d
concerns Condition 2 in Definition 2, whose relevance follows from the require-
ment of existence of a (v, wi)-tree T as defined above. The first line in each of the
options (1) and (2) ensures that we do not use any node or color more than once.
The other line of option (1) ensure that U ∈ SolfR(wi),wi,colR(fR(wi)),colR(wi),`′′

and W ∈ Soli−1,`′−`′′+1, and the other line of option (2) ensures that U ∈
Solwi,wi,colR(wi),colR(wi),`′′ and W ∈ Soli,`′−`′′+1.

After computing A, GMD-Alg computes L[i, `′] (in Step 13) by finding a
smaller family that represents A. Upon completing the computation of L, since
VR = {w1, . . . , w|VR|}, GMD-Alg can compute N[R, colR] (in Step 15) by a sim-
ple assignment. Then, the union of the families stored in N is a family that
represents Solv,u,cv,cu,`, a claim supported by Lemma 3. Therefore, in Step 19,
GMD-Alg can compute M[v, u, cv, cu, `] by simply finding a family that represents
this union.

Finally, GMD-Alg accepts iff
⋃
v∈V,cv∈Col(v) M[v, v, cv, cv, k] 6= ∅. Indeed,

note that the input is a yes-instance iff
⋃
v∈V,cv∈Col(v) Solv,v,cv,cv,k 6= ∅.

3.2. Correctness

Recall that Solv,u,cv,cu,` is the family of every set (X ∪ Y) satisfying |X| =
|Y | = `, for which there exist T ∈ Tv,u,` such that X = VT , and a feasible
col : X → Y satisfying col(v) = cv and col(u) = cu.

The correctness of the algorithm follows directly from the next lemma.

Lemma 4. Every entry M[v, u, cv, cu, `] (2k − 2`)-represents Solv,u,cv,cu,`.

4More precisely, here we refer to all entries [i, `′] such that (`′ = ` → i = |VR|).

8

Proof. By Steps 1–4, the lemma holds for any entry [v, u, cv, cu, `] in M such
that ` ≤ 2. Now, consider some v, u ∈ V , cv ∈ Col(v), cu ∈ Col(u) and
3 ≤ ` ≤ k, and assume that the lemma holds for all v′, u′ ∈ V , c′v ∈ Col(v′),
c′u ∈ Col(u′) and 1 ≤ `′ < `.

For an entry N[R, colR], let Sol(R, colR)v,u,cv,cu,` include every set (X∪Y) ∈
Solv,u,cv,cu,` whose corresponding (v, u)-tree T ∈ Tv,u,` and feasible coloring col
also satisfy the requirements that T listens to R, and col colors the nodes in VR
exactly as colR colors them.

Towards proving the main inductive claim, we need the following claim.

Claim 1. Every entry N[R, colR] (2k − 2`)-represents Sol(R, colR)v,u,cv,cu,`.

We first show that Claim 1 implies the correctness of the main inductive
claim. Since representation is a transitive relation, it is enough to prove that
B =

⋃
[R,colR]∈N N[R, colR] (2k − 2`)-represents Solv,u,cv,cu,`. By Claim 1, B ⊆⋃

[R,colR]∈N Sol(R, colR)v,u,cv,cu,` ⊆ Solv,u,cv,cu,`.
Consider some sets A ∈ Solv,u,cv,cu,`, and B ⊆ (V ∪ C) \A such that |B| ≤

2k−2`. Since A ∈ Solv,u,cv,cu,`, we have that A is of the form (XA∪YA), where
|XA| = |YA| = `, for which there exist T ∈ Tv,u,` such that XA = VT , and a
feasible col : XA → YA satisfying col(v) = cv and col(u) = cu. By Lemma 3,
there exists R ∈ Gv,u such that T listens to R. Let colR be defined as col when
restricted to the domain VR. We get that A ∈ Sol(R, colR)v,u,cv,cu,`. By Claim

1, there is Â ∈ N[R, colR] ⊆ B such that Â∩B = ∅. Thus, B (2k−2`)-represents
Solv,u,cv,cu,`. �

We now turn to prove Claim 1.

Proof (Claim 1). Consider an iteration of Step 7, corresponding to an en-
try N[R, colR]. For an entry L[i, `′], let R(i) be the subtree of R induced by
{w1, . . . , wi}. Moreover, let Soli,`′ be the family including every set (X ∪ Y)
satisfying |X| = |Y | = `′, for which there exist a (v, wi)-tree T ∈ Tv,wi,`′ and a
feasible coloring col : X → Y , satisfying the following conditions. The subtree
T listens to R(i), X = VT , and col colors the nodes in {w1, . . . , wi} exactly as
colR colors them.

Towards proving Claim 1, we need the following claim.

Claim 2. Every entry L[i, `′], where (`′ = ` → i = |VR|), (2k − 2`′)-represents
Soli,`′ .

Since N[R, colR] = L[|VR|, `] and Sol(R, colR)v,u,cv,cu,` = Sol|VR|,`, Claim 2
implies the correctness of Claim 1. �

Finally, we turn to prove Claim 2, concluding the correctness of the algo-
rithm.

Proof (Claim 2). By Steps 9 and 10, and the induction hypothesis concerning
the matrix M, the claim holds for (i = 1 and all 1 ≤ `′ < `) and (all 1 ≤ i ≤ |VR|
and `′ = 1). Now, consider some 2 ≤ i ≤ |VR| and 2 ≤ `′ ≤ `, and assume that

9

the claim holds for all 1 ≤ i′ ≤ i and 1 ≤ `′′ < `′. Since representation is a
transitive relation, it is enough to prove that A (2k − 2`′)-represents Soli,`′ .

By definition, a set A belongs to Soli,`′ iff there are sets U and W whose
union is A, for which there exists 2 ≤ `′′ ≤ min{`′, ` − 1, k/d} satisfying (1)
or (2):

1. U ∩W = {fR(wi), colR(fR(wi))},
U ∈ SolfR(wi),wi,colR(fR(wi)),colR(wi),`′′ and W ∈ Soli−1,`′−`′′+1.

2. U ∩W = {wi, colR(wi)},
U ∈ Solwi,wi,colR(wi),colR(wi),`′′ and W ∈ Soli,`′−`′′+1.

Thus, by Step 12 and the inductive hypotheses for the matrices M and L,
A ⊆ Soli,`′ . Now, consider some A ∈ Soli,`′ , and B ⊆ (V ∪ C) \ A such that
|B| ≤ 2k − 2`′. Since A ∈ Soli,`′ , there are U , W , and `′′ as mentioned above.

First, suppose that U , W , and `′′ correspond to the first option. Note that
|(W \ {fR(wi), colR(fR(wi))}) ∪ B| = |W | − 2 + |B| ≤ 2(`′ − `′′ + 1) − 2 +
(2k − 2`′) = 2k − 2`′′. Therefore, by the inductive hypothesis concerning M,

there is a set Û ∈ M[fR(wi), wi, colR(fR(wi)), colR(wi), `
′′] such that Û ∩ ((W \

{fR(wi), colR(fR(wi))}) ∪ B) = ∅. Moreover, |(Û \ {fR(wi), colR(fR(wi))}) ∪
B| = |Û | − 2 + |B| ≤ (2`′′)− 2 + (2k− 2`′) = 2k− 2(`′ − `′′ + 1). Therefore, by

the inductive hypothesis concerning L, there is a set Ŵ ∈ L[i − 1, `′ − `′′ + 1]

such that Ŵ ∩ ((Û \ {fR(wi), colR(fR(wi))}) ∪B) = ∅.
Now, suppose that U , W , and `′′ correspond to the second option. Note

that |(W \{wi, colR(wi)})∪B| = |W |−2+ |B| ≤ 2(`′−`′′+1)−2+(2k−2`′) =
2k − 2`′′. Therefore, by the inductive hypothesis concerning M, there is a set
Û ∈ M[wi, wi, colR(wi), colR(wi), `

′′] such that Û∩((W\{wi, colR(wi)})∪B) = ∅.
Moreover, |(Û \ {wi, colR(wi)}) ∪B| = |Û | − 2 + |B| ≤ (2`′′)− 2 + (2k − 2`′) =
2k − 2(`′ − `′′ + 1). Therefore, by the inductive hypothesis concerning L, there

is a set Ŵ ∈ L[i, `′ − `′′ + 1] such that Ŵ ∩ ((Û \ {wi, colR(wi)}) ∪B) = ∅. �

3.3. Running Time

Let 0 < ε < 1 be some constant, c = 1.447, and q = 2k. Choose a constant

d ≥ 2 satisfying, for any integer n,

(
cn

n/d

)
= O(2εn) and 1/d ≤ ε.

For any 0 ≤ r∗ ≤ q and call UniRep(c, U|V |+|C|,q,S) executed by GMD-Alg,
where S is a family of subsets of size r∗ of V ∪ C, there exists 0 ≤ r′ ≤
min{r∗, q/d} such that

|S| ≤ 2o(q)|V |O(d)(
(cq)q

(r∗ − r′)r∗−r′(cq − (r∗ − r′))q−(r∗−r′)
)(

(cq)q

r′r
′
(cq − r′)q−r′

).

We get that GMD-Alg runs in time

10

O(2o(q)|V |O(d) q
max
r=0

min{q−r,q/d}
max
r′=0

{
(

(cq)q

rr(cq−r)q−r
)(

(cq)q

r′r
′
(cq−r′)q−r′

)(
cq

cq−(r+r′)
)q−(r+r

′)

}
)

=O(2o(q)|V |O(1) q
max
r=0

min{q−r,q/d}
max
r′=0

{
(

(cq)q

rr(cq−r)q−r
)

(
cq

r′

)
(

cq

cq−(r+q/d)
)q−r
}

)

=O(2o(q)|V |O(1) q
max
r=0

{
(

(cq)q

rr(cq−r)q−r
)

(
cq

q/d

)
(

cq

cq−r−(1/d)q
)q−r
}

)

=O(2εq+o(q)|V |O(1) q
max
r=0

{
(

(cq)q

rr(cq−r)q−r
)(

cq

cq−r−εq
)q−r
}

).

By choosing a small enough ε > 0, the maximum is obtained at r = αq,
where α ∼= 0.55277. Thus, GMD-Alg runs in time O(6.85414k|V |O(1)).

4. An Algorithm for GM

In this section we solve GM in time O∗(5.22k). Again, assume w.l.o.g that
C = M .

The main idea of the algorithm is to compute families of “partial solutions”
that contain only nodes, and handle colors by adding a parameter to the matrices
holding these families. More precisely, given a pair of nodes v, u ∈ V , and a
subset of colors D ⊆ C, we compute families of partial solutions of the following
form. A partial solution is a subset U ⊆ V of |D| nodes, for which there exist a
(v, u)-tree T ∈ Tv,u,|D| satisfying U = VT , and a feasible coloring col : U → D.
Having a family of such partial solutions, we compute a family that represents
it. Such computations of representative families are embedded in a dynamic
programming-based framework, whose progress is governed by guiding trees.
Note that, since we iterate over every subset D ⊆ C, the running time of this
algorithm crucially relies on the fact that deletions are not allowed in GM.

4.1. The Algorithm

We now describe GM-Alg, our algorithm for GM (see the pseudocode below).
GM-Alg first generates a matrix M, where each entry [v, u, cv, cu, D] holds a
family that represents Solv,u,cv,cu,D, the family of every subset X ⊆ V of size
|D|, for which there exist T ∈ Tv,u,|D| such that X = VT , and a feasible col :
X → D such that (col(v) = cv and col(u) = cu). Then, in Steps 2–4, GM-Alg
computes all “basic” entries of M, i.e., entries of the form [v, u, cv, cu, D], where
|D| ≤ 2. Next, in Step 5, GM-Alg iterates over all values v, u, cv, cu and D that
define an entry of M that is not basic. Now, consider a specific iteration of Step
5, and note that the goal of this iteration is to compute M[v, u, cv, cu, D].

GM-Alg, in Step 6, generates a matrix N. Each entry [R, colR] holds a family
that represents a subfamily of Solv,u,cv,cu,D. A set X ∈ Solv,u,cv,cu,D belongs
to this subfamily if its corresponding (v, u)-tree T ∈ Tv,u,|D| and feasible col-
oring col also satisfy the requirements that T listens to R, and col colors the

11

Algorithm 2: GM-Alg(C,G = (V,E), Col)

1: let M be a matrix having an entry [v, u, cv, cu, D] for all v, u ∈ V , cv ∈
Col(v), cu ∈ Col(u) and D ⊆ C, initialized to ∅.

2: M[v, v, c, c, {c}]⇐ {v} for all v ∈ V and c ∈ Col(v).
3: M[v, v, c, c, {c, c′}]⇐ {{v, u} : {v, u} ∈ E, c′ ∈ Col(u) \ {c}} for all v ∈ V

and c ∈ Col(v).
4: M[v, u, c, c′, {c, c′}]⇐ {v, u} for all {v, u} ∈ E, c ∈ Col(v) and c′ ∈
Col(u) \ {c}.

5: for all sD = 3, . . . , k, D ⊆ C of size sD, v, u ∈ V , cv ∈ Col(v), and cu ∈
Col(u) do

6: let N be a matrix that has an entry [R, colR] for all R ∈ Gv,u, and feasible
colR : VR → D satisfying colR(v) = cv and colR(u) = cu, initialized to ∅.

7: for all [R, colR] ∈ N do
8: let w1, . . . , w|VR| be a preorder on VR, where w1 = v.
9: let L be a matrix that has an entry [i,D′] for all 1 ≤ i ≤ |VR| and

D′ ⊆ D, initialized to ∅.
10: L[1, D′]⇐ M[v, v, cv, cv, D

′] for all D′ ⊂ D.
11: for i = 2, . . . , |VR|, ` = 2, . . . , |D|, D′ ⊆ D of size ` do
12: let A include all sets (U ∪W) for which there exists D′′ ⊆ D′ of size

2 ≤ |D′′| ≤ min{|D| − 1, k/d}, satisfying (1) or (2):

(1) U ∩W = {fR(wi)},
U ∈ M[fR(wi), wi, colR(fR(wi)), colR(wi), D

′′] and
W ∈ L[i− 1, (D′ \D′′) ∪ {colR(fR(wi))}].

(2) U ∩W = {wi},
U ∈ M[wi, wi, colR(wi), colR(wi), D

′′] and
W ∈ L[i, (D′ \D′′) ∪ {colR(wi)}].

13: L[i,D′]⇐ UniRep(1.47, U|V |,k,A).
14: end for
15: N[R, colR]⇐ N[R] ∪ L[|VR|, D].
16: end for
17: M[v, u, cv, cu, D]⇐ UniRep(1.47, U|V |,k,

⋃
[R,colR]∈N N[R, colR]).

18: end for
19: accept iff (

⋃
v∈V,cv∈Col(v) M[v, v, cv, cv, C]) 6= ∅.

nodes in VR exactly as colR colors them. Now, consider a specific iteration of
Step 7, and note that the goal of this iteration is to compute N[R, colR]. To
compute N[R, colR], GM-Alg executes an internal dynamic programming-based
computation, which takes place in Steps 9–14.

First, in Step 9, GM-Alg generates a matrix L. Almost every entry [i,D′]
holds a family that represents Soli,D′ , the family including every set X satisfying
|X| = |D′|, for which there exist a (v, wi)-tree T ∈ Tv,wi,|D′| and a feasible
coloring col : X → D′, satisfying the following conditions. The subtree T
listens to the subtree of R induced by {w1, . . . , wi}, X = VT , and col colors the

12

nodes in {w1, . . . , wi} exactly as colR colors them. Then, in Step 10, GM-Alg
computes all “basic” entries of L, i.e., entries of the form [1, D′]. Next, in Step
11, GM-Alg iterates over all values i,D′ that define an entry of L that is not
basic. Now, consider a specific iteration of Step 11, and note that the goal of
this iteration is to compute L[i,D′].

GM-Alg, in Step 12, computes a family A that represents Soli,D′ . The com-
putation involves uniting sets U that belong to entries of M, with sets W that
belong to entries of L. It is easy to verify that the restrictions posed on the
choices of U and W gaurantee that their union indeed belongs to Soli,D′ .

After computing A, GM-Alg computes L[i,D′] (in Step 13) by finding a
smaller family that represents A. Upon completing the computation of L,
GM-Alg computes N[R, colR] (in Step 15) by a simple assignment. Then, the
union of the families stored in N is a family that represents Solv,u,cv,cu,D, and
GM-Alg can compute M[v, u, cv, cu, D] by simply finding a family that represents
this union.

Finally, GM-Alg accepts iff
⋃
v∈V,cv∈Col(v) M[v, v, cv, cv, C] 6= ∅.

4.2. Correctness

Recall that Solv,u,cv,cu,D is the family of every subset X ⊆ V of size |D|, for
which there exist T ∈ Tv,u,|D| such that X = VT , and a feasible col : X → D
such that (col(v) = cv and col(u) = cu)

The correctness of the algorithm follows directly from the next lemma.

Lemma 5. Every entry M[v, u, cv, cu, D] (k − |D|)-represents Solv,u,cv,cu,D.

Proof. By Steps 1–4, the lemma holds for any entry [v, u, cv, cu,D] in M such
that |D| ≤ 2. Now, consider some v, u ∈ V , cv ∈ Col(v), cu ∈ Col(u), and
D ⊆ C such that 3 ≤ |D|, and assume that the lemma holds for all v′, u′ ∈ V ,
c′v ∈ Col(v′), c′u ∈ Col(u′), and D′ ⊆ C such that |D′| < |D|.

For every entry N[R, colR], let Sol(R, colR)v,u,cv,cu,D include every set X ∈
Solv,u,cv,cu,D whose corresponding (v, u)-tree T ∈ Tv,u,|D| and feasible coloring
col also satisfy the requirements that T listens to R, and col colors the nodes
in VR exactly as colR colors them.

Towards proving the main inductive claim, we need the following claim.

Claim 3. Every entry N[R, colR] (k − |D|)-represents Sol(R, colR)v,u,cv,cu,D.

We first show that Claim 3 implies the correctness of the main inductive
claim. Since representation is a transitive relation, it is enough to prove that
B =

⋃
[R,colR]∈N N[R, colR] (k − |D|)-represents Solv,u,cv,cu,D. By Claim 3, B ⊆⋃

[R,colR]∈N Sol(R, colR)v,u,cv,cu,D ⊆ Solv,u,cv,cu,D.

Consider some A ∈ Solv,u,cv,cu,D, and B ⊆ V \ A such that |B| ≤ k − |D|.
Since A ∈ Solv,u,cv,cu,D, there exist T ∈ Tv,u,|D| such that A = VT , and a
feasible col : A→ D satisfying col(v) = cv and col(u) = cu. By Lemma 3, there
is R ∈ Gv,u such that T listens to R. Let colR be defined as col when restricted
to the domain VR. We get that A ∈ Sol(R, colR)v,u,cv,cu,D. By Claim 3, there

is Â ∈ N[R, colR] ⊆ B such that Â ∩ B = ∅. Thus, B (k − |D|)-represents
Solv,u,cv,cu,D. �

13

We now turn to prove Claim 3.

Proof (Claim 3). Consider an iteration of Step 7 corresponding to an entry
N[R, colR]. For any entry L[i,D′], let R(i) be the subtree of R induced by
{w1, . . . , wi}. Moreover, let Soli,D′ be the family including every set X for which
there exist a (v, wi)-tree T ∈ Tv,wi,|D′| and a feasible coloring col : X → D′,
satisfying the following conditions. The subtree T listens to R(i), X = VT , and
col colors the nodes in {w1, . . . , wi} exactly as colR colors them.

Towards proving Claim 3, we need the following claim.

Claim 4. Every entry L[i,D′], where (D′ = D → i = |VR|), (k − |D′|)-
represents Soli,D′ .

Since N[R, colR] = L[|VR|, D] and Sol(R, colR)v,u,cv,cu,D = Sol|VR|,D, Claim
4 implies the correctness of Claim 3. �

Finally, we turn to prove Claim 4, concluding the correctness of the algo-
rithm.

Proof (Claim 4). By Steps 9 and 10, and the induction hypothesis concerning
the matrix M, the claim holds for (i = 1 and all D′ ⊂ D) and (all 1 ≤ i ≤ |VR|
and D′ ⊂ D of size 1). Now, consider some 2 ≤ i ≤ |VR| and D′ ⊆ D of size at
least 2 such that (D′ = D → i = |VR|), and assume that the claim holds for all
1 ≤ i′ ≤ i and D′′ ⊆ D′ such that D′′ 6= D′. Since representation is a transitive
relation, it is enough to prove that A (k − |D′|)-represents Soli,D′ .

By definition, a set A belongs to Soli,D′ iff there are sets U and W whose
union is A, for which there exists D′′ ⊆ D′ of size 2 ≤ |D′′| ≤ min{|D|− 1, k/d}
satisfying (1) or (2):

1. U ∩W = {fR(wi)},
U∈SolfR(wi),wi,colR(fR(wi)),colR(wi),D′′ , and W∈Soli−1,(D′\D′′)∪{colR(fR(wi))}.

2. U ∩W = {wi},
U ∈ Solwi,wi,colR(wi),colR(wi),D′′ , and W ∈ Soli,(D′\ D′′)∪{colR(wi)}.

Thus, by Step 12 and the inductive hypotheses concerning the matrices
M and L, we have that A ⊆ Soli,D′ . Now, consider some A ∈ Soli,D′ , and
B ⊆ V \ A such that |B| ≤ k − |D′|. Since A ∈ Soli,D′ , there are U , W , and
D′′ as mentioned above.

First, suppose that U , W , and D′′ correspond to the first option. Note that
|(W \ {fR(wi)}) ∪ B| = |W | − 1 + |B| ≤ (|D′| − |D′′| + 1) − 1 + (k − |D′|) =
k − |D′′|. Therefore, by the inductive hypothesis concerning M, there is a set

Û ∈ M[fR(wi), wi, colR(fR(wi)), colR(wi), D
′′] such that Û ∩ ((W \ {fR(wi)})∪

B) = ∅. Moreover, |(Û \{fR(wi)})∪B| = |Û |−1+ |B| ≤ |D′′|−1+(k−|D′|) =
k−(|D′|−|D′′|+1). Therefore, by the inductive hypothesis concerning L, there is

a set Ŵ ∈ L[i−1, (D′\D′′)∪{colR(fR(wi))}] such that Ŵ∩((Û\{fR(wi)})∪B) =
∅.

Now, suppose that U , W , and D′′ correspond to the second option. Note
that |(W \ {wi}) ∪ B| = |W | − 1 + |B| ≤ (|D′| − |D′′| + 1) − 1 + (k − |D′|) =

14

k − |D′′|. Therefore, by the inductive hypothesis concerning M, there is a set

Û ∈ M[wi, wi, colR(wi), colR(wi), D
′′] such that Û ∩ ((W \ {wi}) ∪ B) = ∅.

Moreover, |(Û \ {wi})∪B| = |Û | − 1 + |B| ≤ |D′′| − 1 + (k− |D′|) = k− (|D′| −
|D′′| + 1). Therefore, by the inductive hypothesis concerning L, there is a set

Ŵ ∈ L[i, (D′ \ D′′) ∪ {colR(wi)}] such that Ŵ ∩ ((Û \ {wi}) ∪B) = ∅. �

4.3. Running Time

Let 0 < ε < 1 be some constant, and c = 1.47. Choose a constant d ≥ 2

satisfying

(
ck

k/d

)
= O(2εk) and 1/d ≤ ε.

For any 0 ≤ r∗ ≤ k and call UniRep(c, U|V |,k,S) executed by GM-Alg, where
S is a family of subsets of size r∗ of V , there exists 0 ≤ r′ ≤ min{r∗, k/d} such
that

|S| ≤ 2o(k)|V |O(d)(
(ck)k

(r∗ − r′)r∗−r′(ck − (r∗ − r′))k−(r∗−r′)
)(

(ck)k

r′r
′
(ck − r′)k−r′

).

We get that GM-Alg runs in time

O∗(2o(k)
k

max
r=0

min{k−r,k/d}
max
r′=0

{(
k

r+r′

)
(

(ck)k

rr(ck−r)k−r
)(

(ck)k

r′r
′
(ck−r′)k−r′

)(
ck

ck−(r+r′)
)k−(r+r

′)

}
)

=O∗(2o(k)
k

max
r=0

min{k−r,k/d}
max
r′=0

{(
k

r

)(
k−r′

r′

)
(

(ck)k

rr(ck−r)k−r
)

(
ck

r′

)
(

ck

ck−(r+k/d)
)k−r
}

)

=O∗(2o(k)
k

max
r=0

{(
k

r

)
(

(ck)k

rr(ck−r)k−r
)

(
ck

k/d

)2

(
ck

ck−r−(1/d)k
)k−r

}
)

=O∗(22εk+o(k)
k

max
r=0

{(
k

r

)
(

(ck)k

rr(ck−r)k−r
)(

ck

ck−r−εk
)k−r
}

).

By choosing a small enough ε > 0, the maximum is obtained at r = αk,
where α ∼= 0.5305. Thus, GM-Alg runs in time O(5.21914k|V |O(1)). �

5. An Algorithm for RGMD

In this section we solve RGMD in time O∗(5.18k), by computing repre-
sentative families with respect to a partition matroid. To this end, we de-
fine a partition matroid P = P (C,M,G,Col) = (E, I) as follows. Denote
C = {c1, . . . , c|C|}. Now, let E = V be partitioned into sets E1, . . . , E|C|, where
Ei = {v ∈ V : ci ∈ Col(v)} for all 1 ≤ i ≤ |C|. The sets E1, . . . , E|C| are disjoint
because |Col(v)| = 1 for all v ∈ V . Next, let ki = occ(ci) for all 1 ≤ i ≤ |C|
(recall that occ(c) is the number of occurences of a color c in M). Accordingly,
define I = I(C,M,G,Col) = {S ⊆ E : |S ∩ E1| ≤ k1, . . . , |S ∩ E|C|| ≤ k|C|}.

15

Intuitively, this definition ensures that a node set U ∈ I iff U can be colored
without using any color “too many” times, i.e., there exists a feasible coloring
col : U→C.

The main idea of the algorithm is to compute families of “partial solutions”
that contain only nodes, and handle colors by computing representative families
with respect to the above partition matroid. More precisely, when we now
consider a pair of nodes v, u ∈ V , and a value 1 ≤ ` ≤ k, we compute families of
partial solutions of the following form. A partial solution is a set of nodes U ∈ I,
for which there exists a (v, u)-tree T ∈ Tv,u,` satisfying U = VT . Having a family
of such partial solutions, we compute a family that represents it with respect
to the matroid P . Such computations of representative families are embedded
in a dynamic programming-based framework, whose progress is governed by
guiding trees.

Next, only operations involving the notation M are considered to be applied
to multisets (e.g., {a} ∪ {a, b} 6= M for M = {a, b}, and {a} ∪ {a, b} = {a, b}).

5.1. The Algorithm

We now describe RGMD-Alg, our algorithm for RGMD (see the pseudocode
below). RGMD-Alg first generates a matrix M, where each entry [v, u, `] holds a
family that represents Solv,u,`, the family of every set X ∈ I, for which there
exists T ∈ Tv,u,` such that X = VT . Then, in Steps 2–4, RGMD-Alg computes
all “basic” entries of M, i.e., entries of the form [v, u, `], where ` ≤ 2. Next, in
Step 5, RGMD-Alg iterates over all values v, u, ` and i that define an entry of M
that is not basic. Now, consider a specific iteration of Step 5, and note that the
goal of this iteration is to compute M[v, u, `].

RGMD-Alg, in Step 6, generates a matrix N. Each entry [R] holds a family
that represents a subfamily of Solv,u,`. A set X ∈ Solv,u,` belongs to this
subfamily if its corresponding (v, u)-tree T ∈ Tv,u,` listens to R. Now, consider
a specific iteration of Step 7, and note that the goal of this iteration is to
compute N[R]. To compute N[R], RGMD-Alg executes an internal dynamic
programming-based computation, which takes place in Steps 9–14.

First, in Step 9, RGMD-Alg generates a matrix L. Almost every entry [i, `′]
holds a family that represents Soli,`′ , the family including every set X ∈ I, for
which there exists a (v, wi)-tree T ∈ Tv,wi,`′ satisfying the following conditions.
The subtree T listens to the subtree of R induced by {w1, . . . , wi}, and X = VT .
Then, in Step 10, RGMD-Alg computes all “basic” entries of L, i.e., entries of
the form [1, `′]. Next, in Step 11, RGMD-Alg iterates over all values i and `′ that
define an entry of L that is not basic. Now, consider a specific iteration of Step
11, and note that the goal of this iteration is to compute L[i, `′].

RGMD-Alg, in Step 12, computes a family A that represents Soli,`′ . The
computation involves uniting sets U that belong to entries of M, with sets W
that belong to entries of L. It is easy to verify that the restrictions posed on the
choices of U and W gaurantee that their union indeed belongs to Soli,`′ .

After computing A, RGMD-Alg computes L[i, `′] (in Step 13) by finding a
smaller family that represents A with respect to the partition matroid P . Upon

16

Algorithm 3: RGMD-Alg(C,M,G = (V,E), Col, k)

1: let M be a matrix that has an entry [v, u, `] for all v, u ∈ V and 1 ≤ ` ≤ k,
initialized to ∅.

2: M[v, v, 1]⇐ {{v}} for all v ∈ V , and Col(v) ⊆M .
3: M[v, v, 2]⇐ {{v, u} : {v, u} ∈ E,Col(v) ∪ Col(u) ⊆M} for all v ∈ V .
4: M[v, u, 2]⇐ {{v, u}} for all {v, u} ∈ E satisfying Col(v) ∪ Col(u) ⊆M .
5: for all ` = 3, . . . , k, and v, u ∈ V do
6: let N be a matrix that has an entry [R] for all R ∈ Gv,u, initialized to ∅.
7: for all [R] ∈ N do
8: let w1, . . . , w|VR| be a preorder on VR, where w1 = v.
9: let L be a matrix that has an entry [i, `′] for all 1 ≤ i ≤ |VR|, and

1 ≤ `′ ≤ `, initialized to ∅.
10: L[1, `′]⇐ M[v, v, `′] for all 1 ≤ `′ < `.
11: for i = 2, . . . , |VR|, and `′ = 2, . . . , ` do
12: let A include all sets (U ∪W) ∈ I(C,M,G,Col) for which exists

2 ≤ `′′ ≤ min{`′, `− 1, k/d} satisfying (1) or (2):

(1) U∩W ={fR(wi)}, U ∈M[fR(wi), wi, `
′′], and W ∈L[i−1, `′−`′′+1].

(2) U∩W ={wi}, U ∈M[wi, wi, `
′′], and W ∈L[i, `′−`′′+1].

13: L[i, `′]⇐ ParRep(k, P (C,M,G,Col),A).
14: end for
15: N[R]⇐ L[|VR|, `].
16: end for
17: M[v, u, `]⇐ ParRep(k, P (C,M,G,Col),

⋃
[R]∈N N[R]).

18: end for
19: accept iff (

⋃
v∈V M[v, v, k]) 6= ∅.

completing the computation of L, RGMD-Alg computes N[R] (in Step 15) by a
simple assignment. Then, the union of the families stored in N is a family that
represents Solv,u,` with respect to P , and RGMD-Alg can compute M[v, u, `] by
simply finding a family that represents this union with respect to P .

Finally, RGMD-Alg accepts iff
⋃
v∈V M[v, v, k] 6= ∅.

5.2. Correctness

Recall that Solv,u,` is the family of every set X ∈ I = I(C,M,G,Col), for
which there exists T ∈ Tv,u,` such that X = VT .

By our definition of the partition matroid P = P (C,M,G,Col), the correct-
ness of the algorithm follows directly from the next lemma.

Lemma 6. Every entry M[v, u, `] (k − `)-represents Solv,u,` with respect to P .

Proof. By Steps 1–4, the lemma holds for any entry [v, u, `] in M such that
` ≤ 2. Now, consider some v, u ∈ V , and 3 ≤ ` ≤ k, and assume that the lemma
holds for all v′, u′ ∈ V , and 1 ≤ `′ < `.

17

For every entry N[R], let Sol(R)v,u,` include every set X ∈ Solv,u,` whose
corresponding (v, u)-tree T ∈ Tv,u,` listens to R. Towards proving the main
inductive claim, we need the following claim.

Claim 5. Every entry N[R] (k − `)-represents Sol(R)v,u,` with respect to P .

We first show that Claim 5 implies the correctness of the main inductive
claim. Since representation is a transitive relation, it is enough to prove that B =⋃

[R]∈N N[R] (k − `)-represents Solv,u,`. By Claim 5, B ⊆
⋃

[R]∈N Sol(R)v,u,` ⊆
Solv,u,`.

Consider some A ∈ Solv,u,`, and B ⊆ V \A such that |B| ≤ k−` and A∪B ∈
I. Since A ∈ Solv,u,`, there exists T ∈ Tv,u,` such that A = VT . By Lemma 3,
there is R ∈ Gv,u such that T listens to R. We get that A ∈ Sol(R)v,u,`. By

Claim 5, there is Â ∈ N[R] ⊆ B such that Â ∩ B = ∅ and Â ∪ B ∈ I. Thus, B
(k − `)-represents Solv,u,` with respect to P . �

We now turn to prove Claim 5.

Proof (Claim 5). Consider an iteration of Step 7 corresponding to an entry
N[R]. For any entry L[i, `′], let R(i) be the subtree of R induced by {w1, . . . , wi}.
Moreover, let Soli,`′ be the family including every set X ∈ I, for which there
exists a (v, wi)-tree T ∈ Tv,wi,`′ that listens to R(i), such that X = VT .

Towards proving Claim 5, we need the following claim.

Claim 6. Every entry L[i, `′], where (`′ = ` → i = |VR|), (k − `′)-represents
Soli,`′ .

Since N[R] = L[|VR|, `] and Sol(R)v,u,` = Sol|VR|,`, Claim 6 implies the
correctness of Claim 5. �

Finally, we turn to prove Claim 6, concluding the correctness of the algo-
rithm.

Proof (Claim 6). By Steps 9 and 10, and the induction hypothesis concerning
the matrix M, the claim holds for (i = 1 and all 1 ≤ `′ < `) and (all 1 ≤ i ≤ |VR|
and `′ = 1). Now, consider some 2 ≤ i ≤ |VR| and 2 ≤ `′ ≤ ` such that
(`′ = ` → i = |VR|), and assume that the claim holds for all 1 ≤ i′ ≤ i and
1 ≤ `′′ < `′. Since representation is a transitive relation, it is enough to prove
that A (k − `′)-represents Soli,`′ .

By definition, a set A belongs to Soli,`′ iff there are sets U and W whose
union is A, for which there exists 2 ≤ `′′ ≤ min{`′, `−1, k/d} satisfying (1) or (2):

1. U ∩W = {fR(wi)}, U ∈ SolfR(wi),wi,`′′ , and W ∈ Soli−1,`′−`′′+1.

2. U ∩W = {wi}, U ∈ Solwi,wi,`′′ , and W ∈ Soli,`′−`′′+1.

Thus, by Step 12 and the inductive hypotheses concerning the matrices M
and L, we have that A ⊆ Soli,`′ . Now, consider some A ∈ Soli,`′ , and B ⊆ V \A
such that |B| ≤ k − `′ and A ∪ B ∈ I. Since A ∈ Soli,`′ , there are U , W , and
`′′ as mentioned above.

18

First, suppose that U , W , and `′′ correspond to the first option. Note that
|(W \{fR(wi)})∪B| = |W |−1+|B| ≤ (`′−`′′+1)−1+(k−`′) = k−`′′. Therefore,

by the inductive hypothesis concerning M, there is a set Û ∈ M[fR(wi), wi, `
′′]

such that Û ∩ ((W \ {fR(wi)}) ∪ B) = ∅ and (Û ∪ W ∪ B) ∈ I. Moreover,

|(Û \{fR(wi)})∪B| = |Û |−1+|B| ≤ `′′−1+(k−`′) = k−(`′−`′′+1). Therefore,

by the inductive hypothesis concerning L, there is a set Ŵ ∈ L[i− 1, `′− `′′+ 1]

such that Ŵ ∩ ((Û \ {fR(wi)}) ∪B) = ∅ and (Ŵ ∪ Û ∪B) ∈ I.
Now, suppose that U , W , and `′′ correspond to the second option. Note that

|(W \{wi})∪B| = |W |−1+|B| ≤ (`′−`′′+1)−1+(k−`′) = k−`′′. Therefore, by

the inductive hypothesis concerning M, there is a set Û ∈ M[wi, wi, `
′′] such that

Û ∩ ((W \ {wi}) ∪B) = ∅ and (Û ∪W ∪B) ∈ I. Moreover, |(Û \ {wi}) ∪B| =
|Û | − 1 + |B| ≤ `′′ − 1 + (k − `′) = k − (`′ − `′′ + 1). Therefore, by the

inductive hypothesis concerning L, there is a set Ŵ ∈ L[i, `′ − `′′ + 1] such that

Ŵ ∩ ((Û \ {wi}) ∪B) = ∅ and (Ŵ ∪ Û ∪B) ∈ I. �

5.3. Running Time

Let 0 < ε < 1 be some constant, and choose a constant d ≥ 2 satisfying(
k

k/d

)
= O(2εk).

For any 0 ≤ r∗ ≤ k and call ParRep(k, P (C,M,G,Col),S) executed by
RGMD-Alg, where S is a family of subsets of size r∗ of V , there exists 0 ≤ r′ ≤
min{r∗, k/d} such that

|S| ≤ |V |O(d)

(
k

r∗ − r′

)(
k

r′

)
≤ |V |O(1)

(
k

r∗

)(
k

r′

)2

≤ 22εk|V |O(1)

(
k

r∗

)
.

We get that RGMD-Alg has running time

O(22εk|V |O(1) k
max
r=0

{(
k

r

)w̃}
).

The maximum is obtained at r = k/2. Recall that w̃ < 2.3727. Thus, by
choosing a small enough ε > 0, RGMD-Alg runs in time O(5.1791k|V |O(1)).

References

[1] V. Fionda, L. Palopoli, Biological network querying techniques: Analysis
and comparison, J. Comput. Biol. 18 (2011) 595–625.

[2] M. Koyutürk, Algorithmic and analytical methods in network biology,
Wiley Interdiscip. Rev. Syst. Biol. Med. 2 (2010) 277–292.

[3] V. Lacroix, C. G. Fernandes, M. F. Sagot, Motif search in graphs: Appli-
cation to metabolic networks, IEEE/ACM Trans. Comput. Biol. Bioinf. 3
(2006) 360–368.

19

[4] S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir, R. Sharan, Topology-
free querying of protein interaction networks, J. Comput. Biol. 17 (2010)
237–252.

[5] N. Pinter-Wollman, E. A. Hobson, J. E. Smith, A. J. Edelman, D. Shizuka,
S. de Silva, J. S. Waters, S. D. Prager, T. Sasaki, G. Wittemyer, J. Fewell,
D. B. McDonald, The dynamics of animal social networks: analytical,
conceptual, and theoretical advances, Behavioral Ecology 25 (2014) 242–
255.

[6] F. Sikora, An (almost complete) state of the art around the graph motif
problem, Université Paris-Est Technical reports (2012).

[7] M. R. Fellows, G. Fertin, D. Hermelin, S. Vialette, Upper and lower bounds
for finding connected motifs in vertex-colored graphs, J. Comput. Syst. Sci.
77 (2011) 799–811.

[8] A. M. Ambalath, R. Balasundaram, R. H. Chintan, K. Venkata, M. Neeld-
hara, P. Geevarghese, M. S. Ramanujan, On the kernelization complexity
of colorful motifs, in: IPEC, 2010, pp. 14–25.

[9] R. Dondi, G. Fertin, S. Vialette, Finding approximate and constrained
motifs in graphs, in: CPM, 2009, pp. 221–235.

[10] R. Rizzi, F. Sikora, Some results on more flexible versions of graph motif,
in: CSR, 2012, pp. 278–289.

[11] N. Betzler, R. Bevern, M. R. Fellows, C. Komusiewicz, R. Niedermeier,
Parameterized algorithmics for finding connected motifs in biological net-
works, IEEE/ACM Trans. Comput. Biol. Bioinf. 8 (2011) 1296–1308.

[12] N. Betzler, M. R. Fellows, C. Komusiewicz, R. Niedermeier, Parameterized
algorithms and hardness results for graph motif problems, in: CPM, 2008,
pp. 31–43.

[13] A. Björklund, P. Kaski, L. Kowalik, Probably optimal graph motifs, in:
STACS, 2013, pp. 20–31.

[14] R. Dondi, G. Fertin, S. Vialette, Maximum motif problem in vertex-colored
graphs, in: CPM, 2009, pp. 388–401.

[15] M. R. Fellows, G. Fertin, D. Hermelin, S. Vialette, Sharp tractability
borders for finding connected motifs in vertex-colored graphs, in: ICALP,
2007, pp. 340–351.

[16] S. Guillemot, F. Sikora, Finding and counting vertex-colored subtrees,
Algorithmica 65 (2013) 828–844.

[17] I. Koutis, Constrained multilinear detection for faster functional motif
discovery, Inf. Process. Lett. 112 (2012) 889–892.

20

[18] R. Y. Pinter, M. Zehavi, Partial information network queries, in: IWOCA,
2013, pp. 362–275.

[19] R. Y. Pinter, M. Zehavi, Algorithms for topology-free and alignment net-
work queries, J. Discrete Algorithms 27 (2014) 29–53.

[20] N. Alon, R. Yuster, U. Zwick, Color coding, J. Assoc. Comput. Mach. 42
(1995) 844–856.

[21] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Narrow sieves for pa-
rameterized paths and packings, CoRR abs/1007.1161 (2010).

[22] F. V. Fomin, D. Lokshtanov, S. Saurabh, Efficient computation of repre-
sentative sets with applications in parameterized and exact agorithms, in:
SODA (see also: CoRR abs/1304.4626), 2014, pp. 142–151.

[23] J. G. Oxley, Matroid theory, Oxford University Press, 2006.

[24] H. Shachnai, M. Zehavi, Representative families: A unified tradeoff-based
approach, in: ESA, to appear, 2014.

[25] D. Lokshtanov, P. Misra, F. Panolan, S. Saurabh, Deterministic truncation
of linear matroids, CoRR abs/1404.4506 (2014).

[26] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd,
in: STOC, 2012, pp. 887–898.

21

