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Abstract. Charm++ is a parallel programming system that evolved
over the past 20 years to become a well-established system for program-
ming parallel science and engineering applications, in addition to the
combinatorial search applications with which it started. At its earliest
point, the precursor to Charm++, the Chare Kernel, was a purely reac-
tive specification, similar to most actor languages. This paper describes
the evolution of a series of concurrency control mechanisms that have
been deployed in Charm++ to tame this unrestricted concurrency in
order to improve code clarity and/or to improve performance.

1 Introduction

One of the challenges in parallel programming, especially in science and engi-
neering applications, is resource management. This is especially true for dynamic
and irregular applications, such as those involving dynamic adaptive mesh re-
finements. Newer machines, with issues of power and component failures, also
create related challenges. A programming system supported by a smart adaptive
runtime system that automates resource management is therefore desirable.

Charm++ is a concurrent-objects parallel programming system that has been
used for programming science and engineering applications. With Charm++, one
programs in C++, providing a few additional declarations to facilitate parallel
mechanisms such as asynchronous method invocations. A Charm++ computa-
tion consists of a number of C++ objects that interact via asynchronous method
invocations. An adaptive runtime system controls and dynamically changes as-
signments of objects to processors, and also chooses the sequence in which ready
method invocations will execute on a given processor. These control mechanisms
empowers the runtime to automate load balancing, as well as implement other
resource management policies.

In this paper, we will focus on how concurrency and synchronization within
an individual object is expressed. We present these concepts, which have been
described in earlier literature [14, 28] going over 20 years by us, in a pedagogical
and historical sequence, with illustrations from recent case studies.

We begin this paper with a brief history of the beginning of Charm++, to
elucidate the evolution of its constructs, and to set the context for the description
of concurrency control mechanisms in Section 3. From 1983 to 1985, a new paral-
lel execution model for logic programming was developed, called the Reduce-Or
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process model [26]. This allowed a relatively novel combination of AND and OR
parallelism. In particular, the main innovation was something called consumer-
instance parallelism. Given a Horn clause such as p(X), q(Y), r(X,Y), this
model was able to exploit independent-AND parallelism between p and q literals,
the OR parallelism underneath p (as well as q), and also the parallelism between
multiple instances of r created by incrementally joining solutions to p and q. This
was accomplished by having the activation record for the clause as a persistent
object. As each solution for p (or q) was returned to it, it combined them with
the stored (already-received) solutions to q (or p), and fired a task for computing
each instance (the so-called “consumer-instance”) of r so created. Initially, as a
part of a PhD thesis [25], this model was implemented in an interpreted mode,
working with Prof. David Scott Warren. Later, byte-code compilation [41] and
related optimizations were developed. However, for the theme of this paper, the
interesting part is the runtime system itself. The runtime system needed to have
a dynamic load balancer, to distribute all the goals across processors, especially
as the distributed memory architectures (such as the “hypercubes”, including
NCUBE, and iPSC/2) were targeted. It also needed prioritization to focus the
search on the most promising paths.

The main “applications” considered in the development of ROLOG (as the
compiled implementation of Reduce-Or Process Model was called) involved com-
binatorial search, including N-queens, Knight’s-tour, graph coloring, etc. [24, 31].
Our interest shifted to the applications themselves, rather than the logic pro-
gramming language used to express them. Consequently, the speed of finding a
solution became an important goal in itself. These developments led to extraction
of the runtime system into a separate entity, called the chare kernel [32]. This
was a C-based parallel programming system. ROLOG itself was implemented on
top of the chare kernel.

The term chare was borrowed from an earlier project on parallel implemen-
tation of functional languages called RediFlow [33] by Keller, Lindstrom, et al.;
chare means a small task or a chore in old English. The activation records for
evaluation of a Rolog Clause mentioned above can each be implemented as a
chare. In the chare kernel, a chare was an object with its own ID; it was load
balanced by the system, and it was possible to send messages to a chare.

One will recognize an ABCL-style concurrent object [49, 50, 9], or an “actor”
in this description immediately [1], although we came to it from the functional
language implementations, and macro-dataflow ideas. The reactive kernel and
Cantor [4] were other relevant contemporary systems. However, the chare was
clearly very similar to the notion of a concurrent object or an actor developed
earlier by Agha [2] and Yonezawa [49] et al., which built upon Hewitt’s earlier
work [17]. The main differences, in retrospect, were minor up to this point:
a C-based implementation, reflecting an efficiency orientation, and a focus on
combinatorial search applications. From the language point of view, one differ-
ence was that, unlike actors, chares did not have access to their mailboxes. They
simply executed every method anyone invoked on them.
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There were potentially multiple invocations that were ready on a processor,
stored in a prioritized message queue. The system picked the next message from
this queue, invoked it on the named object, and it selected another message only
when it returned. Any guards or internal synchronization within a chare were
the responsibility of user’s code within the method. This typically led to a lot
of buffering and flags indicating what is ready and what is not. The reactive
notation also affected the expression of the overall flow of control. A series of
solutions to this problem constitute the focus of this chapter. We return to
this theme in section 3, after reviewing the somewhat orthogonal but important
developments within the Charm++ model in the next section.

Note that the chare kernel was developed before C++ had really taken off. So
the language (called Charm by 1991), while object-based, was translated to C by
a simple translator. In 1992, with increasing popularity of C++, a C++-based
version was created, and it was called Charm++.

2 Charm++ and CSE Applications

In the early 1990’s, the attention of Charm++ developers shifted to applica-
tions in computational science and engineering (CSE), from the combinatorial
search applications that were dominant earlier. In part because of the nature of
these applications, and because of the pragmatic orientation that CSE applica-
tions necessitated, several new features and language constructs were developed
that improved expressiveness of Charm++ in comparison with the plain Chare
Kernel as well as the Actor languages of that time.

The first of this was the notion of organizing the chares into indexed collec-
tions. This followed naturally from the need to support domain decomposition
methods used in CSE. Consider a two-dimensional decomposition of a 2D domain
in fluid dynamics. A single chare is responsible for one chunk of this decompo-
sition. It needed to communicate (its borders) with the four neighboring chares.
But what does “neighboring” mean? In the plain Charm of that time, one would
have to create a network of chares, and pass IDs from one to the other in complex
manner to ensure that everyone had the IDs of the four chares they needed. The
need for an indexed organization was anticipated and developed in early work
by Sanjeev Krishnan and Joshua Yelon [42, 48]. These ideas were developed into
the notion of a “chare array”: an indexed collection of chares [37]. Although
they were called “arrays”, the index could be quite general, supporting sparse
arrays as well as collections indexed by bit-vectors or even strings. A program
(or more accurately, a computation) consisted of one or more chare array. These
were typically created at the beginning of the computation by a “main” chare,
but they could also be created dynamically in the middle of the computation.

Method invocation was directed to an individual member of the collection:
A[i].foo(x,y) caused an asynchronous method invocation (“asynchronous” in
that it returned immediately to the caller) being sent to the i’th member of the
collection whose ID was represented by “A”. The system took charge of global
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location management via a scalable scheme [37], so that it could identify the
processor on which the named chare lived, and deliver the message to it.

For plain chares, their “seeds” (the messages containing the constructor ar-
guments) were moved around by the load balancers; but once they took root
(i.e. were installed on a processor, and executed their constructor), they were
not allowed to migrate. For combinatorial search applications, where new chares
were created all the time, this was a reasonable strategy. In contrast, chare ar-
ray members were allowed to migrate. This allowed CSE applications to be load
balanced dynamically. Observing that these applications tended to exhibit the
principle of persistence [30], a suite of measurement-based load balancing strate-
gies [8] were developed that periodically re-examine the load and migrate chares
to restore balance. Research on such adaptive load balancers continues to date,
and Charm++ provides an excellent proving ground for new load balancing
ideas.

The adaptive runtime system, of which the load balancers are a part, has
continued to evolve. It now supports features such as automatic checkpoint-
ing [52, 40], communication optimizations [34], fault tolerance, and power-and-
temperature optimizations [43].

The Charm++ model and all its constructs described so far do not have the
notion of a “processor” in them. For the sake of practicality, processor-level con-
structs were added: the most basic of these mechanisms allowed specification on
which processor to create a given chare. A more interesting example was a con-
struct called branch-office chare [21] (later renamed chare group). A chare group
consists of a set of chares such that there is exactly one chare (the “branch”) on
each processor. A regular chare, which does not know which processor it is on,
can simply ask for a pointer to the local branch of a chare group, and invoke
regular C++ methods on it. The members of the group can communicate with
each other just as if they are chare array members—using the processor num-
ber as the index. This construct allowed development of many support libraries,
including the load balancers mentioned above.

The base language described above does not have any global variables. Var-
ious types of global variables, based on specific modes of information sharing,
were added early on to the language [44].

Several CSE applications have been developed using Charm++. NAMD for
biomolecular simulations was developed in mid 1990s and has continued to evolve
with Charm++. Other applications span topics such as computational astron-
omy [20], quantum chemistry and nanomaterials [35], agent-based simulation of
contagion [5], etc. Also, several higher level languages have been developed using
Charm++ [27].

2.1 Comments on the Charm++ Model

Fairness and Scheduling Strategy By default, Charm++ processes pending
method invocations in FIFO order. Also, method invocations by an object on
itself are explicitly specified as either in-line or asynchronous by the programmer.
This thus pushes the onus on fairness to the programmer; with FIFO, all the
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explicitly scheduled invocations will be executed fairly. However, Charm++ also
supports prioritized queues, instead of (or in addition to) FIFO queues. In this
case, the execution may not be fair. Again, the responsibility for ensuring non-
starvation is mostly borne by the programmer. We have found this to be adequate
for the applications we have developed so far. Further, the scheduler itself is
pluggable component; so it is possible, for example, to replace it with one based
on “lottery-scheduling” principles, where one selects between tasks randomly,
with probabilities determined by the priority of the task.

Message Passing Semantics In Charm++, messages are passed by value by
default. If the serialization methods are implemented correctly for a user-defined
type, a deep copy will be made of the data being serialized. However, if Charm++
is used with shared memory, data within a node can be passed by pointer if the
programmer indicates that the data should be conditionally packed: only packed
into a message when the data leaves the node. If a method invocation is marked
as conditional, the programmer must ensure that the semantics are correct (e.g.
the data is only read in that method).

3 Concurrency Control within a Parallel Object

The earliest version of Charm supported a fairly flat and reactive control struc-
ture. A chare was defined by a series of “entry points” (later called “entry meth-
ods” in Charm++), in addition to a set of data members and private methods.
Its behavior is specified as a set of reactions: if the chare gets an invocation for
its entry method A, it will execute the body of method A, and so on. The con-
currency in such chares is unrestrained. Such a reactive specification does not
allow a clear description of the life cycle of a chare. Also, it leads to a cluttered
program, with buffers, flags and counters for keeping track of where the chare is
in its life-cycle. This section, which is the main topic of the paper, describes three
notational mechanisms for constraining the concurrency — specifying which of
the many possible actions a chare can execute will be allowed to execute — and
simplifying the expression of the life-cycle of a chare.

3.1 Dagger

The Dagger notation, developed around 1993 [13], allows specification of depen-
dencies between computational actions and messages within a chare. A dag-chare
is a special type of chare that supports such specification. A chare definition
consists of a set of computational blocks called when-blocks. Each when-block is
preceded by a list of dependencies. There are two kinds of dependencies: entry-
method names, and condition variables. A condition-variable is set by calling
ready(condition-variable-name). A message sent to an entry method is not
eligible to be looked at until it is expected. An entry method (named, say, EP)
is marked as expected by calling expect(EP). A when-block is ready to execute
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when all the condition variables in its dependency list are set and all the entry
method invocations in its dependency list are both expected and received.

A when clause has the form: when g0 , ... , gk : { computation } where each
gi is either a condition variable or the name of an entry method.

The collection of when clauses defines a static dataflow graph. This graph
both allows and constrains concurrency within an object. It is important to
remember that all the actions within a chare take place on a single processor.
So, when multiple actions within an object are described as “concurrent”, it does
not imply any parallel execution between them.

Consider the following code fragment, based on an example from the first
paper about Dagger [12]. The data-flow graph corresponding to this chare defi-
nition is shown in Figure 1.

dag chare C {
// ... declarations of local variables, condition variables,
// ... entry methods and private methods

when init: { ... Computation C0 ... ; expect(e1); expect(e2); }

when e1: { ... Computation C1 ... ; ready(R); }

when e2: {... Computation C2 ... ; expect(e3); }

when R, e3 : { ... Computation C3 ... ; }
}

C0

C1

C2

C3
e1

e3e2

Fig. 1: Example dependency graph that could be expressed using the Dagger
notation.

The final computational block Computation3 is dependent on receipt of a
message directed at entry method e3, but it also requires that condition vari-
able R be set, and that the message for e3 be expected. Computation1 and
Computation2 can be carried out in either order, depending on whether the
message directed at e1 arrives before or after that directed at e2. Yet, they are
not parallel computations: they both belong to the same chare, and therefore
will be serialized in one of those two sequences. In general, the same behavior
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can be specified with different but equivalent graphs: for example the expect(e3)
and ready(R) statement can be swapped in this example.

To describe a more concrete example, consider a formulation of martix-matrix
multiplication where the row-blocks of the left matrix (say A), and column blocks
of the right matrix (say B) are distributed among processors, using a distributed
hash table (indeed, the earliest version of Charm supported distributed hash
tables, which were simply called “distributed tables” [44]). The job of a particular
chare is to request one block of rows from A, one block of rows from B, multiply
them out, and send the result to be stored in another distributed table. Such
a formulation may be useful in a context where dynamic balancing of block-
multiplication tasks is necessary.

The “reactive” code for this chare, in plain Charm, is shown below. Note
the use of counters and buffers (to store the row or column block that arrived
earlier).

chare multiplyBlock
int count;
float ∗row, ∗column;

entry init: (message Work ∗msg) {
count = 2;
Find(A, msg−>rowNum, getRow, myChareID());
Find(B, msg−>colNum, getCol, myChareID());
}
entry getRow: (message TBL REPLY ∗m) {

row = m−>data;
if (−−count == 0) matmul block(row, col);
}
entry getCol: (message TBL REPLY ∗m) {

col = m−>data;
if (−−count == 0) matmul block(row, col);
}

...

In contrast, the same code is expressed using the Dagger notation as shown
below:

dag chare multiplyBlock
entry init: (message Work ∗msg);
entry getRow: (message TBL REPLY ∗row);
entry getCol: (message TBL REPLY ∗col);

when init: {
Find(A, msg−>rowNum, getRow, myChareID());
Find(B, msg−>colNum, getCol, myChareID());
expect(getRow); expect(getCol);
}
when getRow, getCol: { matmul block(row−>data, col−>data); }
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The Dagger code makes the dependencies clear, avoids the use of counters,
and automates the buffering required. The entry declarations associate message
variables (which must have distinct names) with each entry method, so the
buffered data (row, col) can be accessed in the subsequent when block.

We selected these examples from the first Dagger paper, to be faithful to
the original syntax. Note that at that time, a message pointer was the only
parameter an entry method was allowed to have. Modern Charm++, as well as
the Structured Dagger notation we describe next, allow more general parameters
for entry methods.

Synchronization mechanisms and, in particular, the inheritance anomaly (fol-
lowing the phrase coined by the Rosette system [47]) in concurrent object lan-
guages have been well studied in the literature [10]. One of the most compre-
hensive study of the problem and possible solutions was presented by Matsuoka
and Yonezawa [39]. Our approach was to simply disallow inheriting “dagger”
methods (called the body methods in some of the literature, analogous to the
“run” threads of Java). Other sequential methods can be inherited just as in
C++, because Chares are, after all, C++ classes. In practice, this has not been
a hindrance in using the Dagger or SDAG (see next section) notation. Further,
the focus of much of the related work in concurrent objects community was on
expressing semantic constraints on individual methods. For example, a popular
example of such a constraint was: a get method should not be executed on a
bounded buffer object if the buffer is empty. In contrast, Dagger is designed to
support expression of dependence graphs between computations and messages,
and the ability to better express the life-cycle of an object.

3.2 Structured Dagger

In Dagger, we allow arbitrary dependencies (a DAG) to be represented between
the entry methods or message receptions for a given parallel object in the sys-
tem. Although this is very powerful, we found for many real applications of
Dagger that a full dependency graph is not needed. The disadvantage of a full
dependency graph is that there is no natural flow to the application’s code. This
makes comprehending the application code and flow of the parallel application
difficult and unintuitive.

In Structured Dagger (SDAG, for brevity) [29] we limit the graphs that can be
expressed to those constructed with single-entry single-exit (structured) blocks.
This restricts one to a set of dependencies that are either sequenced (the default)
or explicitly defined to be overlappable (i.e. they do not depend on each other).
Although this reduces the set of graphs that can be represented, all the real
applications we have found can be represented cleanly even with this limitation.
For the cases that cannot be expressed using SDAG, one can fall back to the
original reactive specification method. An example of a graph that cannot be
expressed in Structured Dagger, without losing concurrency is shown in Figure
2 below.

In SDAG, the fundamental construct is a when statement that specifies a
dependency on a incoming message or set of messages. In Charm++, a message
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C0 e1

C1

C4

C2

C7

C5

C3

C6

C8

e2 e3

e5

e6

e4

Fig. 2: An unstructured DAG that cannot be expressed in SDAG

is targeted toward a method on a certain parallel object or chare in the system.
So if we want to wait for a method invocation of void foo(int param), we could
specify the following:

when foo(int param) { /∗ block1 ∗/ }
/∗ block2 ∗/

In this case, block1 will not execute until foo arrives, and because SDAG defines a
sequence (i.e. program order) by default, block2 will not execute until foo arrives
and block1 executes. Note, that SDAG constructs can be nested, so block1 can
specify more when constructs or other SDAG constructs.

We can also wait on more than one method to arrive by simply specifying a
list of methods that we are expecting:

when foo(int param), bar(int size, char str[size]) { /∗ block1 ∗/ }
/∗ block2 ∗/

Since SDAG defines a sequence by default, the following code will wait for
foo to arrive, execute block1, then wait for bar to arrive and execute block2:

when foo(int param) { /∗ block1 ∗/ }
when bar(int size, char str[size]) { /∗ block2 ∗/ }

SDAG works by buffering any messages that are not ready to be received.
A message is ready if a when statement that matches the incoming message has
been executed by the SDAG runtime. If a when statement is encountered and
no message has arrived that matches that declaration, a trigger is created that
acts as a continuation that can be activated when the appropriate message(s) ar-
rive. Thus, the “ready” statement and condition variables of the plain “Dagger”
described in the previous section are not needed with SDAG, there use is re-
placed by relying on program order, and restricting the description to structured
graphs.

If we have a set of statements that are overlappable (i.e. they can be executed
in any order) we can override the default sequence enforced by using the overlap
statement. For example, if foo(. . .) and bar(. . .) can actually be executed in any
order according to the semantics of the application, we can declare the following:
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overlap {
when foo(int param) { /∗ block1 ∗/ }
when bar(int size, char str[size]) { /∗ block2 ∗/ }
}

In general, we can specify a set of SDAG constructs in an overlap that can be
executed without regard to ordering. Each nested construct within the overlap
will be ordered separately — so an overlap relaxes the ordering to a partial order
between a set of statements.

For many applications, we have found that we need to wait on a number of
messages, all of the same type. An example of this is a typical near-neighbor
interaction, were we wait for some defined number of neighboring elements to
send data to this object. SDAG provides a convenient syntax for declaring this
interaction pattern: using a for loop when the messages constitute a sequence,
or a forall when the incoming messages are allowed to be processed in any order.

The following is an example of using a SDAG for loop:

for (i = 0; i < 4; i++)
when updateGhostRegion(int d, int size, double buf[size]) serial {

updateBoundary(d, size, buf);
}

Using this code, we wait for each of the neighbors’ data to arrive, execute some
code (possibly performing an update or saving a pointer) when each arrives and
continue only when all of them have arrived.

If the application we are writing is iterative, one possible problem with the
above code is that we may not explicitly synchronize between iterations. If this
is the case, a neighbor message for a subsequent iteration might arrive out-of-
order with the current iteration. Note the above code does not have any way
of specifying which iteration we are waiting on: we only wait on some method
updateGhostRegion(. . .) to arrive.

To make this common case much easier, we allow a when trigger to wait
on a certain reference number that can be included with a message. In SDAG,
the first integer specified in the parameter list is the reference number for that
message — and can be used to make the dependency more specific:

when updateGhostRegion[iter](int i, int d, int size, double buf[size])

In the above code, we wait on a specific class of the updateGhostRegion mes-
sages — ones that are marked with the reference number iter. So in an iterative
application without explicit synchronization between iterations, we would write
the following code, which is an example of how a 5-point stencil computation
(Jacobi relaxation, for instance) could be implemented in SDAG:
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serial {
prepareGhostRegions();
thisProxy(wrapX(x + 1),y).updateGhostRegion(iter, TOP, size, topReg);
thisProxy(wrapX(x − 1),y).updateGhostRegion(iter, BOTTOM, size, botReg);
thisProxy(x,wrapY(y − 1)).updateGhostRegion(iter, LEFT, size, leftReg);
thisProxy(x,wrapY(y + 1)).updateGhostRegion(iter, RIGHT, size, rightReg);
}
for (i = 0; i < 4; i++)

when updateGhostRegion[iter](int i, int d, int size, double buf[size]) serial {
updateBoundary(d, size, buf);
}

serial {
int c = doCalc() < targetDiff;
CkCallback cb(CkReductionTarget(Tile, checkConverged), thisProxy);
if (iter % 5 == 1) contribute(sizeof(int), &c, CkReduction::logical and, cb);
}
if (++iter % 5 == 0) {

when checkConverged(bool result) serial { converged = true; }
}

In this code segment, while the stencil computation has not converged, we pre-
pare the ghost regions for sending, and then send a message to each neighbor
with the corresponding region copied into a buffer. Then, in the following for
loop, we wait to receive 4 neighboring ghost regions that have a reference num-
ber corresponding to the current iteration iter. After receiving all 4 ghost re-
gions, we run a compute kernel doCalc and then asynchronously contribute to
a reduction that logically ANDs all the local convergence decisions. We exploit
asynchronous reductions in Charm++ by only contributing every 5 iterations
and waiting for the result of the reduction 4 iterations later. In this way, the
reduction is overlapped with the computation and we only block waiting to find
out if the computation has converged every several iterations, instead of syn-
chronizing every iteration. If the computation has converged, we set the local
converged variable to true and stop executing the computation.

The serial construct simply specifies a sequential block of C++ code to be
executed in sequence. The programmers have to explicitly mark these blocks
of code due to the implementation details of how the SDAG code is parsed:
our implementation does not actually parse all of C++ and serial allows us to
mark which blocks the SDAG translator can safely ignore and pass to the C++
compiler directly.

If we want to wait on n method invocations (or n nested SDAG constructs,
in general), but the order they are executed does not matter, we can use the
forall construct in SDAG. The semantics are the same as overlap, but it is more
convenient when we have n identical sequences that can be overlapped:

forall [iter] (0:10, 1)
when recvData[iter](int param) { /∗ block1 ∗/}

/∗ block2 ∗/



12

In this case, we wait for 10 instances of recvData to arrive, each tagged with
reference numbers from 0..9 (note the upper-bound on the range is exclusive: it
defines a range [0, 10) with a stride of 1). The receives can arrive in any order
and block1 will be executed for each one as they arrive. When they all arrive,
block2 will be executed.

Fibonacci Example using SDAG Using SDAG we can define a pedagogical
Fibonacci using the (inefficient) recursive algorithm in the following way:

entry void calc(int n) {
if (n < THRESHOLD) serial { respond(seqFib(n)); }
else {

serial {
CProxy Fib::ckNew(n − 1, false, thisProxy);
CProxy Fib::ckNew(n − 2, false, thisProxy);
}
when response(int val)

when response(int val2)
serial { respond(val + val2); }

}
};

In this example, we define a calc(. . .) method that calculates the n’th Fibonacci
number by either sequentially calculating the Fibonacci number if n is small
enough (for efficiency reasons), or creating two children chares, waiting for both
their responses, and then adding them up. In either case, the respond function
sends the answer to the parent. Using SDAG, we explicitly define the depen-
dency on waiting for both the responses from the two children and SDAG buffers
one of the responses until they both arrive and we can add them. Although this
is a simple example, it demonstrates the power of SDAG— without this we
would have to manually buffer the first response and add them up later.

3.3 Threads

Often in the middle of executing sequential code, some remote data is required
to proceed with the computation. In Charm++, this requires sending a message
to a chare, waiting for a response, and then continuing execution. With SDAG
this pattern can be expressed cleanly, but only if the waiting occurs at the top
level entry method, because when blocks are allowed only in the entry methods).

entry void waitsForData(..) {
serial {
// some computation
f(..);
g(..);
}
when dataNeeded(...) serial {
// continue execution with remote data
}
}
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Here, f and g may be regular methods or stand alone functions. This code
works fine because the waiting happens at the top level. But if it is necessary to
fetch remote data when the control is inside of (say) the function g, this is not
supported by SDAG. Putting a when inside the body of g (g is regular C++
code), will just be flagged as a syntax error by the C++ compiler. In a SDAG
entry, when a when statement is encountered, control typically returns to the
Charm++ scheduler, with no trace of the ongoing work left on the stack itself.
All the bookkeeping information about the pending when blocks and buffered
messages is left in the SDAG data structures.

However, if we were to use a threaded model (assuming threads that are
migratable) we can wait on remote data and then continue executing in the
same context when the data arrives. Charm++ supports this by allowing an
entry method to be marked as threaded.

entry [threaded] void foo(..);

By declaring a method as such, the method will actually run in a user-level
thread that is migratable. A thread is made migratable by allocating its stack
using isomalloc, which allocates data with a globally-unique virtual address. The
isomalloc function works by reserving the same virtual space on all processors [19,
3].

We can then declare a certain entry method to be sync, which allows it to
actually return data:

entry [sync] ReturnMsg∗ bar(..);

Then inside the implementation of the foo entry method, we can make a
call to bar, wait for the result, and seamlessly continue execution when the data
arrives:

Worker::foo(..) {
// do some computation
ReturnMsg∗ msg = remoteChare.bar(...);
// continue execution when msg arrives
}

Further, the call to remoteChare.bar() doesn’t need to be at the top level entry
method. In the earlier example, this call could be inside the body of the C++
function g(), which still works, because when the call is made, the user-level
thread simply suspends, with its stack intact.

Futures: Threads are useful for describing this interaction pattern, but we may
want to overlap the computation with the communication. In the above example,
once the sync entry method is invoked, we wait for the message from bar to arrive
before we proceed. However, although we know we will need the data from bar,
we may not need it immediately. A Future is an abstraction that allows us to
declare a container that will hold the data at some future time. The future will
only block when we try to “open” the container and access the data. Using
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futures, we can postpone waiting on the remote data until it is required for the
computation.

The future construct was described, in the sense we use it, in the multiLisp
system of Halstead [15], although multiple precursors existed before that. Taura,
Matsuoka, and Yonezawa [46] extended ABCL to support the future construct
as well.

The following code creates a CkFuture and passes it to an entry method:

Worker::foo(..) {
// do some computation
CkFuture ft = CkCreateFuture();
remoteChare.bar(ft, ...); // call the remote chare with a future
// continue execution
ReturnMsg∗ msg = (ReturnMsg∗)CkWaitFuture(ft); // wait on future
// execute using the data from the remote chare
}

Here, we create a future that will hold the data that remoteChare.bar(. . .) will
produce when it finishes execution. When we make the call to the remoteChare,
we include the future, so it has a place to put its response. Then, when we
actually need the data we can explicitly call CkWaitFuture(. . .), which will block
if the remote data has not arrived.

Instead of using SDAG to express Fibonacci, we can express the same con-
currency pattern using threaded methods and futures, as shown below. Note that
since Charm++, as a C++ library, does not have a translator, except for parsing
interface files and SDAG code, the method for accessing and setting futures is
somewhat verbose.

void run(int n, CkFuture f) {
if (n < THRESHOLD) result = seqFib(n);
else {

CkFuture f1 = CkCreateFuture();
CkFuture f2 = CkCreateFuture();
CProxy Fib::ckNew(n−1, f1);
CProxy Fib::ckNew(n−2, f2);
ValueMsg∗ m1 = (ValueMsg∗)CkWaitFuture(f1);
ValueMsg∗ m2 = (ValueMsg∗)CkWaitFuture(f2);
result = m1−>value + m2−>value;
delete m1; delete m2;
}
ValueMsg ∗m = new ValueMsg();
m−>value = result;
CkSendToFuture(f, m);
}

Synchronization Mechanisms Based on Threads The user level thread
mechanism underlying Charm++ is designed to be used in a flexible manner. The
API allows one to extract the (opaque) threadID of the currently running thread,
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to suspend the current thread (and thereby transferring control to the scheduler
which may resume another ready thread), and to “awaken” a thread (which puts
the threadID in the scheduler’s queue of ready threads). This API can be used to
implement customized synchronization mechanisms. As an example, a counting
semaphore can be implemented as shown in the pseudocode below:

wait(x) {
while (x−>value == 0) { enqueue(x−>waitingQ, CthThread()); CthSuspend(); };
x−>value−−; }

signal(x) { x−>value++; tid = dequeue(x−>waitingQ); CthAwaken(tid);}

Note that this works because Charm++’s threads are cooperative (not pre-
emptive), and each thread is confined to one core at a given time, until it is mi-
grated by the load balancer. Thread migration does not happen while a thread
is waiting in a queue, by convention.

3.4 Comparing Concurrency Control Mechanisms

So, should one use Dagger, SDAG, or threads in a given situation? The Dag-
ger mechanism is historically and empirically been subsumed by SDAG by the
Charm++ user community. The reasons are easy to discern and were alluded to
earlier: a structured graph is adequate for most real applications, and when it is
too restrictive, one can use the flat, reactive, entry methods of Charm++ to re-
store full concurrency. Using threads efficiently is more complicated. Again, sta-
tistically, most Charm++ users tend to prefer SDAG. Avoiding the (admittedly
small) extra overhead of threads, and the need to predict stack sizes, combined
with environment-dependent challenges of migrating threads for load balancing
are some of the reasons why. Also, the cleaner separation of parallel and sequen-
tial code that SDAG engenders (via the “serial” construct) is often seen as a
beneficial feature. On the other hand, some programmers find it beneficial to
not have that separation, and so prefer using threads. In particular, if you are
calling a function f from a threaded entry method, you do not have to know if
this function is completely local, or if it may request and block for some remote
data. That way, a function that is sequential today, may be modified by the
writer of that function to become parallel later, without requiring a code-change
in the caller’s code. Threads are also useful when you need to block for some
specific remote data when you are deep in the function-call stack.

The need for abstraction, especially arising out of supporting other program-
ming models, is another reason for using threads. For example, AMPI [19] im-
plements the well-known MPI abstraction on top of Charm++. To benefit from
Charm++’s load balancers, AMPI maps multiple MPI “ranks” on a single pro-
cessor. When one rank issues a receive call, and the data is not available, the
implementation needs to suspend the execution of the calling rank, and resume
execution on any other rank that is ready on that processor at that point. This
blocking receive can be implemented using Charm++ threads. AMPI imple-
ments each user “rank” (which the user thinks of as an MPI process) as a user-
level thread embedded in a Charm++ chare.



16

The specific issues that come up when one is trying to migrate a chare, in
which a user-level thread or a DAG is embedded, are discussed in our earlier pa-
per [51], which also presents detailed performance comparisons of the alternative
methods.

4 Controlling Concurrency across Parallel Objects

The control structures described so far: threads, futures, Structured Dagger, etc.,
can be used to control and manage the concurrency and control flow within a
chare. Charm++ also has several mechanisms to enable chares to work together
in various ways to increase efficiency and/or programmability.

4.1 Asynchronous Collective Operations

A simple example of this is allowing the use of asynchronous broadcasts and
reductions (as shown in the 5-point stencil example) over a chare array, which
can be sparsely populated and can grow and shrink over time without explicit
synchronization. In addition, Charm++ has a very efficient built-in algorithm
to detect termination across the entire system: the state when no messages are
in flight and all processors are idle [45]. The termination detection mechanism
in Charm++ is very easy to use, and only requires a single call to the system:

CkStartQD(CkCallback(...));

In the above snippet, whenever this call is made, the Charm++ runtime starts
its termination detection algorithm, and when it confirms quiescence, it triggers
the callback, which allows the user to define an arbitrary endpoint to be notified
(for instance, a entry method on a chare, or broadcast to a chare array).

An example where these features are very beneficial is adaptive mesh refine-
ment (AMR). In traditional MPI (and thus, in any bulk-synchronous) imple-
mentations of AMR, remeshing is an expensive operation that requires multiple
collective operations to determine when all the remeshing decisions are finished
propagating based on the mesh criteria. In the Charm++ implementation [36],
one abstracts the computation (structured as blocks in an oct-tree) as a dy-
namic collection of blocks indexed by their position in the tree using a chare
array. During remeshing, instead of using O(d) (where d is the depth of the
propagation) expensive collective operations over all the processors to deter-
mine when remeshing is finished, we use point-to-point messages to propagate
decision messages and then wait for termination to be detected by the system. A
recent paper [36] shows that this methodology is highly-scalable and has many
beneficial properties.

4.2 Queuing Policies

Charm++ allows a priority to be set for an entry method invocation; such
priorities are used to schedule a message when it arrives on the destination pro-
cessor. Under the hood, Charm++ maintains a queue of outstanding messages
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that execute in turn on each processor for the set of objects that live there.
When a message arrives, it is placed in the queue to be executed in a certain
order depending on its priority. Although message priorities are a heuristic, they
can be very important for obtaining high performance.

Message priorities can be set very easily for an invocation by adding a single
argument:

Worker::foo() {
CkEntryOptions opts;
opts.setPriority(100);
remoteWorker.method(data, &opts);
}

Note that Charm++ also allows priorities to be bit-vectors or other variable-
sized fields, which is useful for state-space search applications [6].

In addition, Charm++ allows the user to specify a queuing strategy that is
used for the message when it arrives on the destination processor. By default,
messages are enqueued in FIFO order, but this can be changed easily:

opts.setQueueing(CK QUEUEING LIFO);

An example where priorities make a high impact on application performance
is dense LU factorization. In dense LU factorization, the matrix being factorized
is decomposed into a 2D grid of blocks, which in the Charm++ implementa-
tion [38] is encapsulated in a chare array. We can succinctly describe the parallel
control flow of a non-pivoting LU in SDAG as follows:

1 entry void factor() {
2 for (step = 0; step < min(thisIndex.x, thisIndex.y); step++) {
3 overlap {
4 when recvL[step](blkMsg ∗mL) serial { L = mL; }
5 when recvU[step](blkMsg ∗mU) serial { U = mU; }
6 }
7 serial {
8 // Schedule the trailing update for sometime later with low priority
9 CkEntryOptions opts;

10 opts.setPriority(calcPrioDepOnLoc(x,y));
11 thisProxy(x,y).processTrailingUpdate(step, &opts);
12 }
13 when processTrailingUpdate[step](int step) atomic {
14 updateMatrix(L, U);
15 }
16 }
17 if (x == y) serial {
18 thisProxy(x,y).processLocalLU();
19 } else if (x < y)
20 when recvL[step](blkMsg ∗mL) serial { thisProxy(x,y).processComputeU(mL); }
21 else
22 when recvU[step](blkMsg ∗mU) serial { thisProxy(x,y).processComputeL(mU); }
23 };
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Each block goes through various phases as it executes depending on its location in
the matrix. The most critical operation for unleashing concurrency is performing
the diagonal factorization (line 18), which only depends on a few of the trailing
updates (matrix-matrix multiplies) to be executed (lines 2-16) (each diagonal
enables all the trailing updates below and to the right of the diagonal, but only
the ones above and to the left of the next diagonal are required to start that
computation).

Note in the above example when recvL and recvU arrive (lines 4-5) instead
of immediately executing the trailing update that is available, we delay the
execution by enqueuing a message in the local queue with low priority that will
start the trailing update (see lines 9-11). In this example, we exploit Charm++
prioritized scheduling to reduce the priority of an operation that might hamper
work directly on the critical path from executing.

4.3 Memory-aware Scheduling in LU

Another example of across-chare concurrency control also comes from LU factor-
ization. When LU is being weak-scaled, as it often is for obtaining the top-500
benchmark results, it needs to run very close to memory limits to obtain max-
imum performance and reach the FLOP limit of DGEMM (the matrix-matrix
multiplies that the trailing updates execute). The typical Charm++ idiom is
to send messages to a chare when the data is ready. However, for certain ap-
plications that are memory-sensitive, aggressively sending data when it is ready
might exceed memory limits on the receiving end.

In our highly-scalable implementation of dense LU [38], we demonstrate
how to exploit Charm++ groups to control incoming messages by explicitly
scheduling when messages arrive. For LU, instead of sending the block of data
when it is ready on the sender-side, we notify the receiver that the data is
ready and allow the receiver to determine which blocks to request based on
what is ready and the optimized schedule it has computed that adheres to the
dependencies natural in an LU computation. With this methodology, we are
able to achieve high performance without exceeding memory limits or treating
processors as first-class entities.

4.4 Charisma: Controlling Concurrency across chares

Let us turn now, from the runtime schemes for across-chare concurrency control
within a processor, to language-level mechanisms for controlling and expressing
concurrency across chares, even when they are spread across multiple processors.

Note that Structured Dagger allowed clean expression of the life-cycle of a
given chare, while still avoiding overly constraining the execution order, via the
overlap and forall statements. However, the behavior of the program as a
whole is not explicitly expressed; it remains an emergent property that needs to
be inferred from the descriptions of behaviors many chares, possibly belonging
to multiple chare arrays. Again, we built upon an empirical observation that
a fixed, data-independent communication pattern among the chares is common
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in most (but certainly not all) applications. For instance, in such applications,
which tend to be iterative, the content of messages and even their sizes may
change from iteration to iteration, but the basic pattern of message-exchanges
(the dataflow among the objects) remains the same. Charisma [18] is a notation
developed to facilitate elegant expression of such applications.

Charisma also supports multiple indexed collections of chares, as Charm++,
but their behavior is expressed by a collective script (hence we call it an orches-
tration language). This script is written in a special notation, while the sequential
code in the form of plain methods of chares is kept in separate C++ files. The
main statement in Charisma is a foreach statement.

foreach i in stencil[i]
stencil[i].foo();

end−foreach

The code above asks all members of a chare array (stencil) to execute their
method foo. More interestingly:

foreach i in stencil[i]
q[i] <− stencil[i].bar(p[i−1]);

end−foreach

tells each chare stencil[i] to consume the parameter p[i-1] and produce the param-
eter q[i]. The charisma compiler connects producers and consumers by generating
appropriate message-passing (Charm++ method invocations) code. The concur-
rency in Charisma is only constrained by data dependencies and program order.
Without going into technical details, and simplifying the example, the following
code fragment for the 5-point stencil computation illustrates Charisma.

foreach [i,j] in stencil
(top[i,j], bottom[i,j], left[i,j], right[i,j]) <− stencil[i,j].publishboundaries();
repeat

foreach [i,j] in stencil
(+error, top[i,j], bottom[i,j], left[i,j], right[i,j]) <−

stencil[i,j].publishboundaries(top[i+1,j], bottom[i−1,j],
left[i,j+1], right[i,j−1]);

until (error < THRESHOLD)

Values for the boundaries generated in previous iteration are consumed by
the neighbors in the next iteration. The + symbol preceding error specifies a
reduction (i.e. a commutative-associative operation). The operator for the re-
duction (here, max) is specified in the declarations, not shown here.

Although some applications, such as Barnes-Hut, are not amenable to Charisma,
because of the data-dependent data-flow they exhibit, a substantial class of ap-
plications are expressible using Charisma. Charisma scripts are compiled into
Structured Dagger programs.
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5 Case Studies and Performance

In this section, we summarize two case studies to demonstrate that the con-
currency control mechanisms, and specifically SDAG, lead to high performance
code. These case studies are taken from our 2011 HPC Challenge submission,
which won the class 2 award for programming language productivity [22].

5.1 LeanMD

LeanMD [23] is a molecular dynamics simulation benchmark written in Charm++.
It simulates the behavior of atoms using the Lennard-Jones potential to calculate
the interaction between uncharged molecules. The benchmark is similar to the
short-range non-bonded force calculation that NAMD calculates [7] and it also
resembles the miniMD application found in the Mantevo benchmark suite [16]
maintained by Sandia National Laboratory.

LeanMD is parallelized using a hybrid spatial and force decomposition. The
three-dimensional space consisting of molecules is divided into equal-sized cells
that hold a set of molecules using the cutoff distance rc and a margin. During
each iteration, the force calculation between a set of neighboring cells is assigned
to another set of parallel objects called the computes. Using the forces that
are sent to the computes, they perform the force integration and update the
properties of the atom — namely acceleration, velocity, and position.
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Fig. 3: Performance of LeanMD for the 2.8 million atoms system on Vesta (IBM
BG/Q) and Intrepid (IBM BG/P)

Our code is very short (only 693 lines of code1) and it can be dynamically
load balanced using many built-in strategies by Charm++, can be checkpointed
to disk or in-memory for fault tolerance, and is not sensitive to different shapes
of simulation domains nor to the number of processors.

The following is a snippet of SDAG code that shows the parallel flow of
control that describes the Cell object for LeanMD:

1 The line count was generated using David Wheeler’s SLOCCount.
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array [3D] Cell {
entry Cell();
entry void run() {

for(stepCount = 1; stepCount <= finalStepCount; stepCount++) {
// send current atom positions to my computes
serial { sendPositions(); }
// update properties of atoms using new force values
when reduceForces(vec3 forces[n], int n) serial { updateProperties(forces); }

if ((stepCount % MIGRATE STEPCOUNT) == 0) {
// send atoms that have moved beyond my cell to neighbors
serial { migrateParticles(); }
// receive particles from my neighbors
for(updateCount = 0; updateCount < inbrs; updateCount++) {

when receiveParticles(const std::vector<Particle> &updates) serial {
for (int i = 0; i < updates.size(); ++i)

particles.push back(updates[i]);
}
}
}

if (stepCount >= firstLb && (stepCount − firstLb) % lbPeriod == 0) {
serial { AtSync(); } // periodically call load balancer
when ResumeFromSync() { }
}

if (stepCount % checkptFreq == 0) { // periodically checkpointing
serial { contribute(CkCallback(CkReductionTarget(Cell,startCheckpoint),

thisProxy(0,0,0))); }
if (thisIndex.x == 0 && thisIndex.y == 0 && thisIndex.z == 0) {

when startCheckpoint() serial {
CkStartMemCheckpoint(CkCallback(CkIndex Cell::cpDone(),thisProxy));
}
}
when cpDone() { }
}
}
};
};

Figure 3 shows the scaling of LeanMD on BG/P and BG/Q — two IBM
supercomputers. We achieve near-linear scaling and demonstrate that load bal-
ancing is beneficial for obtaining high-efficiency. The checkpoint (milliseconds)
and restart time (100-200 milliseconds) for LeanMD is very low. As seen in the
above snippet, using all these features of Charm++ requires very little extra
work by the programmer.
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5.2 Dense LU Factorization

As described earlier, we have implemented a dense LU factorization library [38]
in Charm++ that fully conforms to the HPC Challenge [11] specification. Our
implementation is a fully-composable library (it can share space and time with
another parallel Charm++ module) that allows for flexible data placement (by
writing a simple block-to-processor function).

Our implementation has been scaled up to 8064 cores on Jaguar (Cray XT5
with 12 cores and 16GB per node) by increasing problem sizes to occupy a con-
stant fraction of memory (75%) as we increased the number of cores used. We
obtain a constant 67% of peak performance across this range. We also demon-
strate strong scaling on Intrepid, an IBM Blue Gene/P machine, by running a
fixed matrix size (n = 96, 000) from 256 to 4096 cores. The results are shown in
Figure 4.
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Fig. 4: Weak scaling (matrix occupies 75% of memory) from 120 to 8064 proces-
sors on Jaguar (Cray XT5).

6 Conclusion

We presented a historical overview of various mechanisms for controlling concur-
rency that have been developed for the Charm++ parallel programming system.
Within a single chare (a message driven object), the mechanisms included Dag-
ger, SDAG, and threaded entry methods based on migratable user-level threads.
Of these, SDAG was seen to be the most beneficial and popular method, al-
though threads combined with futures, and other synchronization mechanisms
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are very useful in somewhat narrower contexts. Mechanisms for coordination
and control of concurrency across chares, and indeed across processors, were
also discussed. These ranged from priorities, quiescence detection, memory aware
scheduling, as well as Charisma, an orchestration languages that specifies the be-
havior of a collection of chares, when they are known to exhibit static data-flow.
We included two case studies to demonstrate the raw performance attained by
Charm++ using these methods.

Charm++ has become one of the few parallel programming systems devel-
oped in academia that has been successful as a production-quality system for a
significant number of highly scalable parallel applications in Science and Engi-
neering, in regular use by scientists on supercomputers in USA and elsewhere.
In addition to being a programming language in its own right, it also forms a
substrate for development of other high level languages, of which Charisma is
an example. We expect that it will be used as a back-end by new programming
languages that will be developed by us and others; in this context, its support
for interoperability is very important.

As the field moves to more complex machines and increasingly sophisticated
adaptive applications, we think that Charm++ will play a larger role in the
coming years. Its features for tolerating component failures and for managing
power, energy and core temperatures will make it suitable for exascale comput-
ers. We expect the concurrency control abstractions described in this paper to
evolve to meet the challenges of this future.
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