
A Unifying Approach for Multistack Pushdown

Automata�

Salvatore La Torre1, Margherita Napoli1, and Gennaro Parlato2

1 Dipartimento di Informatica, Università degli Studi di Salerno, Italy
2 School of Electronics and Computer Science, University of Southampton, UK

Abstract. We give a general approach to show the closure under com-
plement and decide the emptiness for many classes of multistack visibly
pushdown automata (Mvpa). A central notion in our approach is the vis-
ibly path-tree, i.e., a stack tree with the encoding of a path that denotes
a linear ordering of the nodes. We show that the set of all such trees
with a bounded size labeling is regular, and path-trees allow us to design
simple conversions between tree automata and Mvpa’s. As corollaries of
our results we get the closure under complement of ordered Mvpa that
was an open problem, and a better upper bound on the algorithm to
check the emptiness of bounded-phase Mvpa’s.

1 Introduction

Pushdown automata working with multiple stacks (multistack pushdown au-
tomata, Mpa for short) are a natural model of the control flow of shared-memory
multithreaded programs. They are as much expressive as Turing machines al-
ready when only two stacks are used (the two stacks can act as the two halves
of the tape portion in use). Therefore, the research on Mpa’s related to the
development of formal methods for the analysis of multithreaded programs has
mainly focused on decidable restricted versions of these models (as a sample of
recent research see [2–6, 8, 9, 12, 14–18, 20]).

Formal language theories are a valuable source of tools for applications in other
domains. Robust definitions, i.e., classes with decidable decision problems and
closed under the main language operations (among all the Boolean operations),
are particularly appealing. For instance, in the automata-theoretic approach to
model-checking linear-time properties, the verification problem can be rephrased
as a language inclusion or checking the emptiness of a language intersection,
pattern-matching problems are often rephrased as membership queries. In a
recent paper [10], the authors define a notion of perfect class of languages as a
class that is closed under the Boolean operations and with a decidable emptiness
problem, and investigate perfect classes modulo bounded languages.

Robust theories of Mpa’s introduced in the literature rely on both a restric-
tion on the admitted behaviours [12–14] and the visibility [1] of stack operations
(each symbol of the input alphabet explicitly identifies if a push onto stack
i, or a pop from stack i, or no stack operation must happen on reading it).

� Partially supported by the FARB grants 2011-2013, Università degli Studi di Salerno.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 377–389, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

378 S. La Torre, M. Napoli, and G. Parlato

The restriction is imposed to gain the decidability of the emptiness problem.
Visibility instead gains the closure under intersection, which does not hold also
for a single stack pushdown automaton (with visibility, stack operations on a
same stack synchronize). It is not a severe restriction for applications, the se-
quence of locations visited in the executions of programs being indeed visible.

In the literature, the results on Mpa’s are shown with different techniques
for the different restrictions. Here, we introduce a unifying approach to show
the two main technical challenges in proving robustness: emptiness decidability
and closure under complement. We introduce the notion of visibly path-tree, that
incidentally also allows us to define a robust class of multistack visibly pushdown
automata (Mvpa) that subsumes the main classes indentified in the literature.

A visibly path-tree is essentially a tree that encodes a visibly multi-stack
word such that: (1) the left child of a node is its linear successor and the right-
child relation captures the relations among matching calls (each causing a push
transition on a specified stack) and returns (each causing a pop transition on a
specified stack) and (2) it has an additional labeling that encodes a traversal of
the tree that reconstructs the corresponding word. This labeling is formed by an
ordered sequence of pairs, each composed of a direction (pointing to a neighbor
in the tree) and an index (denoting the position of the pair to follow in the
pointed neighbor). We define the class Tmvpa by restricting Mvpa to languages
that for a given k > 0, contain only words that can be encoded into a visibly
k-path-tree, i.e., a path-tree with at most k pairs in the labeling of each node.

Our first result is to construct, for an Mvpa A over an n-stack alphabet, two
tree automata Pk and Ak. Pk accepts the set PTk of all visibly k-path-trees and
has size 2O(nk). If the input is a k-path-tree, Ak accepts it iff it encodes a word
accepted by A. Ak has size O(|A|k). Thus, we reduce the emptiness problem
for Tmvpa to checking the emptiness of the intersection of Pk and Ak, that
yields a 2O(k(n+log |A|)) time solution. To show the closure under complement we
first take the tree automaton for the intersection of Pk and the complement of
Ak, and then, from this, we construct Ā that accepts the complement of the
language accepted by A. The size of Ā is exponential in the size of A and doubly
exponential in k. From the effectiveness of these two proofs, we also get the
decidability of containment, equivalence and universality problems.

Our approach is general, in the sense that it indeed works for each class of
Mvpa’s that is defined by a restriction R that refines the bounded path-tree
restriction used to define Tmvpa, i.e., such that there is a bound k that suffices
to encode in k-path-trees all the words satisfying R. This is sufficient for the
complement since the actual restriction is captured by the resulting Mvpa in
the end. Instead for the emptiness, we also need to construct an additional tree
automaton that exactly captures the restriction R on the k-path-trees.

As corollaries of our results, we show the closure under complement for ordered

Mvpa that was open1 and an algorithm in time 2(n+log |A|)2O(d)

to check the

1 A proof via determinization was given in [8], but that is wrong since the language of
all the words (ab)icjdi−jxjyi−j is both accepted by a 2-stack Omvpa and inherently
nondeterministic for Mvpa’s [13].

A Unifying Approach for Multistack Pushdown Automata 379

emptiness for bounded-phase Mvpa, improving the 2|A|2
O(d)

bound shown in
[11, 12] and matching the bound that can be derived from the results of [9].

Our path-tree representation has been inspired by the tree decomposition of
bounded-phase and ordered words given in [19]. Concerning the closure under
complement, our construction is structured as that from [12] but differs from
it for the tree encoding of runs (path-tree) and thus in the tree automata con-
structions. Further, the approach from [12] does not apply directly to the ordered
restriction and a different encoding would be needed. We give (i) a unifying ap-
proach for bounded-phase and ordered restrictions by a less restrictive limitation,
and (ii) sufficient conditions for applying our constructions to new restrictions
that can be captured by bounded path-trees.

2 Preliminaries

For i, j ∈ N, we let [i, j] = {d ∈ N | i ≤ d ≤ j} and [j] = [1, j].

Words over call-return alphabets. Given a finite alphabet Σ and an integer
n > 0, an n-stack call-return labeling is a labΣ,n : Σ → ({ret , call}× [n])∪{int},
and an n-stack call-return alphabet is ˜Σn = (Σ, labΣ,n). We fix the n-stack

call-return alphabet ˜Σn = (Σ, labΣ,n) for the rest of the paper.
For h ∈ [n], we denote Σh

r = {a ∈ Σ | labΣ,n(a) = (ret , h)} (set of re-
turns), Σh

c = {a ∈ Σ | labΣ,n(a) = (call , h)} (set of calls), and Σint = {a ∈
Σ | labΣ,n(a) = int} (set of internals). Moreover,Σc =

⋃n
h=1 Σ

h
c , Σr =

⋃n
h=1 Σ

h
r

and Σh = Σh
c ∪Σh

r ∪Σint .

A stack-h context is a word in (Σh)∗. For a word w = a1 . . . am over ˜Σn,
denoting Ch = {i ∈ [m] | ai ∈ Σh

c } and Rh = {i ∈ [m] | ai ∈ Σh
r }, the matching

relation ∼h defined by w is such that (1) ∼h⊆ Ch ×Rh, (2) if i ∼h j then i < j,
(3) for each i ∈ Ch and j ∈ Rh s.t. i < j, there is an i′ ∈ [i, j] s.t. either i′ ∼h j
or i ∼h i′, and (4) for each i ∈ Ch (resp. i ∈ Rh) there is at most one j ∈ [m] s.t.
i ∼h j (resp. j ∼h i). When i ∼h j, we say that positions i and j match in w. If
i ∈ Ch and i �∼h j for any j ∈ Rh, then i is an unmatched call. Analogously, if
i ∈ Rh and j �∼h i for any j ∈ Ch, then i is an unmatched return.
Multi-stack visibly pushdown languages. A multi-stack visibly pushdown
automaton over an n-stack call-return alphabet pushes a symbol on stack h when
it reads a call of the stack h, and pops a symbol from stack h when it reads a
return of the stack h. Moreover, it just changes its state, without modifying any
stack, when reading an internal symbol. A special bottom-of-stack symbol ⊥ is
used: it is never pushed or popped, and is in each stack when computation starts.
Amulti-stack visibly pushdown automaton (Mvpa) A over ˜Σn is (Q,QI , Γ, δ,QF)
where Q is a finite set of states, QI ⊆ Q is the set of initial states, Γ is a finite
stack alphabet containing ⊥, δ ⊆ (Q×Σc×Q× (Γ\ {⊥}))∪ (Q×Σr×Γ ×Q)∪
(Q×Σint ×Q) is the transition function, and QF ⊆ Q is the set of final states.
Moreover, A is deterministic if |QI | = 1, and |{(q, a, q′) ∈ δ} ∪ {(q, a, q′, γ′) ∈
δ} ∪ {(q, a, γ, q′) ∈ δ}| ≤ 1, for each q ∈ Q, a ∈ Σ and γ ∈ Γ .

A configuration of an Mvpa A over ˜Σn is a tuple α = 〈q, σ1, . . . , σn〉, where
q ∈ Q and each σh ∈ (Γ \ {⊥})∗.{⊥} is a stack content. Moreover, α is initial

380 S. La Torre, M. Napoli, and G. Parlato

if q ∈ QI and σh =⊥ for every h ∈ [n], and accepting if q ∈ QF . A transition

〈q, σ1, . . . , σn〉 a−→A 〈q′, σ′
1, . . . , σ

′
n〉 is such that one of the following holds:

[Push] a ∈ Σh
c , ∃γ ∈ Γ \ {⊥} such that (q, a, q′, γ) ∈ δ, σ′

h = γ ·σh, and σ′
i = σi

for every i ∈ ([n] \ {h}).
[Pop] a ∈ Σh

r , ∃γ ∈ Γ such that (q, a, γ, q′) ∈ δ, σ′
i = σi for every i ∈ ([n]\{h}),

and either γ �=⊥ and σh = γ · σ′
h, or γ = σh = σ′

h =⊥.
[Internal] a ∈ Σint, (q, a, q

′) ∈ δ, and σ′
h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of A on w from α0 to αm, denoted
α0

w−→A αm, is a sequence of transitions αi−1
ai−→A αi, for i ∈ [m]. A word

w is accepted by A if there exist an initial configuration α and an accepting
configuration α′ such that α

w−→A α′. The language accepted by A is denoted with
L(A). A language L ⊆ Σ∗ is a multi-stack visibly pushdown language (Mvpl) if

there exist an Mvpa A over ˜Σn = (Σ, labΣ,n) such that L = L(A).

3 Visibly Path-Trees

Trees. A (binary) tree T is any finite prefix-closed subset of {↙,↘}∗. A node
is any x ∈ T , the root is ε and the edge-relation is implicit: edges are pairs of the
form (v, v.d) with v, v.d ∈ T and d ∈ {↙,↘}; for a node v, v. ↙ is its left-child
and v. ↘ is its right-child. We also denote with v. ↑ the parent of v, and with
D = {↑,↙,↘} the set of directions. For a finite alphabet Υ , a Υ -labeled tree is
a pair (T, λ) where T is a tree, and λ : T → Υ is a labeling map.

Path-trees. For a tree T , a T -path π is any sequence π = v1, v2, . . . , v� of T
nodes s.t. (1) v1 is the root of T , (2) for i ∈ [�− 1], vi+1 is vi.di for some di ∈ D
(π corresponds to a traversal of T), (3) for i ∈ [� − 1], v� �= vi (the last node
occurs once in π), (4) π contains at least one occurrence of each node in T , and
(5) for i ∈ [1, �− 1], if vi is the first occurrence of a node v ∈ T that has a left
child, i.e., v. ↙∈ T , then vi+1 is the first occurrence of v. ↙ in π (in the T
traversal, we first visit the left child of any newly discovered node).

ε

(↙, 1) (↘, 1) (↙, 4)

1(↙, 1) (↘, 1) (↑, 2) (↙, 2) 2 (↙, 1) (↑, 3)

3(↑, 2) (↙, 1) 4(↑, 3)

6(�,�)

5 (↑, 2)

Fig. 1. A sample path-tree T1

For the tree T1 in Fig. 1, π1 =
ε, 1, 3, 1, 4, 1, ε, 2, 5, 2, ε, 1, 3, 6 is
a T1-path. By deleting exactly
one occurrence of any node in
π1 or concatenating more occur-
rences, the resulting sequence
would not satisfy one of the
above properties.

We introduce the notion of
path-tree, that is, a labeled tree
(T, λ) that encodes a T -path
in its labels as follows. Denote
dir+� = dir+∪{(�,�)} where dir = D×N and � �∈ D∪N. Except for one node
that is labeled with (�,�), each other node has a label in dir+. The labeling
is such that by starting from the first pair of the root, we can build a chain of

A Unifying Approach for Multistack Pushdown Automata 381

pairs ending at (�,�). In such a chain, a pair (d, i) labeling a node u is followed
by the i-th pair labeling u.d (i.e., a child or the parent of u, depending on d).
For example, a pair (↙, 2) at a node u denotes that the next pair in the chain is
the second pair labeling its left child. The sequence of nodes visited by following
such a chain is the path defined by λ in T . To ensure that the defined path is
a T -path, we require some additional properties on λ which are detailed in the
formal below. In Fig. 1, we give a path-tree T1 and emphasize the chain defined
by the labels of T1 by linking the pairs with dashed arrows. The path defined by
the labeling of T1 is the path π1 above, which is a T1-path.

In the following, for a sequence ρ = (d1, i1) . . . (dh, ih) ∈ dir+�, we let |ρ| = h
and denote with ρ[j] = (dj , ij), for j ∈ [h].

Definition 1. A dir+�-labeled tree (T, λ) is a path-tree if there is exactly one
node labeled with (�,�) and, for every node v of T with λ(v)=(d1, i1) . . . (dh, ih),
and for every j ∈ [h], the following holds:
1. if ij �= � then v.dj is a node of T and ij ≤ |λ(v.dj)| (pointed pair exists);
2. if v �= ε or j > 1, then there are exactly one node u and one index i ≤ |λ(u)|

s.t. λ(u)[i] = (d, j) and u.d = v (except for the first pair labeling the root,
every pair is pointed exactly from one adjacent node);

3. if v = u.d, for a node u of T and d ∈ {↙,↘}, then there exists i ≤ |λ(u)|
s.t. λ(u)[i] = (d, 1) (except for the root the first pair in a label is always
pointed from the parent);

4. if v. ↙∈ T then λ(v)[1] = (↙, 1) (the first pair in a label always points to
the first pair of the left child, if any);

5. if j < h there is a i > ij s.t. λ(v.dj)[i] is (↑, j + 1), if dj ∈ {↙,↘}, and
λ(v.dj)[i] is (↙, j+1) (resp. (↘, j+1)), if dj =↑ and v is a left (resp. right)
child (if a pair of v points to a pair β of an adjacent node u = v.dj , the next
pair of v is pointed from a pair β′ of u that follows β in the u labeling);
moreover, for all � ∈ [ij + 1, i− 1], λ(v.dj)[�] does not point to a pair of v.

Path-trees define T -paths. We define a function tp that maps each path-tree
(T, λ) into a corresponding sequence of T nodes, and show that indeed tp(T, λ)
is a T -path. Let π = v1, . . . , v�, and d1, . . . , d�, and i1, . . . , i� be the maximal
sequences such that (1) v1 is the root and λ(v1)[1] = (d1, i1), and (2) for j ∈ [2, �],
vj = vj−1.dj−1 and λ(vj)[ij−1] = (dj , ij). We define tp(T, λ) as the sequence π.
Also, we say that, in π, the occurrence v1 corresponds to the first pair of the
root and the occurrence vj+1 of a node v ∈ T corresponds to the ij-th pair of v,
for j ∈ [�− 1]. The following lemma holds:

Lemma 1. For each path-tree T = (T, λ), node u and i ≤ |λ(u)|, the i-th
occurrence of u in tp(T) corresponds to the i-th pair of u, and tp(T) is a T -path.

From T -paths to path-trees. For a T -path π, we define pt(π) as the tree whose
labeling defines exactly π. We iteratively construct a sequence of labeling maps
by concatenating a pair at each iteration.
Denote dir∗� = dir∗ ∪ {(�,�)}. For a T -path π = v1, . . . , v� and i ∈ [�], let
λπ
i : T → dir∗� be the mapping defined as follows:

382 S. La Torre, M. Napoli, and G. Parlato

– λπ
1 (v1) = (d1, 1), v2 = v1.d1 and λπ

1 (v) = ε for every v ∈ T \ {v1};
– for i ∈ [2, �− 1], λπ

i (vi) = λπ
i−1(vi).(di, j + 1) where j = |λπ

i−1(vi+1)|, vi+1 is
vi.di and for every v ∈ T \ {vi}, λπ

i (v) = λπ
i−1(v);

– λπ
� (v�) = (�,�), and λπ

� (v) = λπ
�−1(v) for every v ∈ T \ {v�}.

Define pt(π) as (T, λπ
�). From the definitions we get:

Lemma 2. For any T -path π and path-tree Z, tp(pt(π))=π and pt(tp(Z))=Z.

Visibly path-trees. Let T = (T, (λdir , λΣ)) be such that (T, λdir) is a path-

tree and λΣ maps each node of T to a symbol from ˜Σn. With wordT we denote
the word λΣ(v1) . . . λΣ(vh) where v1 . . . vh is obtained from tp(T, λdir) by re-
taining only the first occurrences of each T node. Also, for a node z of T , we
set posT (z) = i if z = vi, that is, posT denotes the position corresponding to z
within wordT .

Intuitively, a visibly path-tree is a path-tree with an additional labeling such
that the right child relation captures exactly the matching relations defined by
the word corresponding to the encoded T -path. Formally, a visibly path-tree T
over ˜Σn is a labeled tree (T, (λdir , λΣ)) such that (1) (T, λdir) is a path-tree and
(2) v is the right child of u if and only if posT (u) ∼h posT (v) in wordT , for some
h ∈ [n] (right-child relation corresponds to the matching relations of wordT).

For k > 0, a visibly k-path-tree is a visibly path-tree T = (T, (λdir , λΣ)) such
that each λdir (v) contains at most k pairs.

Tree encoding of words. We can map each word w = a1 . . . a� over ˜Σn to a
visibly path-tree wt(w) = (T, (λdir , λΣ)) as follows. The labeled tree (T, λΣ) is
such that |T | = �, a1 labels the root of T and for i ∈ [2, �]: ai labels the right
child of the node labeled with aj, j < i, if j ∼h i for some h ∈ [n], and labels
the left child of the node labeled with ai−1, otherwise.

a

db

fa

db

fa

cb

e

Fig. 2. The visibly path-tree wt(w) for w =
(ab)3 cd2 ef2

Define a path πw = v1π2 . . . π�

of T such that v1 is the root of T
and for i ∈ [2, �], πi is the ordered
sequence of nodes that are visited
on the shortest path in T from the
node corresponding to ai−1 to that
corresponding to ai (first node ex-
cluded). It is simple to verify that
indeed πw is a T -path. Thus, we
define λdir to encode πw, i.e., such
that tp(T, λdir) = πw.

A k-path-tree word w over ˜Σn is
s.t. wt(w) is a visibly k-path-tree

over ˜Σn. Fig. 2 gives an example of
the visibly 5-path-tree corresponding to the word (ab)3 cd2 ef2 with call-return
alphabet where a is a call and c, d are returns of stack 1, and b is a call and e, f
are returns of stack 2.

In the following, we denote with Tk(˜Σn) the set of all k-path-tree words and

with PTk(˜Σn) the set of all the visibly k-path trees, over ˜Σn.

A Unifying Approach for Multistack Pushdown Automata 383

4 Two Base Constructions Used in Our Approach

We assume that the reader is familiar with the standard notion of nondetermin-
istic tree automata (see [21]).

Regularity of PTk(˜Σn). We construct a tree automaton Pk accepting PTk(˜Σn)
as the intersection of two automata P and R, where, for an input tree T =
(T, (λdir , λΣ)), P checks that (T, λdir) is indeed a path-tree and R checks that
the right-child relation of T corresponds to the matching relations of wordT .

Note that each property stated in Def. 1 is local to each node and its children.
Thus, P can check them by storing in its states the label of the parent of the
current node. Assuming a bound k on the number of pairs labeling each node,
the size of P is thus exponential in k.

To construct R, we first construct an automaton for the negation of property
(2) of the definition of visibly path-tree and then complement it.

Fix T = (T, (λdir , λΣ)) and for any two nodes u, v of T , define < s.t. u < v
holds iff the first occurrence of u precedes the first occurrence of v in tp(T, λdir).

We recall property (2): “a node v is the right child of u in T if and only
if posT (u) ∼h posT (v) in wordT , for some h ∈ [n]”. By the definition of ∼h,
h ∈ [n], the negation of property (2) holds iff either:

1. there are u, v ∈ T s.t. v is the right child of u, λΣ(u) ∈ Σh
c (call of stack h)

and λΣ(v) �∈ Σh
r (not a return of stack h); or

2. there are u, v ∈ T s.t. u<v, and (i) λΣ(u)∈Σh
c and u has no right child, and

(ii) λΣ(v) ∈Σh
r and v is not a right child (i.e., by the right-child relation,

there are a call and a return of stack h that are both unmatched); or
3. there are u, v ∈ T s.t. v is the right child of u, λΣ(u)∈Σh

c , and either:
i. there is a w ∈ T s.t. u < w < v and either (a) λΣ(w) ∈ Σh

c and w has
no right child, or (b) λΣ(w)∈Σh

r and w is not a right child (i.e., the right-
child relation leaves unmatched either a call or a return occurring between
a matched pair of the same stack h); or
ii. there are w, z ∈ T s.t. z is the right child of w, λΣ(w)∈Σh

c , and either
w < u < z < v or u < w < v < z (i.e., the right-child relation restricted to
stack h is not nested).

For h ∈ [n] and assuming (T, λdir) is a path tree s.t. |λdir (u)| ≤ k for each u ∈ T ,
we construct an automaton Bh as the union of four automata, one for each of
the above violations 1, 2, 3.i and 3.ii. Thus, Bh accepts T iff the right-child
relation of T does not capture properly the matching relation ∼h of wordT (i.e.,
property (2) does not hold w.r.t. the matching relation ∼h).

The first automaton nondeterministically guesses a node u and then accepts
iff u has a right child, say v, and the labels of u and v witness violation 1. The
number of states of this automaton is constant w.r.t. k and n.

In the other violations, the < relation is used. We now describe an efficient
construction to capture this relation by a tree automaton on k-path-trees and
then conclude the discussion on the remaining violations.

384 S. La Torre, M. Napoli, and G. Parlato

Checking u < v. We first assume that the input tree has two marked nodes u
and v. Observe that u < v holds iff either (a) v is in the subtree rooted at u, or
(b) there are a node w with two children and i ≤ |λdir (w)| s.t. u and v are in two
different subtrees rooted at the children of w, and in tp(T) the i-th occurrence
of w occurs in between the first occurrence of u and the first occurrence of v.

Property (a) can be easily checked by a top-down tree automaton with a
constant number of states. For property (b), we construct a tree automaton S
that nondeterministically guesses the node w, its child wu whose subtree con-
tains u and its child wv whose subtree contains v. Then, denoting λdir (w) =
(d1, i1) . . . (d�, i�), it guesses two pairs (dr, ir), (ds, is) such that r < s, w.dr = wu

and w.ds = wv, with the meaning that: the first occurrence of u must be in be-
tween the r-th and the (r + 1)-th occurrence of w, and the first occurrence of
v must be in between the s-th and the (s+1)-th occurrence of w (if any). By
Lemma 1, this is ensured by checking that u is visited on its first pair by starting
from the ir-th pair of w and before reaching the ir+1-th pair of w, and similarly v
w.r.t. the is-th and is+1-th pairs of w. The guessed ir and the request of search-
ing for the first occurrence of u are passed onto wu, analogously is and v are
passed onto wv. Each such request is then passed along a nondeterministically
guessed path in the respective subtrees, updating the indices according to the
given intuition. S rejects the tree if it can visit the requested node but not on
its first pair, or it reaches a leaf, and either (i) it has not guessed the node w
yet or (ii) is on a selected path and the requested node was not found. In all the
other cases it accepts.

Overall, we can construct S with an initial state (that is used also to store
that w has not being guessed yet), an acceptance state, a rejection state and
states of the form (i, x) where i ∈ [1, k] and x ∈ {u, v} (storing the request after
w is guessed). Thus, in total, it has 3 + 2 k states.
< relations over many nodes. To check Boolean combinations of constraints of
the form u < v, we can of course use the standard construction with unions
and intersections of copies of S, that will yield an automaton with polynomially
many states. A more efficient construction that is linear in k can be obtained by
generalizing the approach used for S to capture the wished relation directly.
Handling the remaining violations. By using an automaton as above to check a
proper ordering of the guessed nodes, we can design the tree automata for the
rest of the violations quite easily. For example, consider the violation 3.ii. Denote
with S′ the automaton that checks w < u < z < v and with S′′ the automaton
that checks u < w < v < z. Assuming that u, v, w, z are marked in the input
tree, the properties v is the right child of u, z is the right child of w, and u,w are
labeled with calls of stack h are local to the nodes u,w and their right children,
thus can be easily checked by a tree automaton M with a constant number of
states. Thus, we construct a tree automaton, that captures the intersection of
M with the union of S′ and S′′. This automaton, by a direct construction of the
automaton equivalent to the union of of S′ and S′′ as observed above, can be
built with a number of states linear in k. From it, the automaton V3ii checking
for violation 3.ii can be obtained by removing the assumption on the marking

A Unifying Approach for Multistack Pushdown Automata 385

of u, v, w, z as in the usual projection construction. Thus it can be constructed
with a number of states that is linear in k.

Similarly for the other violations we get corresponding tree automata with
O(k) states, and thus also Bh also has O(k) states.

For each tree T ∈ L(P) that is not accepted by Bh, we get that its right-child
relation does not violate the ∼h relation. Thus, denoting with B̄h the automaton
obtained by complementing Bh, if we take the intersection of all B̄h for h ∈ [n],
we get an automaton checking property (2) of the definition of visibly k-path-
tree provided that the input tree T ∈ L(P), i.e., (T, λdir) is a path-tree. Since
complementation causes an exponential blow-up in the number of states, the size
of each B̄h is 2O(k), and the automaton resulting from their intersection has size
2O(nk). Therefore, we get:

Theorem 1. For k ∈ N, there is an effectively constructible tree automaton
accepting PTk(˜Σn) of size exponential in n and k.

Tree automaton for an Mvpa. By assuming T ∈ PTk(˜Σn), we can construct a
tree automaton Ak that captures the runs of A over wordT .

Assume that our tree automaton can read the input tree T by moving along
the path tp(T) (not just top-down but as a tree-walking automaton that moves
by following the encoded path). Also assume that each node labeled with a
call is also labeled with a stack symbol (that is used to match push and pop
transitions). We can then simulate any run of A by mimicking its moves at each
node u when it is visited for the first time (from Lemma 1 this happens when
a node is visited on its first pair). To construct a corresponding top-down tree
automaton we use the fact that on each run of the above automaton we cross
a node at most k times and according to the directions annotated in its labels.
Thus we can use as states ordered tuples of at most k states of A, and design
the transitions as in the standard construction from two-way to one way finite
automata, moving top-down in the tree and matching the state of a node with
the states of its children according to the directions in the labels. When such a
matching is not possible, the automaton halts rejecting the input. On the only
node labeled with (�,�), it accepts iff A accepts. The tree automaton Ak is
then obtained from this automaton by projecting out the stack symbols from
the input, and therefore, its size is O(|A|k).

Lemma 3. For an Mvpa A and a k-path-tree T , Ak accepts T iff wordT ∈
L(A). The size of Ak is O(|A|k).

5 A General Approach for Complement and Emptiness

We first introduce two properties for classes of Mvpl languages by using the
notion of k-path-trees. Given an Mvpl class L, the first property requires that
there is a k s.t. each word in a language of L can be encoded as a visibly k-
path-tree. We show that each class that has such a property is closed under
complement. The second property requires in addition that the language of all

386 S. La Torre, M. Napoli, and G. Parlato

k-path-trees corresponding to words in the languages of L is regular. We show
that for each such class the emptiness problem is decidable.

Mvpl classes and properties. We consider here a generic notation Xp̄(˜Σn)

for sets of words over a call-return alphabet ˜Σn, each set being characterized
by a particular restriction, captured by the symbol X , and parameterized over
a possibly empty tuple of integer-valued parameters p̄. For example, we have
already defined the set Tk(˜Σn) of the k-path-tree words. Another example is

Cb(˜Σn) that denotes the set of all words w ∈ Σ∗ that can be split into w1 . . . wb,
where wi contains calls and returns of at most one stack, for i ∈ [b] (bounded
context-switching [20]).

We denote with Xmvpl the class of all the languages L ⊆ Σ∗ such that there
exist an n-stack call-return labeling labΣ,n, a valuation of the parameters p̄, and

an Mvpa A over ˜Σn = (Σ, labΣ,n) for which L = L(A) ∩ Xp̄(˜Σn). For example,

Tmvpl denotes such a class for Xp̄(˜Σn) = Tk(˜Σn).
A class Xmvpl is PT-covered if for each n > 0 and p̄, there exists a k > 0

such that Xp̄(˜Σn) ⊆ Tk(˜Σn). We refer to such k as the PT-parameter. A class
Xmvpl is PT-definable if it is PT-covered and there is an automaton AXp̄(˜Σn)

that accepts the set of all trees wt(w) s.t. w ∈ Xp̄(˜Σn). Clearly, Tmvpl is PT-
definable.

Deterministic Mvpa’s do not capture all Tmvpl. Let L1 be the language
{(ab)i ci−jdj ei−jf j | i ≥ j > 0} and assume the call-return alphabet as in the
example of Fig. 2. An Mvpa A accepting L1 just needs to guess the value of j (by
nondeterministically switching to a different symbol to push onto both stacks)
after reading a prefix (ab)j and then check exact matching with the returns.
Also, notice that for each w ∈ L1, w is also 5-path-tree (see Fig. 2), and since
L1 is inherently nondeterministic for Mvpas [13], we get:

Lemma 4. The class of Mvpa’s that captures Tmvpl is not determinizable.

Complement. Consider a Xmvpl language L over a call-return alphabet ˜Σn.
The complement of L in Xmvpl is L̄ = Xp̄(˜Σn) \ L.

Despite of Lemma 4, we show that Tmvpl, and in general any PT-covered
Mvpl class, are all closed under complement. For this, consider an Mvpa A, and
denote with Pk the tree automaton accepting PTk(˜Σn) and Ak, as in Section 4.
We can complement Ak and then take the intersection with Pk, thus capturing
all the trees T ∈ PTk(˜Σn) s.t. wordT is not accepted by A. The size of the
resulting tree automaton B̄k is exponential in |A| and doubly exponential in k.

The following lemma concludes the proof.

Lemma 5. For any tree automaton H with L(H) ⊆ PTk(˜Σn), there is an ef-

fectively constructible Mvpa H over ˜Σn such that L(H) is the set of all the
k-path-tree words wordT such that T ∈ L(H). Moreover, the size of H is poly-
nomial in the size of H and exponential in n.

Intuitively, from H, we can construct an Mvpa H that mimics H transitions
as follows: on internal symbols, H moves exactly as H (there is no right child);

A Unifying Approach for Multistack Pushdown Automata 387

on call symbols, H enters the state that H would enter on the left child and
pushes onto a stack the one that H would enter on the right child; on return
symbols, H acts as if the current state is the one popped from the stack. The
correctness of this construction relies on the fact that for each tree T ∈PTk(˜Σn),
the successor position in wordT corresponds to the left child in T , if any, or else,
to a uniquely determined node (a right child) labeled with a return matching
the most recent still unmatched call of the stack.

From the above lemma we can construct an Mvpa Ā that accepts all words w
such that wt(w) ∈ L(B̄k). Being the size of Ā polynomial in |B̄k| and exponential

in n, we get (notice that since Xp̄(˜Σn) ⊆ Tk(˜Σn), the words in L(Ā) that are

not in Xp̄(˜Σn) are ruled out by the intersection with this set):

Theorem 2. Any PT-covered class Xmvpl is closed under complement. Also,
for an Mvpa A, there is an effectively constructible Mvpa Ā s.t. L(Ā)∩Xp̄(˜Σn) =

Xp̄(˜Σn) \ L(A), and its size is exponential in |A| and doubly exponential in the
PT-parameter.

As corollaries of the above theorem, we get the closure under complement of
two well-known classes of Mvpl: Pmvpl defined by the sets Pd(˜Σn) of all words
with a number of phases bounded by d [12], and Omvpl defined by the sets

O(˜Σn) of all words for which when a pop transition happens it is always from
the least indexed non-empty stack [7]. In fact, by the tree-decompositions given
in [19] we get that Omvpl is PT-covered with k = (n + 1)2n−1+ 1, where n is
the number of stacks, and Pmvpl is PT-covered for k = 2d + 2d−1 + 1, where d
is the bound on the number of phases.

Corollary 1. Omvpl (resp. Pmvpl) is closed under complement. Moreover, for

an Mvpa A, there is an effectively constructible Mvpa Ā s.t. L(Ā) ∩O(˜Σn) =

O(˜Σn)\L(A) (resp. L(Ā)∩Pd(˜Σn) = Pd(˜Σn)\L(A)), and its size is exponential
in the size of A and triply exponential in n (resp. d, where d is the bound on the
number of phases).

Emtpiness. For PT-definable classes Xmvpl, we reduce the emptiness problem
to the emptiness for tree automata by constructing a tree automaton given as
intersection of AXp̄(˜Σn)

, Pk and Ak, where k is the PT-parameter.

Theorem 3. The emptiness problem for any PT-definable class Xmvpl is de-
cidable in |AXp̄(˜Σn)

| |A|k 2O(nk) time, where A is the starting Mvpa and n is the

number of stacks.

The size of AXp̄(˜Σn)
is bounded by the size of Pk in both Omvpl and Pmvpl

(we can construct such automata from simple MSO formulas capturing the re-
strictions and using the linear successor relation, see [12, 19]), thus we get:

Corollary 2. The emptiness problem for Pmvpl (resp. Omvpl) is decidable in

2(n+log |A|)2O(d)

(resp. |A|2O(n log n)

) time, where A is the starting Mvpa, n is the
number of stacks and d is the bound on the number of phases.

388 S. La Torre, M. Napoli, and G. Parlato

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211.
ACM (2004)

2. Atig, M.F.: Model-checking of ordered multi-pushdown automata. Logical Methods
in Computer Science 8(3) (2012)

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2Etime-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

4. Atig, M.F., Bouajjani, A., Narayan Kumar, K., Saivasan, P.: Linear-time model-
checking for multithreaded programs under scope-bounding. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 152–166. Springer, Heidelberg
(2012)

5. Bansal, K., Demri, S.: Model-checking bounded multi-pushdown systems. In:
Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 405–417.
Springer, Heidelberg (2013)

6. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model checking multi-stack
systems. In: LICS, pp. 163–172. IEEE Computer Society (2013)

7. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

8. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–144.
Springer, Heidelberg (2007)

9. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown sys-
tems via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 547–561. Springer, Heidelberg (2012)

10. Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification.
In: LICS, pp. 285–294. IEEE (2012)

11. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization
of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 33–48. Springer, Heidelberg (2008)

12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

13. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
96–107. Springer, Heidelberg (2010)

14. La Torre, S., Napoli, M., Parlato, G.: Scope-Bounded Pushdown Languages. In:
DLT. LNCS. Springer (2014)

15. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

16. La Torre, S., Napoli, M.: A temporal logic for multi-threaded programs. In: Baeten,
J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 225–239.
Springer, Heidelberg (2012)

17. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: Fixed-
point, sequentialization, and tree-width. In: FSTTCS. LIPIcs, vol. 18, pp. 173–184.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

18. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

A Unifying Approach for Multistack Pushdown Automata 389

19. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL, pp.
283–294. ACM (2011)

20. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

21. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,
vol. 3, pp. 389–455. Springer (1997)

	A Unifying Approach for Multistack Pushdown
Automata

	1 Introduction
	2 Preliminaries
	3 Visibly Path-Trees
	4 Two Base Constructions Used in Our Approach
	5 A General Approach for Complement and Emptiness
	References

