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Abstract

We consider the complexity of equivalence and learning for multiplicity tree automata,
i.e., weighted tree automata over a field. We first show that the equivalence problem is
logspace equivalent to polynomial identity testing, the complexity of which is a longstanding
open problem. Secondly, we derive lower bounds on the number of queries needed to learn
multiplicity tree automata in Angluin’s exact learning model, over both arbitrary and fixed
fields.

Habrard and Oncina (2006) give an exact learning algorithm for multiplicity tree au-
tomata, in which the number of queries is proportional to the size of the target automaton
and the size of a largest counterexample, represented as a tree, that is returned by the
Teacher. However, the smallest tree-counterexample may be exponential in the size of the
target automaton. Thus the above algorithm does not run in time polynomial in the size
of the target automaton, and has query complexity exponential in the lower bound.

Assuming a Teacher that returns minimal DAG representations of counterexamples,
we give a new exact learning algorithm whose query complexity is quadratic in the target
automaton size, almost matching the lower bound, and improving the best previously-
known algorithm by an exponential factor.

Keywords: exact learning, query complexity, multiplicity tree automata, Hankel matri-
ces, DAG representations of trees

1. Introduction

Trees are a natural model of structured data, including syntactic structures in natural
language processing, web information extraction, and XML data on the web. Many of those
applications require representing functions from trees into the real numbers. A broad class
of such functions can be defined by multiplicity tree automata, which generalise probabilistic
tree automata.

Multiplicity tree automata were introduced by Berstel and Reutenauer (1982) under
the terminology of linear representations of tree series. They generalise classical finite tree
automata by having transitions labelled by values in a field. They also generalise multiplicity
word automata, introduced by Schützenberger (1961), since words are a special case of trees.
Multiplicity tree automata define many natural structural properties of trees and can be
used to model probabilistic processes running on trees.

Multiplicity word and tree automata have been applied to a wide variety of learning
problems, including speech recognition, image processing, character recognition, and gram-
matical inference; see the paper of Balle and Mohri (2012) for references. A variety of
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methods have been employed for learning such automata, including matrix completion and
spectral methods (Balle and Mohri, 2012; Denis et al., 2014; Gybels et al., 2014) and prin-
cipal components analysis (Bailly et al., 2009).

A fundamental problem concerning multiplicity tree automata is equivalence: given two
automata, do they define the same function on trees. Seidl (1990) proved that equivalence
of multiplicity tree automata is decidable in polynomial time assuming unit-cost arith-
metic, and in randomised polynomial time in the usual bit-cost model. No finer analysis of
the complexity of this problem exists to date. In contrast, the complexity of equivalence
for classical nondeterministic word and tree automata has been completely characterised:
PSPACE-complete over words (Aho et al., 1974) and EXPTIME-complete over trees (Seidl,
1990).

Our first contribution, in Section 3, is to show that the equivalence problem for multi-
plicity tree automata is logspace equivalent to polynomial identity testing, i.e., the problem
of deciding whether a polynomial given as an arithmetic circuit is zero. The latter is known
to be solvable in randomised polynomial time (DeMillo and Lipton, 1978; Schwartz, 1980;
Zippel, 1979), whereas solving it in deterministic polynomial time is a well-studied and
longstanding open problem (see Arora and Barak, 2009).

Equivalence is closely connected to the problem of learning in the exact learning model
of Angluin (1988). In this model, a Learner actively collects information about the target
function from a Teacher through membership queries, which ask for the value of the function
on a specific input, and equivalence queries, which suggest a hypothesis to which the Teacher
provides a counterexample if one exists. A class of functions C is exactly learnable if there
exists an exact learning algorithm such that for any function f ∈ C , the Learner identifies
f using polynomially many membership and equivalence queries in the size of a shortest
representation of f and the size of a largest counterexample returned by the Teacher during
the execution of the algorithm. The exact learning model is an important theoretical model
of the learning process. It is well-known that learnability in the exact learning model also
implies learnability in the PAC model with membership queries (Valiant, 1985).

One of the earliest results about the exact learning model was the proof of Angluin (1987)
that deterministic finite automata are learnable. This result was generalised by Drewes and Högberg
(2003) to show exact learnability of deterministic finite tree automata, generalising also a re-
sult of Sakakibara (1990) on the exact learnability of context-free grammars from structural
data.

Exact learnability of multiplicity automata has also been extensively studied. Beimel et al.
(2000) show that multiplicity word automata can be learned efficiently, and apply this to
learn various classes of DNF formulae and polynomials. These results were generalised
by Klivans and Shpilka (2006) to show exact learnability of restricted algebraic branching
programs and noncommutative set-multilinear arithmetic formulae. Bisht et al. (2006) give
an almost tight (up to a log factor) lower bound for the number of queries made by any exact
learning algorithm for the class of multiplicity word automata. Finally, Habrard and Oncina
(2006) give an algorithm for learning multiplicity tree automata in the exact model.

Our first contribution on learning multiplicity tree automata, in Section 5, is to give
lower bounds on the number of queries needed to learn multiplicity tree automata in the
exact learning model, both for the case of an arbitrary and a fixed underlying field. The
bound in the latter case is proportional to the automaton size for trees of a fixed maximal
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branching degree. To the best of our knowledge, these are the first lower bounds on the
query complexity of exactly learning of multiplicity tree automata.

Consider a target multiplicity tree automaton whose minimal representation A has n
states. The algorithm of Habrard and Oncina (2006) makes at most n equivalence queries
and number of membership queries proportional to |A| · s, where |A| is the size of A and
s is the size of a largest counterexample returned by the Teacher. Since this algorithm
assumes that the Teacher returns counterexamples represented explicitly as trees, s can be
exponential in |A|, even for a Teacher that returns counterexamples of minimal size (see
Example 1). This observation reveals an exponential gap between the query complexity of
the algorithm of Habrard and Oncina (2006) and our above-mentioned lower bound, which
is only linear in |A|. Another consequence is that the worst-case time complexity of this
algorithm is exponential in the size of the target automaton.

Given two inequivalent multiplicity tree automata with n states in total, the algorithm
of Seidl (1990) produces a subtree-closed set of trees of cardinality at most n that contains
a tree on which the automata differ. It follows that the counterexample contained in this
set has at most n subtrees, and hence can be represented as a DAG with at most n vertices.
Thus in the context of exact learning it is natural to consider a Teacher that can return
succinctly represented counterexamples, i.e., trees represented as DAGs.

Tree automata that run on DAG representations of finite trees were first introduced
by Charatonik (1999) as extensions of ordinary tree automata, and were further stud-
ied by Anantharaman et al. (2005). The automata considered by Charatonik (1999)
and Anantharaman et al. (2005) run on fully-compressed DAGs. Fila and Anantharaman
(2006) extended this definition by introducing tree automata that run on DAGs that may
be partially compressed. In this paper, we employ the latter framework in the context of
learning multiplicity automata.

In Section 4, we present a new exact learning algorithm for multiplicity tree automata
that achieves the same bound in the number of equivalence queries as the algorithm of
Habrard and Oncina (2006), while using number of membership queries quadratic in the
target automaton size and linear in the counterexample size, even when counterexam-
ples are given succinctly. Assuming that the Teacher provides minimal DAG represen-
tations of counterexamples, our algorithm therefore makes quadratically many queries in
the target size. This is exponentially fewer queries than the best previously-known algo-
rithm (Habrard and Oncina, 2006) and within a linear factor of the above-mentioned lower
bound. Furthermore, our algorithm performs a quadratic number of arithmetic operations
in the size of the target automaton, and can be implemented in randomised polynomial
time in the Turing model.

Like the algorithm of Habrard and Oncina (2006), our algorithm constructs a Hankel
matrix of the target automaton. However on receiving a counterexample tree z, the former
algorithm adds a new column to the Hankel matrix for every suffix of z, while our algorithm
adds (at most) one new row for each subtree of z. Crucially the number of suffixes may
be exponential in the size of a DAG representation of z, whereas the number of subtrees is
only linear in the size of a DAG representation.

An extended abstract (Marusic and Worrell, 2014) of this work appeared in the proceed-
ings of MFCS 2014. The current paper contains full proofs of all results reported there, the
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formal definition of multiplicity tree automata running on DAGs, and a refined complexity
analysis of the learning algorithm.

2. Preliminaries

Let N and N0 denote the set of all positive and non-negative integers, respectively. Let
n ∈ N. We write [n] for the set {1, 2, . . . , n} and In for the identity matrix of order n. For
every i ∈ [n], we write ei for the ith n-dimensional coordinate row vector.

For any matrix A, we write Ai for its i
th row, Aj for its jth column, and Ai,j for its (i, j)

th

entry. Given non-empty subsets I and J of the rows and columns of A, respectively, we write
AI,J for the submatrix (Ai,j)i∈I,j∈J of A. For singletons, we write simply Ai,J := A{i},J and
AI,j := AI,{j}. Let n1, . . . , nk ∈ N, and let A be a matrix with n1 · . . . · nk rows. For every

(i1, . . . , ik) ∈ [n1]× · · · × [nk], we write A(i1,...,ik) for the (
∑k−1

l=1 (il − 1) · (
∏k

p=l+1 np) + ik)
th

row of A.

Given a set V , we denote by V ∗ the set of all finite ordered tuples of elements from
V . For any subset S ⊆ V , the characteristic function of S (relative to V ) is the function
χS : V → {0, 1} such that χS(x) = 1 if x ∈ S, and χS(x) = 0 otherwise.

2.1 Kronecker Product

Let A be a matrix of dimension m1 × n1 and B a matrix of dimension m2 × n2. The
Kronecker product of A by B, written as A ⊗ B, is a matrix of dimension m1m2 × n1n2

where (A⊗B)(i1,i2),(j1,j2) = Ai1,j1 ·Bi2,j2 for every i1 ∈ [m1], i2 ∈ [m2], j1 ∈ [n1], j2 ∈ [n2].

The Kronecker product is bilinear, associative, and has the following mixed-product
property : For any matrices A, B, C, D such that products A · C and B ·D are defined, it
holds that (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

Let k ∈ N and A1, . . . , Ak be matrices such that for every l ∈ [k], Al has nl rows. It can
easily be shown using induction on k that for every (i1, . . . , ik) ∈ [n1]× · · · × [nk], it holds
that

(A1 ⊗ · · · ⊗Ak)(i1,...,ik) = (A1)i1 ⊗ · · · ⊗ (Ak)ik . (1)

We write
⊗k

l=1Al := A1 ⊗ · · · ⊗Ak.

For every k ∈ N0 we define the k-fold Kronecker power of a matrix A, written as A⊗k,
inductively by A⊗0 = I1 and A⊗k = A⊗(k−1) ⊗A for k ≥ 1.

Let k ∈ N0. For any matrices A,B of appropriate dimensions, we have

(A⊗B)k = Ak ⊗Bk. (2)

For any matrices A1, . . . , Ak and B1, . . . , Bk where product Al ·Bl is defined for every l ∈ [k],
we have

(A1 ⊗ · · · ⊗Ak) · (B1 ⊗ · · · ⊗Bk) = (A1 · B1)⊗ · · · ⊗ (Ak · Bk). (3)

Equations (2) and (3) follow easily from the mixed-product property by induction on k.
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2.2 Finite Trees

A ranked alphabet is a tuple (Σ, rk) where Σ is a nonempty finite set of symbols and
rk : Σ→ N0 is a function. Ranked alphabet (Σ, rk) is often written Σ for short. For every
k ∈ N0, we define the set of all k-ary symbols Σk := rk−1({k}). If σ ∈ Σk then we say that
σ has rank (or arity) k. We say that Σ has rank m if m = max{rk (σ) : σ ∈ Σ}.

The set of Σ-trees (trees for short), written as TΣ, is the smallest set T satisfying the
following two conditions: (i) Σ0 ⊆ T ; and (ii) if k ≥ 1, σ ∈ Σk, t1, . . . , tk ∈ T then
σ(t1, . . . , tk) ∈ T . Given a Σ-tree t, a subtree of t is a Σ-tree consisting of a node in t and
all of its descendants in t. The set of all subtrees of t is denoted by Sub(t).

Let Σ be a ranked alphabet and F be a field. A tree series over Σ with coefficients in F

is a function f : TΣ → F. For every t ∈ TΣ, we call f(t) the coefficient of t in f . The set of
all tree series over Σ with coefficients in F is denoted by F〈〈TΣ〉〉.

We define the tree series height , size,#σ ∈ Q〈〈TΣ〉〉 where σ ∈ Σ, as follows: (i) if t ∈ Σ0

then height(t) = 0, size(t) = 1, #σ(t) = χ{t=σ}; and (ii) if t = a(t1, . . . , tk) where k ≥ 1,
a ∈ Σk, t1, . . . , tk ∈ TΣ then height(t) = 1+max i∈[k]height(ti), size(t) = 1+

∑

i∈[k] size(ti),

#σ(t) = χ{a=σ} +
∑

i∈[k]#σ(ti), respectively. For every n ∈ N0, we define the sets T<n
Σ :=

{t ∈ TΣ : height(t) < n}, T n
Σ := {t ∈ TΣ : height(t) = n}, and T≤n

Σ := T<n
Σ ∪ T n

Σ .

Let ✷ be a nullary symbol not contained in Σ. The set CΣ of Σ-contexts (contexts for
short) is the set of ({✷} ∪ Σ)-trees in which ✷ occurs exactly once. The concatenation of
c ∈ CΣ and t ∈ TΣ ∪̇CΣ, written as c[t], is the tree obtained by substituting t for ✷ in c.
A suffix of a Σ-tree t is a Σ-context c such that t = c[t′] for some Σ-tree t′. The Hankel
matrix of a tree series f ∈ F〈〈TΣ〉〉 is the matrix H : TΣ × CΣ → F such that Ht,c = f(c[t])
for every t ∈ TΣ and c ∈ CΣ.

2.3 Multiplicity Tree Automata

Let F be a field. An F-multiplicity tree automaton (F-MTA) is a quadruple A = (n,Σ, µ, γ)
which consists of the dimension n ∈ N0 representing the number of states, a ranked alphabet
Σ, the tree representation µ = {µ(σ) : σ ∈ Σ} where for every symbol σ ∈ Σ, matrix

µ(σ) ∈ Fnrk(σ)×n represents the transition matrix associated to σ, and the final weight
vector γ ∈ Fn×1. The size of the automaton A, written as |A|, is defined as

|A| :=
∑

σ∈Σ

nrk(σ)+1 + n.

That is, the size of A is the total number of entries in all transition matrices and the final
weight vector.1

We extend the tree representation µ from Σ to TΣ by defining

µ(σ(t1, . . . , tk)) := (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ. The tree series ‖A‖ ∈ F〈〈TΣ〉〉 recognised by A
is defined by ‖A‖(t) = µ(t) · γ for every t ∈ TΣ. Note that a 0-dimensional automaton

1. We measure size assuming explicit rather than sparse representations of the transition matrices and final
weight vector because minimal automata are only unique up to change of basis (see Theorem 4).
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necessarily recognises a zero tree series. Two automata A1, A2 are said to be equivalent if
‖A1‖ ≡ ‖A2‖.

We further extend µ from TΣ to CΣ by treating ✷ as a unary symbol and defining
µ(✷) := In. This allows to define µ(c) ∈ Fn×n for every c = σ(t1, . . . , tk) ∈ CΣ inductively
as µ(c) := (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ). It is easy to see that µ(c[t]) = µ(t) · µ(c) for every
t ∈ TΣ and c ∈ CΣ.

Let A1 = (n1,Σ, µ1, γ1) and A2 = (n2,Σ, µ2, γ2) be two F-multiplicity tree automata.
The product of A1 by A2, written as A1×A2, is the F-multiplicity tree automaton (n,Σ, µ, γ)
where:

• n = n1 · n2;

• If σ ∈ Σk then µ(σ) = Pk · (µ1(σ)⊗µ2(σ)) where Pk is a permutation matrix of order
(n1 · n2)

k uniquely defined (see Remark 1 below) by

(u1 ⊗ · · · ⊗ uk)⊗ (v1 ⊗ · · · ⊗ vk) = ((u1 ⊗ v1)⊗ · · · ⊗ (uk ⊗ vk)) · Pk (4)

for all u1, . . . , uk ∈ F1×n1 and v1, . . . , vk ∈ F1×n2 ;

• γ = γ1 ⊗ γ2.

Remark 1 We argue that for every rank k of a symbol in Σ, matrix Pk is well-defined by
Equation (4). In order to do this, it suffices to show that Pk is well-defined on a set of
basis vectors of F1×n1 and F1×n2 and then extend linearly. To that end, let (e1i )i∈[n1] and
(e2j )j∈[n2] be bases of F1×n1 and F1×n2 , respectively. Let us define sets of vectors

E1 := {(e
1
i1
⊗ · · · ⊗ e1ik)⊗ (e2j1 ⊗ · · · ⊗ e2jk) : i1, . . . , ik ∈ [n1], j1, . . . , jk ∈ [n2]}

and

E2 := {(e
1
i1
⊗ e2j1)⊗ · · · ⊗ (e1ik ⊗ e2jk) : i1, . . . , ik ∈ [n1], j1, . . . , jk ∈ [n2]}.

Then, E1 and E2 are two bases of the vector space F1×n1n2 . Therefore, Pk is well-defined
as an invertible matrix mapping basis E1 to basis E2.

Essentially the same product construction as in the proof of the first part of the following
proposition is given by Berstel and Reutenauer (1982, Proposition 5.1) in the language of
linear representations of tree series rather than multiplicity tree automata.

Proposition 2 Let A1 and A2 be Q-multiplicity tree automata over a ranked alphabet Σ.
Then, for every t ∈ TΣ it holds that ‖A1 × A2‖(t) = ‖A1‖(t) · ‖A2‖(t). Furthermore,
automaton A1 ×A2 can be computed from A1 and A2 in logarithmic space.

Proof Let A1 = (n1,Σ, µ1, γ1), A2 = (n2,Σ, µ2, γ2), and A1 × A2 = (n,Σ, µ, γ). First we
show that for any t ∈ TΣ,

µ(t) = µ1(t)⊗ µ2(t). (5)

We prove that Equation (5) holds for all t ∈ TΣ using induction on height(t). The base
case t = σ ∈ Σ0 holds immediately by definition since P0 = I1. For the induction step, let
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h ∈ N0 and assume that Equation (5) holds for every t ∈ T≤h
Σ . Take any t ∈ T h+1

Σ . Then

t = σ(t1, . . . , tk) for some k ≥ 1, σ ∈ Σk, and t1, . . . , tk ∈ T≤h
Σ . By induction hypothesis,

Equation (4), and the mixed-product property of Kronecker product we now have

µ(t) = (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)

= ((µ1(t1)⊗ µ2(t1))⊗ · · · ⊗ (µ1(tk)⊗ µ2(tk))) · Pk · (µ1(σ)⊗ µ2(σ))

= ((µ1(t1)⊗ · · · ⊗ µ1(tk))⊗ (µ2(t1)⊗ · · · ⊗ µ2(tk))) · (µ1(σ)⊗ µ2(σ))

= ((µ1(t1)⊗ · · · ⊗ µ1(tk)) · µ1(σ)) ⊗ ((µ2(t1)⊗ · · · ⊗ µ2(tk)) · µ2(σ))

= µ1(t)⊗ µ2(t).

This completes the proof of Equation (5) for all t ∈ TΣ by induction. For every t ∈ TΣ, we
now have

‖A1 ×A2‖(t) = µ(t) · γ = (µ1(t)⊗ µ2(t)) · (γ1 ⊗ γ2)

= (µ1(t) · γ1)⊗ (µ2(t) · γ2) = ‖A1‖(t)⊗ ‖A2‖(t) = ‖A1‖(t) · ‖A2‖(t).

We conclude by noting that automaton A1 × A2 can be computed from A1 and A2 by
an algorithm that maintains a constant number of pointers, therefore requiring only loga-
rithmic space.

A tree series f is called recognisable if it is recognised by some multiplicity tree automa-
ton; such an automaton is called an MTA-representation of f . An MTA-representation of
f that has the smallest dimension is called minimal. The set of all recognisable tree series
in F〈〈TΣ〉〉 is denoted by Rec(Σ,F).

The following result was first shown by Bozapalidis and Louscou-Bozapalidou (1983);
an essentially equivalent result was later shown by Habrard and Oncina (2006).

Theorem 3 (Bozapalidis and Louscou-Bozapalidou, 1983) Let Σ be a ranked alpha-
bet and F be a field. Let f ∈ F〈〈TΣ〉〉 and let H be the Hankel matrix of f . It holds that
f ∈ Rec(Σ,F) if and only if H has finite rank over F. In case f ∈ Rec(Σ,F), the dimension
of a minimal MTA-representation of f is rank (H) over F.

The following result by Bozapalidis and Alexandrakis (1989, Proposition 4) states that
for any recognisable tree series, its minimal MTA-representation is unique up to change of
basis.

Theorem 4 (Bozapalidis and Alexandrakis, 1989) Let Σ be a ranked alphabet and F

be a field. Let f ∈ Rec(Σ,F) and let r be the rank (over F) of the Hankel matrix of f . Let
A1 = (r,Σ, µ1, γ1) be an MTA-representation of f . Given an F-multiplicity tree automaton
A2 = (r,Σ, µ2, γ2), it holds that A2 recognises f if and only if there exists an invertible
matrix U ∈ Fr×r such that γ2 = U · γ1 and µ2(σ) = U⊗rk(σ) · µ1(σ) · U

−1 for every σ ∈ Σ.

2.4 DAG Representations of Finite Trees

Let Σ be a ranked alphabet. A DAG representation of a Σ-tree (Σ-DAG or DAG for short)
is a rooted directed acyclic ordered multigraph whose nodes are labelled with symbols from
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Σ such that the outdegree of each node is equal to the rank of the symbol it is labelled with.
Formally a Σ-DAG consists of a set of nodes V , for each node v ∈ V a list of successors
succ(v) ∈ V ∗, and a node labelling λ : V → Σ where for each node v ∈ V it holds that
λ(v) ∈ Σ|succ(v)|. Note that Σ-trees are a subclass of Σ-DAGs.

Let G be a Σ-DAG. The size of G, denoted by size(G), is the number of nodes in G.
The height of G, denoted by height(G), is the length of a longest directed path in G. For
any node v in G, the sub-DAG of G rooted at v, denoted by G|v, is the Σ-DAG consisting
of the node v and all of its descendants in G. Clearly, if a node v0 is the root of G then
G|v0 = G. The set {G|v : v is a node in G} of all the sub-DAGs of G is denoted by Sub(G).

For any Σ-DAG G, we define its unfolding into a Σ-tree, denoted by unfold(G), induc-
tively as follows: If the root of G is labelled with a symbol σ and has the list of successors
v1, . . . , vk, then

unfold(G) = σ(unfold(G|v1), . . . , unfold(G|vk)).

It is easy to see that the following proposition holds.

Proposition 5 If G is a Σ-DAG, then Sub(unfold(G)) = unfold [Sub(G)].

Because a context has exactly one occurrence of the symbol ✷, any DAG representation
of a Σ-context is a ({✷} ∪ Σ)-DAG that has a unique path from the root to the (unique)
✷-labelled node. The concatenation of a DAG K, representing a Σ-context, and a Σ-DAG
G, denoted by K[G], is the Σ-DAG obtained by substituting the root of G for ✷ in K.

Proposition 6 Let K be a DAG representation of a Σ-context, and let G be a Σ-DAG.
Then, unfold(K[G]) = unfold(K)[unfold(G)].

Proof The proof is by induction on height(K). For the base case height(K) = 0, we
have that K = ✷ and therefore unfold(✷[G]) = unfold(G) = unfold(✷)[unfold(G)] for any
Σ-DAG G.

For the induction step, let h ∈ N0 and assume that the proposition holds if height(K) ≤
h. Let K be a DAG representation of a Σ-context such that height(K) = h + 1. Let the
root of K have label σ and list of successors v1, . . . , vk. By definition, there is a unique
path in K going from the root to the ✷-labelled node. Without loss of generality, we can
assume that the ✷-labelled node is a successor of v1. Take an arbitrary Σ-DAG G. Since
height(K|v1) ≤ h, we have by the induction hypothesis that

unfold(K[G]) = σ(unfold(K|v1 [G]), unfold (K|v2), . . . , unfold(K|vk))

= σ(unfold(K|v1)[unfold(G)], unfold (K|v2), . . . , unfold(K|vk))

= σ(unfold(K|v1), unfold(K|v2), . . . , unfold(K|vk))[unfold(G)]

= unfold(K)[unfold(G)].

This completes the proof.
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2.5 Multiplicity Tree Automata on DAGs

In this section, we introduce the notion of a multiplicity tree automaton on DAGs. To the
best of our knowledge, this notion has not been studied before.

Let F be a field, and A = (n,Σ, µ, γ) be an F-multiplicity tree automaton. The compu-
tation of the automaton A on a Σ-DAG G = (V,E) is defined as follows: A run of A on G
is a mapping ρ : Sub(G) → Fn such that for every node v ∈ V , if v is labelled with σ and
has the list of successors succ(v) = v1, . . . , vk then

ρ(G|v) = (ρ(G|v1)⊗ · · · ⊗ ρ(G|vk)) · µ(σ).

Automaton A assigns to G a weight ‖A‖(G) ∈ F where ‖A‖(G) = ρ(G) · γ.
In the following proposition, we show that the weight assigned by a multiplicity tree

automaton to a DAG is equal to the weight assigned to its tree unfolding.

Proposition 7 Let F be a field, and A = (n,Σ, µ, γ) be an F-multiplicity tree automaton.
For any Σ-DAG G, it holds that ρ(G) = µ(unfold(G)) and ‖A‖(G) = ‖A‖(unfold (G)).

Proof Let V be the set of nodes of G. First we show that for every v ∈ V ,

ρ(G|v) = µ(unfold(G|v)). (6)

The proof is by induction on height(G|v). For the base case, let height(G|v) = 0. This
implies that G|v = σ ∈ Σ0. Therefore, by definition we have that

ρ(G|v) = µ(σ) = µ(unfold(σ)) = µ(unfold(G|v)).

For the induction step, let h ∈ N0 and assume that Equation (6) holds for every v ∈ V
such that height(G|v) ≤ h. Take any v ∈ V such that height(G|v) = h+ 1. Let the root of
G|v be labelled with a symbol σ and have list of successors succ(v) = v1, . . . , vk. Then for
every j ∈ [k], we have that height(G|vj ) ≤ h and thus ρ(G|vj ) = µ(unfold(G|vj )) holds by
the induction hypothesis. This implies that

ρ(G|v) = (ρ(G|v1)⊗ · · · ⊗ ρ(G|vk)) · µ(σ)

= (µ(unfold(G|v1))⊗ · · · ⊗ µ(unfold(G|vk))) · µ(σ)

= µ(σ(unfold (G|v1), . . . , unfold(G|vk)))

= µ(unfold(G|v))

which completes the proof of Equation (6) for all v ∈ V by induction.
Taking v to be the root of G, we get from Equation (6) that ρ(G) = µ(unfold(G)).

Therefore, ‖A‖(G) = ρ(G) · γ = µ(unfold(G)) · γ = ‖A‖(unfold (G)).

Example 1 Let Σ = {σ0, σ2} be a ranked alphabet such that rk(σ0) = 0 and rk(σ2) = 2.
Take any n ∈ N. Let tn, depicted in Figure 1, be the prefect binary Σ-tree of height n − 1.
Note that size(tn) = O(2n). Define a Q-MTA A = (n,Σ, µ, e1) such that µ(σ0) = en ∈ F1×n

and µ(σ2) ∈ Fn2×n where µ(σ2)(i+1,i+1),i = 1 for every i ∈ [n − 1], and all other entries of
µ(σ2) are zero. It is easy to see that ‖A‖(tn) = 1 and ‖A‖(t) = 0 for every t ∈ TΣ \ {tn}.
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Figure 1: Tree tn
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...

σ2 n− 2
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σ2 n

Figure 2: DAG Gn

Let B be the 0-dimensional Q-MTA over Σ (so that ‖B‖ ≡ 0). Suppose we were to
check whether automata A and B are equivalent. Then the only counterexample to their
equivalence, namely the tree tn, has size O(2n). Note, however, that tn has an exponentially
more succinct DAG representation Gn, given in Figure 2.

2.6 Arithmetic Circuits

An arithmetic circuit is a finite directed acyclic vertex-labelled multigraph whose vertices,
called gates, have indegree 0 or 2. Vertices of indegree 0 are called input gates and are
labelled with a constant 0 or 1, or a variable from the set {xi : i ∈ N}. Vertices of indegree
2 are called internal gates and are labelled with an arithmetic operation +, ×, or −. We
assume that there is a unique gate with outdegree 0 called the output gate. An arithmetic
circuit is called variable-free if all input gates are labelled with 0 or 1.

Given two gates u and v of an arithmetic circuit C, we call u a child of v if (u, v) is a
directed edge in C. The size of C is the number of gates in C. The height of a gate v in C,
written as height(v), is the length of a longest directed path from an input gate to v. The
height of C is the maximal height of a gate in C.

An arithmetic circuit C computes a polynomial over the integers as follows: An input
gate of C labelled with α ∈ {0, 1} ∪ {xi : i ∈ N} computes the polynomial α. An internal
gate of C labelled with ∗ ∈ {+,×,−} computes the polynomial p1 ∗ p2 where p1 and p2
are the polynomials computed by its children. For any gate v in C, we write fv for the
polynomial computed by v. The output of C, written fC , is the polynomial computed by the
output gate of C. The Arithmetic Circuit Identity Testing (ACIT) problem asks whether
the output of a given arithmetic circuit is equal to the zero polynomial.
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2.7 The Learning Model

In this paper we work with the exact learning model of Angluin (1988): Let f be a target
function. A Learner (learning algorithm) may, in each step, propose a hypothesis function
h by making an equivalence query to a Teacher. If h is equivalent to f , then the Teacher
returns YES and the Learner succeeds and halts. Otherwise, the Teacher returns NO with
a counterexample, which is an assignment x such that h(x) 6= f(x). Moreover, the Learner
may query the Teacher for the value of the function f on a particular assignment x by
making a membership query on x. The Teacher returns the value f(x).

We say that a class of functions C is exactly learnable if there is a Learner that for
any target function f ∈ C , outputs a hypothesis h ∈ C such that h(x) = f(x) for all
assignments x, and does so in time polynomial in the size of a shortest representation of f
and the size of a largest counterexample returned by the Teacher. We moreover say that
the class C is exactly learnable in (randomised) polynomial time if the learning algorithm
can be implemented to run in (randomised) polynomial time in the Turing model.

3. MTA Equivalence is interreducible with ACIT

In this section, we show that the equivalence problem for Q-multiplicity tree automata is
logspace interreducible with ACIT. A related result, characterising equivalence of proba-
bilistic visibly pushdown automata on words in terms of polynomial identity testing, was
shown by Kiefer et al. (2013). On several occasions in this section, we will implicitly make
use of the fact that a composition of two logspace reductions is again a logspace reduc-
tion (Arora and Barak, 2009, Lemma 4.17).

3.1 From MTA Equivalence to ACIT

In this section, we present a logspace reduction from the equivalence problem for Q-MTAs
to ACIT. We start with the following lemma.

Lemma 8 Given an integer n ∈ N and a Q-multiplicity tree automaton A over a ranked
alphabet Σ, one can compute, in logarithmic space in |A| and n, a variable-free arithmetic
circuit that has output

∑

t∈T<n
Σ
‖A‖(t).

Proof Let A = (r,Σ, µ, γ), and let m be the rank of Σ. By definition, it holds that

∑

t∈T<n
Σ

‖A‖(t) =




∑

t∈T<n
Σ

µ(t)



 · γ. (7)

We have
∑

t∈T<1
Σ

µ(t) =
∑

σ∈Σ0
µ(σ). For every i ∈ N, it holds that

T<i+1
Σ = {σ(t1, . . . , tk) : k ∈ {0, . . . ,m}, σ ∈ Σk, t1, . . . , tk ∈ T<i

Σ }

and thus by bilinearity of Kronecker product,

∑

t∈T<i+1
Σ

µ(t) =

m∑

k=0

∑

σ∈Σk

∑

t1∈T
<i
Σ

· · ·
∑

tk∈T
<i
Σ

(µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)
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=

m∑

k=0

∑

σ∈Σk








∑

t1∈T
<i
Σ

µ(t1)



⊗ · · · ⊗




∑

tk∈T
<i
Σ

µ(tk)







 · µ(σ)

=

m∑

k=0




∑

t∈T<i
Σ

µ(t)





⊗k
∑

σ∈Σk

µ(σ). (8)

In the following we define a variable-free arithmetic circuit Φ that has output
∑

t∈T<n
Σ
‖A‖(t).

First, let us denote G(i) :=
∑

t∈T<i
Σ

µ(t) for every i ∈ N. Then by Equation (8) we have

G(i + 1) =
∑m

k=0G(i)⊗k · S(k) where S(k) :=
∑

σ∈Σk
µ(σ) for every k ∈ {0, . . . ,m}. In

coordinate notation, for every j ∈ [r] we have by Equation (1) that

G(i + 1)j =

m∑

k=0

∑

(l1,...,lk)∈[r]k

k∏

a=1

G(i)la · S(k)(l1,...,lk),j. (9)

We present Φ as a straight-line program, with built-in constants

{µσ
(l1,...,lk),j

, γj : k ∈ {0, . . . ,m}, σ ∈ Σk, (l1, . . . , lk) ∈ [r]k, j ∈ [r]}

representing the entries of the transition matrices and the final weight vector of A, internal
variables {sk(l1,...,lk),j : k ∈ {0, . . . ,m}, (l1, . . . , lk) ∈ [r]k, j ∈ [r]} and {gi,j : i ∈ [n], j ∈ [r]}

evaluating the entries of matrices S(k) and vectors G(i) respectively, and the final internal
variable f computing the value of Φ.

Formally, the straight-line program Φ is given in Table 1. Here the statements are given
in indexed-sum and indexed-product notation, which can easily be expanded in terms of the
corresponding binary operations. It follows from Equations (7) and (9) that Φ computes
G(n) · γ =

∑

t∈T<n
Σ
‖A‖(t).

The input gates of Φ are labelled with rational numbers. By separately encoding nu-
merators and denominators, we can in logarithmic space reduce Φ to an arithmetic circuit
where all input gates are labelled with integers. Moreover, without loss of generality we can
assume that every input gate of Φ is labelled with 0 or 1. Any other integer label given in
binary can be encoded as an arithmetic circuit.

Recalling that a composition of two logspace reductions is again a logspace reduction,
we conclude that the entire computation takes logarithmic space in |A| and n.

Before presenting the reduction in Proposition 10, we recall the following characterisa-
tion (Seidl, 1990, Theorem 4.2) of equivalence of two multiplicity tree automata over an
arbitrary field.

Proposition 9 (Seidl, 1990) Suppose A and B are multiplicity tree automata of dimen-
sion n1 and n2, respectively, and over a ranked alphabet Σ. Then, A and B are equivalent
if and only if ‖A‖(t) = ‖B‖(t) for every t ∈ T<n1+n2

Σ .

Proposition 10 The equivalence problem for Q-multiplicity tree automata is logspace re-
ducible to ACIT.
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1. For j ∈ [r] do g1,j ←
∑

σ∈Σ0

µσ
j

2. For k ∈ {0, . . . ,m}, (l1, . . . , lk) ∈ [r]k, j ∈ [r] do sk(l1,...,lk),j ←
∑

σ∈Σk

µσ
(l1,...,lk),j

3. For i = 1 to n− 1 do

3.1. For k ∈ {0, . . . ,m}, (l1, . . . , lk) ∈ [r]k, j ∈ [r] do

hi,k(l1,...,lk),j ←
k∏

a=1

gi,la · s
k
(l1,...,lk),j

3.2. For j ∈ [r] do

gi+1,j ←
m∑

k=0

∑

(l1,...,lk)∈[r]k

hi,k(l1,...,lk),j

4. For j ∈ [r] do fj ← gn,j · γj

5. f ←
∑

j∈[r]

fj.

Table 1: Straight-line program Φ

Proof Let A and B be Q-multiplicity tree automata over a ranked alphabet Σ, and let n
be the sum of their dimensions. Proposition 2 implies that

∑

t∈T<n
Σ

(‖A‖(t)− ‖B‖(t))2 =
∑

t∈T<n
Σ

(
‖A‖(t)2 + ‖B‖(t)2 − 2‖A‖(t)‖B‖(t)

)

=
∑

t∈T<n
Σ

(‖A×A‖(t) + ‖B ×B‖(t)− 2‖A ×B‖(t)) .

Thus by Proposition 9, automata A and B are equivalent if and only if
∑

t∈T<n
Σ

‖A×A‖(t) +
∑

t∈T<n
Σ

‖B ×B‖(t)− 2
∑

t∈T<n
Σ

‖A×B‖(t) = 0. (10)

We know from Proposition 2 that automata A×A, B×B, and A×B can be computed in
logarithmic space. Thus by Lemma 8 one can compute, in logarithmic space in |A| and |B|,
variable-free arithmetic circuits that have outputs

∑

t∈T<n
Σ
‖A×A‖(t),

∑

t∈T<n
Σ
‖B×B‖(t),

and
∑

t∈T<n
Σ
‖A × B‖(t) respectively. Using Equation (10), we can now easily construct a

variable-free arithmetic circuit that has output 0 if and only if A and B are equivalent.
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3.2 From ACIT to MTA Equivalence

We now present a converse reduction: from ACIT to the equivalence problem for Q-MTAs.
Allender et al. (2009, Proposition 2.2) give a logspace reduction of the general ACIT

problem to the special case of ACIT for variable-free circuits. The latter can, by repre-
senting arbitrary integers as differences of two non-negative integers, be reformulated as the
problem of deciding whether two variable-free arithmetic circuits with only + and ×-internal
gates compute the same number.

Proposition 11 ACIT is logspace reducible to the equivalence problem for Q-multiplicity
tree automata.

Proof Let C1 and C2 be two variable-free arithmetic circuits whose internal gates are
labelled with + or ×. By padding with extra gates, without loss of generality we can
assume that in each circuit the children of a height-i gate both have height i − 1, +-gates
have even height, ×-gates have odd height, and the output gate has an even height h.

In the following we define two Q-MTAs, A1 and A2, that are equivalent if and only if
circuits C1 and C2 have the same output. Automata A1 and A2 are both defined over a
ranked alphabet Σ = {σ0, σ1, σ2} where σ0 is a nullary, σ1 a unary, and σ2 a binary symbol.
Intuitively, automata A1 and A2 both recognise the common ‘tree-unfolding’ of C1 and C2.

We now derive A1 from C1; A2 is analogously derived from C2. Let {v1, . . . , vr} be the
set of gates of C1 where vr is the output gate. Automaton A1 has a state qi for every gate
vi of C1. Formally, A1 = (r,Σ, µ, er) where for every i ∈ [r]:

• If vi is an input gate with label 1 then µ(σ0)i = 1, otherwise µ(σ0)i = 0.

• If vi is a +-gate with children vj1 and vj2 then µ(σ1)j1,i = µ(σ1)j2,i = 1 if j1 6= j2,
µ(σ1)j1,i = 2 if j1 = j2, and µ(σ1)l,i = 0 for every l 6∈ {j1, j2}. If vi is an input gate or
a ×-gate then µ(σ1)

i = 0r×1.

• If vi is a ×-gate with children vj1 and vj2 then µ(σ2)(j1,j2),i = 1, and µ(σ2)(l1,l2),i = 0
for every (l1, l2) 6= (j1, j2). If vi is an input gate or a +-gate then µ(σ2)

i = 0r2×1.

Define a sequence of trees (tn)n∈N0 ⊆ TΣ by t0 = σ0, tn+1 = σ1(tn) for n odd, and
tn+1 = σ2(tn, tn) for n even. In the following, we show that ‖A1‖(th) = fC1 . For every gate
v of C1, by assumption it holds that all paths from v to the output gate have equal length.
We now prove that for every i ∈ [r],

µ(thi
)i = fvi (11)

where hi := height(vi). We use induction on hi ∈ {0, . . . , h}. For the base case, let hi = 0.
Then, vi is an input gate and thus by definition of automaton A1 we have

µ(thi
)i = µ(t0)i = µ(σ0)i = fvi .

For the induction step, let n ∈ [h] and assume that Equation (11) holds for every gate vi
of height less than n. Take an arbitrary gate vi of C1 such that hi = n. Let gates vj1 and
vj2 be the children of vi. Then hj1 = hj2 = hi − 1 = n − 1 by assumption. The induction
hypothesis now implies that µ(thi−1)j1 = fvj1 and µ(thi−1)j2 = fvj2 . Depending on the label
of vi, there are two possible cases as follows:
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(i) If vi is a +-gate, then hi is even and thus by definition of A1 we have

µ(thi
)i = µ(σ1(thi−1))i = µ(thi−1) · µ(σ1)

i

= µ(thi−1)j1 + µ(thi−1)j2 = fvj1 + fvj2 = fvi .

(ii) If vi is a ×-gate, then hi is odd and thus by definition of A1 and Equation (1) we have

µ(thi
)i = µ(σ2(thi−1, thi−1))i = µ(thi−1)

⊗2 · µ(σ2)
i

= µ(thi−1)j1 · µ(thi−1)j2 = fvj1 · fvj2 = fvi .

This completes the proof of Equation (11) by induction. Now for the output gate vr of C1,
we get from Equation (11) that µ(th)r = fvr since hr = h. Therefore,

‖A1‖(th) = µ(th) · er = µ(th)r = fvr = fC1 .

Analogously, it holds that ‖A2‖(th) = fC2 . It is moreover clear by construction that
‖A1‖(t) = 0 and ‖A2‖(t) = 0 for every t ∈ TΣ \ {th}. Therefore, automata A1 and A2 are
equivalent if and only if arithmetic circuits C1 and C2 have the same output.

4. The Learning Algorithm

In this section, we give an exact learning algorithm for multiplicity tree automata. Our
algorithm is polynomial in the size of a minimal automaton equivalent to the target and the
size of a largest counterexample given as a DAG. As seen in Example 1, DAG counterexam-
ples can be exponentially more succinct than tree counterexamples. Therefore, achieving a
polynomial bound in the context of DAG representations is a more exacting criterion.

Over an arbitrary field F, the algorithm can be seen as running on a Blum-Shub-Smale
machine that can write and read field elements to and from its memory at unit cost and
that can also perform arithmetic operations and equality tests on field elements at unit
cost (see Arora and Barak, 2009). Over Q, the algorithm can be implemented in randomised
polynomial time by representing rationals as arithmetic circuits and using a coRP algorithm
for equality testing of such circuits (see Allender et al., 2009).

This section is organised as follows: In Section 4.1 we present the algorithm. In Section
4.2 we prove correctness on trees, and then argue in Section 4.3 that the algorithm can be
faithfully implemented using a DAG representation of trees. Finally, in Section 4.4 we give
a complexity analysis of the algorithm assuming the DAG representation.

4.1 The Algorithm

Let f ∈ Rec(Σ,F) be the target function. The algorithm learns an MTA-representation of
f using its Hankel matrix H, which has finite rank over F by Theorem 3. At each stage,
the algorithm maintains the following data:

• An integer n ∈ N.

• A set of n ‘rows’ X = {t1, . . . , tn} ⊆ TΣ.
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• A finite set of ‘columns’ Y ⊆ CΣ, where ✷ ∈ Y .

• A submatrix HX,Y of H that has full row rank.

These data determine a hypothesis automaton A of dimension n, whose states correspond
to the rows of HX,Y , with the ith row being the state reached after reading the tree ti. The
Learner makes an equivalence query on hypothesis A. In case the Teacher answers NO,
the Learner receives a counterexample z. The Learner then parses z bottom-up to find a
minimal subtree of z that is also a counterexample, and uses that subtree to augment the
sets of rows and columns.

Formally, the algorithm LMTA is given in Table 2. Here for any k-ary symbol σ ∈ Σ we
define σ(X, . . . ,X) := {σ(ti1 , . . . , tik) : (i1, . . . , ik) ∈ [n]k}.

4.2 Correctness Proof

In this section, we prove the correctness of the exact learning algorithm LMTA. Specifically,
we show that, given a target f ∈ Rec(Σ,F), algorithm LMTA outputs a minimal MTA-
representation of f after at most rank (H) iterations of the main loop.

The correctness proof naturally breaks down into several lemmas. First, we show that
matrix HX,Y has full row rank.

Lemma 12 Linear independence of the set of vectors {Ht1,Y , . . . ,Htn,Y } is an invariant of
the loop consisting of Step 2 and Step 3.

Proof We argue inductively on the number of iterations of the loop. The base case n = 1
clearly holds since f(z) 6= 0.

For the induction step, suppose that the set {Ht1,Y , . . . ,Htn,Y } is linearly independent
at the start of an iteration of the loop. If a tree t ∈ TΣ is added to X during Step 2.1, then
Ht,Y is not a linear combination of Ht1,Y , . . . ,Htn,Y , and therefore Ht1,Y , . . . ,Htn,Y ,Ht,Y

are linearly independent vectors. Hence, set {Ht1,Y , . . . ,Htn,Y } is linearly independent at
the start of Step 3.

Unless the algorithm halts in Step 3.1, it proceeds to Step 3.2 where the set of columns
Y is increased, which clearly preserves linear independence of vectors Ht1,Y , . . . ,Htn,Y . If a
tree τj is added to X in Step 3.3, then Hτj ,Y is not a linear combination of Ht1,Y , . . . ,Htn,Y

which implies that the vectors Ht1,Y , . . . ,Htn,Y ,Hτj ,Y are linearly independent. Hence, the
set {Ht1,Y , . . . ,Htn,Y } is linearly independent at the start of the next iteration of the loop.

Secondly, we show that Step 2.2 of LMTA can always be performed.

Lemma 13 Whenever Step 2.2 starts, for every k ∈ {0, . . . ,m} and σ ∈ Σk there exists a

unique matrix µ(σ) ∈ Fnk×n satisfying Equation (12).

Proof Take any (i1, . . . , ik) ∈ [n]k. Step 2.1 ensures that Hσ(ti1 ,...,tik ),Y
can be represented

as a linear combination of vectors Ht1,Y , . . . ,Htn,Y . This representation is unique since
Ht1,Y , . . . ,Htn,Y are linearly independent vectors by Lemma 12. Row µ(σ)(i1,...,ik) ∈ F1×n

is therefore uniquely defined by the equation µ(σ)(i1,...,ik) ·HX,Y = Hσ(ti1 ,...,tik ),Y
.
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Algorithm LMTA

Target: f ∈ Rec(Σ,F), where Σ has rank m and F is a field

1. Make an equivalence query on the 0-dimensional F-MTA over Σ.
If the answer is YES then output the 0-dimensional F-MTA over Σ and halt.
Otherwise the answer is NO and z is a counterexample. Initialise:
n← 1, tn ← z, X ← {tn}, Y ← {✷}.

2. 2.1. For every k ∈ {0, . . . ,m}, σ ∈ Σk, and (i1, . . . , ik) ∈ [n]k:
If Hσ(ti1 ,...,tik ),Y

is not a linear combination of Ht1,Y , . . . ,Htn,Y then

n← n+ 1, tn ← σ(ti1 , . . . , tik), X ← X ∪ {tn}.

2.2. Define an F-MTA A = (n,Σ, µ, γ) as follows:

• γ = HX,✷.

• For every k ∈ {0, . . . ,m} and σ ∈ Σk:

Define matrix µ(σ) ∈ Fnk×n by the equation

µ(σ) ·HX,Y = Hσ(X,...,X),Y . (12)

3. 3.1. Make an equivalence query on A.
If the answer is YES then output A and halt.
Otherwise the answer is NO and z is a counterexample. Searching bottom-up,
find a subtree σ(τ1, . . . , τk) of z that satisfies the following two conditions:

(i) For every j ∈ [k], Hτj ,Y = µ(τj) ·HX,Y .

(ii) For some c ∈ Y , Hσ(τ1,...,τk),c 6= µ(σ(τ1, . . . , τk)) ·HX,c.

3.2. For every j ∈ [k] and (i1, . . . , ij−1) ∈ [n]j−1:
Y ← Y ∪ {c[σ(ti1 , . . . , tij−1 ,✷, τj+1, . . . , τk)]}.

3.3. For every j ∈ [k]:
If Hτj ,Y is not a linear combination of Ht1,Y , . . . ,Htn,Y then
n← n+ 1, tn ← τj, X ← X ∪ {tn}.

3.4. Go to 2.

Table 2: Exact learning algorithm LMTA for the class of multiplicity tree automata

Thirdly, we show that Step 3.1 of LMTA can always be performed.

Lemma 14 Suppose that upon making an equivalence query on A in Step 3.1, the Learner
receives the answer NO and a counterexample z. Then there exists a subtree σ(τ1, . . . , τk)
of z, where k ∈ {0, . . . ,m}, σ ∈ Σk, and τ1, . . . , τk ∈ TΣ, that satisfies the following two
conditions:

(i) For every j ∈ [k], Hτj ,Y = µ(τj) ·HX,Y .

(ii) For some c ∈ Y , Hσ(τ1,...,τk),c 6= µ(σ(τ1, . . . , τk)) ·HX,c.
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Proof Towards a contradiction, assume that there is no subtree σ(τ1, . . . , τk) of z satisfying
conditions (i) and (ii). We claim that then for every subtree τ of z, it holds that

Hτ,Y = µ(τ) ·HX,Y . (13)

In the following we prove this claim using induction on height(τ). The base case τ ∈ Σ0

follows immediately from Equation (12). For the induction step, let 0 ≤ h < height(z) and
assume that Equation (13) holds for every subtree τ ∈ T≤h

Σ of z. Take an arbitrary subtree

τ ∈ T h+1
Σ of z. Then τ = σ(τ1, . . . , τk) for some k ∈ [m], σ ∈ Σk, and τ1, . . . , τk ∈ T≤h

Σ , where
τ1, . . . , τk are subtrees of z. The induction hypothesis implies that Hτj ,Y = µ(τj) · HX,Y

holds for every j ∈ [k]. Hence, τ satisfies condition (i). By assumption, no subtree of z
satisfies both conditions (i) and (ii). Thus τ does not satisfy condition (ii), i.e., it holds
that Hτ,Y = µ(τ) ·HX,Y . This completes the proof by induction.

Equation (13) for τ = z gives Hz,Y = µ(z) · HX,Y . Since ✷ ∈ Y , this in particular
implies that

f(z) = Hz,✷ = µ(z) ·HX,✷ = µ(z) · γ = ‖A‖(z),

which yields a contradiction since z is a counterexample for the hypothesis A.

Finally, we show that the row set X grows by at least 1 in each iteration of the main
loop.

Lemma 15 Every complete iteration of the Step 2 - 3 loop strictly increases the cardinality
of X.

Proof It suffices to show that in Step 3.3 at least one of the trees τ1, . . . , τk is added to X.
By Lemma 12, at the start of Step 3.2 vectors Ht1,Y , . . . ,Htn,Y are linearly independent.
Thus by condition (i) of Step 3.1, for every j ∈ [k] it holds that

Hτj ,Y = µ(τj) ·HX,Y (14)

and, moreover, Equation (14) is the unique representation of vector Hτj ,Y as a linear com-
bination of Ht1,Y , . . . ,Htn,Y . Clearly, vectors Ht1,Y , . . . ,Htn,Y remain linearly independent
when Step 3.2 ends.

Towards a contradiction, assume that in Step 3.3 none of the trees τ1, . . . , τk were added
toX. This means that for every j ∈ [k], vector Hτj ,Y can be represented as a linear combina-
tion of Ht1,Y , . . . ,Htn,Y . The latter representation is unique, since vectors Ht1,Y , . . . ,Htn,Y

are linearly independent, and is given by Equation (14). By condition (ii) of Step 3.1 and
Equations (12) and (1), we now have that

Hσ(τ1,...,τk),c 6= µ(σ(τ1, . . . , τk)) ·HX,c

= (µ(τ1)⊗ · · · ⊗ µ(τk)) · µ(σ) ·HX,c

= (µ(τ1)⊗ . . .⊗ µ(τk)) ·Hσ(X,...,X),c

=
∑

(i1,...,ik)∈[n]k





k∏

j=1

µ(τj)ij



 ·Hσ(ti1 ,...,tik ),c
. (15)
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By Step 3.2, we have that c[σ(ti1 , . . . , tij−1 ,✷, τj+1, . . . , τk)] ∈ Y for every j ∈ [k] and
(i1, . . . , ij−1) ∈ [n]j−1. Thus by Equation (14) for j = k, we have

∑

(i1,...,ik)∈[n]k





k∏

j=1

µ(τj)ij



 ·Hσ(ti1 ,...,tik ),c

=
∑

(i1,...,ik−1)∈[n]k−1





k−1∏

j=1

µ(τj)ij




∑

i∈[n]

µ(τk)i ·Hti,c[σ(ti1 ,...,tik−1
,✷)]

=
∑

(i1,...,ik−1)∈[n]k−1





k−1∏

j=1

µ(τj)ij



 · (µ(τk) ·HX,c[σ(ti1 ,...,tik−1
,✷)])

=
∑

(i1,...,ik−1)∈[n]k−1





k−1∏

j=1

µ(τj)ij



 ·Hτk,c[σ(ti1 ,...,tik−1
,✷)]. (16)

Proceeding inductively as above and applying Equation (14) for every j ∈ {k − 1, . . . , 1},
we get that the expression of (16) is equal to Hτ1,c[σ(✷,τ2,...,τk)]. However, this contradicts
Equation (15). The result follows.

Putting together Lemmas 12 - 15, we conclude the following.

Proposition 16 Let Σ be a ranked alphabet and F be a field. Let f ∈ Rec(Σ,F), let H be
the Hankel matrix of f , and r be the rank (over F) of H. On target f , the algorithm LMTA

outputs a minimal MTA-representation of f after at most r iterations of the loop consisting
of Step 2 and Step 3.

Proof Lemmas 13 and 14 show that every step of the algorithm LMTA can be performed.
Theorem 3 implies that r is finite. From Lemma 12 we know that whenever Step 2

starts, HX,Y is a full row rank matrix and thus n ≤ r. Lemma 15 implies that n increases
by at least 1 in each iteration of the Step 2 - 3 loop. Therefore, the number of iterations of
the loop is at most r.

The proof follows by observing that LMTA halts only upon receiving the answer YES
to an equivalence query.

4.3 Succinct Representations

We now explain how algorithm LMTA can be correctly implemented using a DAG represen-
tation of trees. In particular, we assume that membership queries are made on Σ-DAGs,
that the counterexamples are given as Σ-DAGs, the elements of X are Σ-DAGs, and the
elements of Y are DAG representations of Σ-contexts, i.e., ({✷} ∪ Σ)-DAGs.

As shown in Section 2.5, multiplicity tree automata can run directly on DAGs and,
moreover, they assign equal weight to a DAG and to its tree unfolding. Crucially also, as
explained in the proof of Theorem 17, Step 3.1 can be run directly on a DAG representation
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of the counterexample, without unfolding. In particular, Step 3.1 involves multiple execu-
tions of the hypothesis automaton on trees. By Proposition 7, we can faithfully carry out
this step using DAG representations of trees. Step 3.1 also involves considering all subtrees
of a given counterexample. However, by Proposition 5 this is equivalent to looking at all
sub-DAGs of a DAG representation of the counterexample. At various points in the algo-
rithm, we take c ∈ Y , t ∈ X and compute their concatenation c[t] in order to determine the
corresponding entryHt,c of the Hankel matrix by a membership query. Proposition 6 implies
that this can be done faithfully using DAG representations of Σ-trees and Σ-contexts.

4.4 Complexity Analysis

In this section we give a complexity analysis of our algorithm, and compare it to the best
previously-known exact learning algorithm for multiplicity tree automata (Habrard and Oncina,
2006) showing in particular an exponential improvement on the query complexity and the
running time in the worst case.

Theorem 17 Let f ∈ Rec(Σ,F) where Σ has rank m and F is a field. Let A be a minimal
MTA-representation of f , and let r be the dimension of A. Then, f is learnable by the
algorithm LMTA, making r + 1 equivalence queries, |A|2 + |A| · s membership queries, and
O(|A|2+|A|·r ·s) arithmetic operations, where s denotes the size of a largest counterexample
z, represented as a DAG, that is obtained during the execution of the algorithm.

Proof Proposition 16 implies that, on target f , algorithm LMTA outputs a minimal MTA-
representation of f after at most r iterations of the Step 2 - 3 loop, thereby making at most
r + 1 equivalence queries.

Let H be the Hankel matrix of f . From Lemma 12 we know that matrix HX,Y has full
row rank, which implies that |X| ≤ r. As for the cardinality of the column set Y , at the
end of Step 1 we have |Y | = 1. Furthermore, in each iteration of Step 3.2 the number of
columns added to Y is at most

k∑

j=1

nj−1 ≤
k∑

j=1

rj−1 =
rk − 1

r − 1
≤

rm − 1

r − 1
,

where k and n are as defined in Step 3.2. Since the number of iterations of Step 3.2 is at
most r − 1, we have |Y | ≤ rm.

The number of membership queries made in Step 2 over the whole algorithm is

(
∑

σ∈Σ

|σ(X, . . . ,X)| + |X|

)

· |Y |

because the Learner needs to ask for the values of the entries of matrices HX,Y and
Hσ(X,...,X),Y for every σ ∈ Σ.

To analyse the number of membership queries made in Step 3, we now detail the pro-
cedure by which an appropriate sub-DAG of the counterexample z is found in Step 3.1.
By Lemma 14, there exists a sub-DAG τ of z such that Hτ,Y 6= µ(τ) · HX,Y . Thus given
a counterexample z in Step 3.1, the procedure for finding a required sub-DAG of z is as
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follows: Check if Hτ,Y = µ(τ) ·HX,Y for every sub-DAG τ of z in a nondecreasing order of
height; stop when a sub-DAG τ is found such that Hτ,Y 6= µ(τ) ·HX,Y .

In each iteration of Step 3, the Learner makes size(z) · |Y | ≤ s · |Y | membership queries
because, for every sub-DAG τ of z, the Learner needs to ask for the values of the entries of
vector Hτ,Y . All together, the number of membership queries made during the execution of
the algorithm is at most

(
∑

σ∈Σ

|σ(X, . . . ,X)| + |X|

)

· |Y |+ (r − 1) · s · |Y |

≤

(
∑

σ∈Σ

rrk(σ) + r

)

· rm + (r − 1) · s · rm ≤ |A|2 + |A| · s.

As for the arithmetic complexity, in Step 2.1 one can determine if a vector Hσ(ti1 ,...,tik ),Y

is a linear combination of Ht1,Y , . . . ,Htn,Y via Gaussian elimination using O(n2 · |Y |) arith-
metic operations (see Cohen, 1993, Section 2.3). Analogously, in Step 3.3 one can determine
if Hτj ,Y is a linear combination of Ht1,Y , . . . ,Htn,Y via Gaussian elimination using O(n2 ·|Y |)
arithmetic operations. Since |X| ≤ r and |Y | ≤ rm, all together Step 2.1 and Step 3.3 re-
quire at most O(|A|2) arithmetic operations.

Lemma 13 implies that in each iteration of Step 2.2, for any σ ∈ Σ there exists a unique
matrix µ(σ) ∈ Fnrk(σ)×n that satisfies Equation (12). To perform an iteration of Step 2.2,
we first put matrix HX,Y in echelon form and then, for each σ ∈ Σ, solve Equation (12) for
µ(σ) by back substitution. It follows from standard complexity bounds on the conversion
of matrices to echelon form (Cohen, 1993, Section 2.3) that the total operation count for
Step 2.2 can be bounded above by O(|A|2).

Finally, we consider the arithmetic complexity of Step 3.1. In every iteration, for each
sub-DAG τ of the counterexample z the Learner needs to compute the vector µ(τ) and the
product µ(τ) ·HX,Y . Note that µ(τ) can be computed bottom-up from the sub-DAGs of τ .
Since z has at most s sub-DAGs, Step 3.1 requires at most O(|A| · r · s) arithmetic opera-
tions. All together, the algorithm requires at most O(|A|2+|A|·r·s) arithmetic operations.

Algorithm LMTA can be used to show that over Q, multiplicity tree automata are exactly
learnable in randomised polynomial time. The key idea is to represent numbers as arithmetic
circuits. In executing LMTA, the Learner need only perform arithmetic operations on
circuits (addition, subtraction, multiplication, and division), which can be done in constant
time, and equality testing, which can be done in coRP (see Arora and Barak, 2009). These
suffice for all the operations detailed in the proof of Theorem 17; in particular they suffice
for Gaussian elimination, which can be used to implement the linear independence checks
in LMTA.

The complexity of algorithm LMTA should be compared to the complexity of the algo-
rithm of Habrard and Oncina (2006), which learns multiplicity tree automata by making
r+1 equivalence queries, |A| ·s membership queries, and a number of arithmetic operations
polynomial in |A| and s, where s is the size of the largest counterexample given as a tree.
Note that the algorithm of Habrard and Oncina (2006) cannot be straightforwardly adapted
to work directly with DAG representations of trees since when given a counterexample z,
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every suffix of z is added to the set of columns. However, the tree unfolding of a DAG can
have exponentially many different suffixes in the size of the DAG. For example, the DAG in
Figure 2 has size n, and its tree unfolding, shown in Figure 1, has O(2n) different suffixes.

5. Lower Bounds on Query Complexity of Learning MTA

In this section, we study lower bounds on the query complexity of learning multiplicity
tree automata in the exact learning model. Our results generalise the corresponding lower
bounds for learning multiplicity word automata by Bisht et al. (2006), and make no as-
sumption about the computational model of the learning algorithm.

First, we give a lower bound on the query complexity of learning multiplicity tree au-
tomata over an arbitrary field, which is the situation of our algorithm in Section 4.

Theorem 18 Any exact learning algorithm that learns the class of multiplicity tree au-
tomata of dimension at most r, over a ranked alphabet (Σ, rk ) and any field, must make at
least

∑

σ∈Σ rrk(σ)+1 − r2 queries.

Proof Take an arbitrary exact learning algorithm L that learns the class of multiplicity
tree automata of dimension at most r, over a ranked alphabet (Σ, rk) and over any field.
Let F be any field.

Let K := F({zσi,j : σ ∈ Σ, i ∈ [rrk(σ)], j ∈ [r]}) be an extension field of F, where

the set {zσi,j : σ ∈ Σ, i ∈ [rrk(σ)], j ∈ [r]} is algebraically independent over F. Let us

define a ‘generic’ K-multiplicity tree automaton A := (r,Σ, µ, γ) where γ = e1 ∈ Fr×1 and

µ(σ) = [zσi,j]i,j ∈ Krrk(σ)×r for every σ ∈ Σ. Define a tree series f := ‖A‖. Since every
F-multiplicity tree automaton can be obtained from A by substituting values from F for
the variables zσi,j, if the Hankel matrix of f had rank less than r then every r-dimensional
F-multiplicity tree automaton would have Hankel matrix of rank less than r. Therefore, the
Hankel matrix of f has rank r.

We run algorithm L on the target function f . By assumption, the output of L is an
MTA A′ = (r,Σ, µ′, γ′) such that ‖A′‖ ≡ f . Let n be the number of queries made by L

on target f . Let t1, . . . , tn ∈ TΣ be the trees on which L either made a membership query,
or which were received as counterexample to an equivalence query. Then for every l ∈ [n],
there exists a multivariate polynomial pl ∈ F[(zσi,j)i,j,σ] such that f(tl) = pl.

Note that A and A′ are both minimal MTA-representations of f . Thus by Theorem 4,
there exists an invertible matrix U ∈ Kr×r such that γ = U ·γ′ and µ(σ) = U⊗rk(σ)·µ′(σ)·U−1

for every σ ∈ Σ. This implies that the entries of matrices µ(σ), σ ∈ Σ, lie in an extension
of F generated by the entries of U and {pl : l ∈ [n]}. Since the entries of matrices µ(σ),
σ ∈ Σ, form an algebraically independent set over F, their number is at most r2 + n.

One may wonder whether a learning algorithm could do better over a fixed field F by
exploiting particular features of the field. In this setting, we have the following lower bound.

Theorem 19 Let F be an arbitrary field. Any exact learning algorithm that learns the class
of F-multiplicity tree automata of dimension at most r, over a ranked alphabet (Σ, rk) with
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at least one unary symbol and rank m, must make number of queries at least

1

2m+1
·

(
∑

σ∈Σ

rrk(σ)+1 − r2 − r

)

.

Proof Without loss of generality, we can assume that r is even and define n := r/2. Let
L be an exact learning algorithm for the class of F-multiplicity tree automata of dimension
at most r, over a ranked alphabet (Σ, rk) with rk−1({1}) 6= ∅. We will identify a class of
functions C such that L has to make at least

∑

σ∈Σ nrk(σ)+1 − n2 − n queries to distinguish
between the members of C.

Let σ0, σ1 ∈ Σ be nullary and unary symbols respectively. Let P ∈ Fn×n be the per-
mutation matrix corresponding to the cycle (1, 2, . . . , n). Define A to be the set of all
F-multiplicity tree automata (2n,Σ, µ, γ) where

• µ(σ0) =
[
1 0

]
⊗ e1 and µ(σ1) = I2 ⊗ P ;

• For each k-ary symbol σ ∈ Σ \ {σ0, σ1}, there exists B(σ) ∈ Fnk×n such that

µ(σ) =
[
1 1

]
⊗

([
In
−In

]⊗k

· B(σ)

)

;

• γ =
[
1 0

]⊤
⊗ e⊤1 .

We define a set of recognisable tree series C := {‖A‖ : A ∈ A}.
In Lemma 20 we state some properties of the functions in C. More precisely, we show

that the coefficient of a tree t ∈ TΣ in any series f ∈ C fundamentally depends on whether
t has 0, 1, or at least 2 nodes whose label is not σ0 or σ1. Here for every i ∈ N0 and t ∈ TΣ,
we use σi

1(t) to denote the tree σ1(σ1(. . . σ1(
︸ ︷︷ ︸

i

t) . . .)).

Lemma 20 The following properties hold for every f ∈ C and t ∈ TΣ:

(i) If t = σj
1(σ0) where j ∈ {0, 1, . . . , n− 1}, then f(σ0) = 1 and f(σj

1(σ0)) = 0 for j > 0.

(ii) If t = σj
1(σ(σ

i1
1 (σ0), . . . , σ

ik
1 (σ0))) where k ∈ {0, 1, ...,m}, σ ∈ Σk \ {σ0, σ1}, and

j, i1, . . . , ik ∈ {0, 1, . . . , n− 1}, then f(t) = B(σ)(1+i1,...,1+ik),(1+n−j) mod n.

(iii) If
∑

σ∈Σ\{σ0,σ1}
#σ(t) ≥ 2, then f(t) = 0.

Proof Let A = (2n,Σ, µ, γ) ∈ A be such that ‖A‖ ≡ f . First, we prove property (i).
Using Equation (2) and the mixed-product property of Kronecker product, we get that

µ(σj
1(σ0)) = µ(σ0) · µ(σ1)

j = (
[
1 0

]
⊗ e1) · (I2 ⊗ P j) =

[
1 0

]
⊗ e1P

j (17)

and therefore

f(σj
1(σ0)) = µ(σj

1(σ0)) · γ = (
[
1 0

]
⊗ e1P

j) · (
[
1 0

]⊤
⊗ e⊤1 )
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= (
[
1 0

]
·
[
1 0

]⊤
)⊗ (e1P

j · e⊤1 ) = ej+1 · e
⊤
1 . (18)

If j = 0 then the expression of (18) is equal to 1, otherwise the expression of (18) is equal
to 0. This completes the proof of property (i).

Next, we prove property (ii). By the mixed-product property of Kronecker product and
Equations (2), (3), and (17), we have

µ(σj
1(σ(σ

i1
1 (σ0), . . . , σ

ik
1 (σ0))))

=

(
k⊗

l=1

µ(σil
1 (σ0))

)

· µ(σ) · µ(σ1)
j

=

(

[
1
]
⊗

k⊗

l=1

µ(σil
1 (σ0))

)

·

(

[
1 1

]
⊗

([
In
−In

]⊗k

·B(σ)

))

· (I2 ⊗ P )j

=

(

([
1
]
·
[
1 1

])
⊗

(
k⊗

l=1

µ(σil
1 (σ0)) ·

[
In
−In

]⊗k

·B(σ)

))

· (I2 ⊗ P j)

=

(

[
1 1

]
⊗

(
k⊗

l=1

(
([
1 0

]
⊗ e1P

il
)
·

[
In
−In

])

· B(σ)

))

· (I2 ⊗ P j)

=

(

[
1 1

]
⊗

(
k⊗

l=1

e1P
il ·B(σ)

))

· (I2 ⊗ P j)

=
([
1 1

]
· I2
)
⊗

(
k⊗

l=1

e1+il · B(σ) · P j

)

=
[
1 1

]
⊗ (B(σ)(1+i1,...,1+ik) · P

j) (19)

and therefore, using the fact that Pn = In, we get that

f(σj
1(σ(σ

i1
1 (σ0), . . . , σ

ik
1 (σ0)))) = µ(σj

1(σ(σ
i1
1 (σ0), . . . , σ

ik
1 (σ0)))) · γ

= (
[
1 1

]
⊗ (B(σ)(1+i1,...,1+ik) · P

j)) · (
[
1 0

]⊤
⊗ e⊤1 )

= (
[
1 1

]
·
[
1 0

]⊤
)⊗ (B(σ)(1+i1,...,1+ik) · P

j · e⊤1 )

= B(σ)(1+i1,...,1+ik) · (e1P
n−j)⊤

= B(σ)(1+i1,...,1+ik),(1+n−j) mod n.

Finally, we prove property (iii). If
∑

σ∈Σ\{σ0,σ1}
#σ(t) ≥ 2 then there exists a subtree

σ′(t1, . . . , tk) of t such that k ≥ 1, σ′ ∈ Σk \ {σ1}, and
∑

σ∈Σ\{σ0 ,σ1}
#σ(ti) = 1 for some

i ∈ [k]. It follows from Equation (19) that µ(ti) =
[
1 1

]
⊗α holds for some α ∈ F1×n. By

the mixed-product property of Kronecker product and Equation (3), we have

µ(σ′(t1, . . . , tk)) =





k⊗

j=1

µ(tj)



 ·

(

[
1 1

]
⊗

([
In
−In

]⊗k

· B(σ′)

))

=
[
1 1

]
⊗





k⊗

j=1

µ(tj) ·

[
In
−In

]⊗k

·B(σ′)
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=
[
1 1

]
⊗





k⊗

j=1

(

µ(tj) ·

[
In
−In

])

· B(σ′)



 = 01×2n

where the last equality holds since

µ(ti) ·

[
In
−In

]

=
[
α α

]
·

[
In
−In

]

= 01×n.

Since σ′(t1, . . . , tk) is a subtree of t, we now have that µ(t) = 01×2n and thus f(t) = 0.

Remark 21 As Pn = In, we have µ(σ1)
n = I2n. Thus for every f ∈ C, k ∈ {0, 1, ...,m},

σ ∈ Σk \ {σ0, σ1}, and j, i1, . . . , ik ∈ N0, it holds that f(σj
1(σ0)) = f(σj mod n

1 (σ0)) and

f(σj
1(σ(σ

i1
1 (σ0), . . . , σ

ik
1 (σ0)))) = f(σj mod n

1 (σ(σi1 mod n
1 (σ0), . . . , σ

ik mod n
1 (σ0)))).

Run L on a target f ∈ C. Lemma 20 (i), (iii) and Remark 21 imply that when L makes a
membership query on t ∈ TΣ such that

∑

σ∈Σ\{σ0,σ1}
#σ(t) ≥ 2, the Teacher returns 0, while

when L makes a membership query on t = σj
1(σ0), the Teacher returns 1 if j mod n = 0

and returns 0 otherwise. In these cases, L does not gain any new information about f since
every function in C is consistent with the values returned by the Teacher.

When L makes a membership query on a tree t = σj
1(σ(σ

i1
1 (σ0), . . . , σ

ik
1 (σ0))) such that

k ∈ {0, 1, ...,m} and σ ∈ Σk \ {σ0, σ1}, the Teacher returns an arbitrary number in F if the
value f(t) is not already known from an earlier query. Lemma 20 (ii) and Remark 21 imply
that L thereby learns the entry B(σ)(1+(i1 mod n),...,1+(ik mod n)),(1+n−j) mod n.

When L makes an equivalence query on a hypothesis h ∈ C, the Teacher finds some
entry B(σ)(i1,...,ik),j that L does not know from previous queries and returns the tree

σ1+n−j
1 (σ(σi1−1

1 (σ0), . . . , σ
ik−1
1 (σ0))) as the counterexample.

With each query, the Learner L learns at most one entry of B(σ) where σ ∈ Σ\{σ0, σ1}.
The number of queries made by L on target f is, therefore, at least the total number of
entries of B(σ) for all σ ∈ Σ \ {σ0, σ1}. The latter number is equal to

∑

σ∈Σ\{σ0 ,σ1}

nrk(σ)+1 ≥
1

2m+1
·

∑

σ∈Σ\{σ0,σ1}

rrk(σ)+1

=
1

2m+1
·

(
∑

σ∈Σ

rrk(σ)+1 − r2 − r

)

.

The lower bounds of Theorems 18 and 19 are both linear in the target automaton size.
Note that when the alphabet rank is fixed, the lower bound for learning over a fixed field
(Theorem 19) is the same up to a constant factor as for learning over an arbitrary field
(Theorem 18).

Assuming a Teacher that represents counterexamples as succinctly as possible, e.g, using
the algorithm of Seidl (1990), the upper bound of algorithm LMTA from Theorem 17 is
quadratic in the target automaton size, i.e., quadratically greater than the lower bound of
Theorem 18.
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6. Future Work

Beimel et al. (2000) apply their exact learning algorithm for multiplicity word automata
to show exact learnability of certain classes of polynomials over both finite and infinite
fields. They also prove the learnability of disjoint DNF formulae (i.e., DNF formulae in
which each assignment satisfies at most one term) and, more generally, disjoint unions of
geometric boxes over finite domains.

The learning framework considered in this paper involves tree automata, which are more
expressive than word automata. Moreover, our result on the complexity of equivalence of
multiplicity tree automata shows that, through equivalence queries, the Learner essentially
has an oracle for polynomial identity testing. Thus a natural direction for future work is
to seek to apply our algorithm to derive new results on exact learning of other concept
classes, such as propositional formulae and polynomials (both in the commutative and
noncommutative cases). In this direction, we would like to examine the relationship of
our work with that of Klivans and Shpilka (2006) on exact learning of algebraic branching
programs and arithmetic circuits and formulae. The latter paper relies on rank bounds
for Hankel matrices of polynomials in noncommuting variables, obtained by considering a
generalised notion of partial derivative. Here we would like to determine whether the extra
expressiveness of Hankel matrices over tree series can be used to show learnability of more
expressive classes of formulae and circuits.

Sakakibara (1990) showed that context-free grammars (CFGs) can be learned efficiently
in the exact learning model using membership queries and counterexamples based on parse
trees. Given the important role of weighted and probabilistic CFGs across a range of
applications including linguistics, another natural next step would be to apply our algorithm
to learn weighted CFGs similarly using queries and counterexamples involving parse trees.
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Applications, 23(4):449–459, 1989.

S. Bozapalidis and O. Louscou-Bozapalidou. The rank of a formal tree power series. Theo-
retical Computer Science, 27(1):211–215, 1983.

W. Charatonik. Automata on DAG representations of finite trees. Research Report MPI-
I-1999-2-001, Max-Planck-Institut für Informatik, Saarbrücken, 1999.

H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993.

R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978.

F. Denis, M. Gybels, and A. Habrard. Dimension-free concentration bounds on Hankel
matrices for spectral learning. In Proceedings of the 31th International Conference on
Machine Learning (ICML), pages 449–457, 2014.
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