
Tight Bounds for Complementing Parity Automata

Sven Schewe and Thomas Varghese
Department of Computer Science, University of Liverpool

Abstract

We follow a connection between tight determinisation and complementation and establish a
complementation procedure from transition-labelled parity automata to transition-labelled nonde-
terministic Büchi automata. We prove it to be tight up to an O(n) factor, where n is the size of the
nondeterministic parity automaton. This factor does not depend on the number of priorities.

1 Introduction

The precise complexity of complementing ω-automata is an intriguing problem for two reasons: first,
the quest for optimal algorithms is a much researched problem [1, 17, 12, 24, 15, 11, 25, 10, 8, 7, 6, 13,
27, 29], and second, complementation is a valuable tool in formal verification (c.f., [9]), in particular
when studying language inclusion problems of ω-regular languages. Complementation is also useful to
check the correctness of translation techniques [27, 26]. The GOAL tool [26], for example, provides
such a test suite and incorporates recent algorithms [15, 25, 8, 13] for Büchi complementation.

While devising optimal complementation algorithms for nondeterministic finite automata is
simple—nondeterministic finite automata can be determinised using a simple subset construction, and
deterministic finite automata can be complemented by complementing the set of final states [14, 17]—
devising optimal complementation algorithms for nondeterministic ω-automata is hard, because simple
subset constructions are not sufficient to determinise or complement them [11, 10].

Given the hardness and importance of the problem, the complementation of ω-automata enjoyed
much attention. The initial focus was on the complementation of Büchi automata with state-based
acceptance [1, 12, 24, 11, 15, 10, 25, 8, 7, 6, 27, 29, 18, 26], and it resulted in a continuous improvement
of its upper and lower bounds.

The first complementation algorithm dates back to the introduction of Büchi automata in 1962. In
his seminal paper “On a decision method in restricted second order arithmetic” [1], Büchi develops
a doubly exponential complementation procedure. While Büchi’s result shows that nondeterministic
Büchi automata (and thus ω-regular expressions) are closed under complementation, complementing an
automaton with n states may, when using Büchi’s complementation procedure, result in an automaton
with 22O(n)

states, while an Ω(2n) lower bound [17] is inherited from finite automata.
In the late 80s, these bounds have been improved in a first sequence of results, starting with estab-

lishing an EXPTIME upper bound [12, 24], which matches the EXPTIME lower bound [17] inherited
from finite automata. However, the early EXPTIME complementation techniques produce automata
with up to 2O(n2) states [12, 24]; hence, these upper bounds were still exponential in the lower bounds.

This situation changed in 1988, when Safra introduced his famous determinisation procedure for
nondeterministic Büchi automata [15], resulting in an nO(n) bound for Büchi complementation, while
Michel [11] established a seemingly matching Ω(n!) lower bound in the same year. Together, these
results imply that Büchi complementation is in nθ(n), leaving again the impression of a tight bound.

As pointed out by Vardi [27], this impression is misleading, because the O() notation hides an nθ(n)

gap between both bounds. This gap has been narrowed down in 2001 to 2θ(n) by the introduction of
an alternative complementation technique that builds on level rankings and a cut-point construction [8].
The complexity of the plain method is approximately (6n)n [8], leaving a (6e)n gap to Michel’s lower
bound [11].

1

ar
X

iv
:1

40
6.

10
90

v1
 [

cs
.F

L
]

 4
 J

un
 2

01
4

Subseqently, tight level rankings [6, 29] have been exploited by Friedgut, Kupferman, and Vardi [6]
to improve the upper complexity bound to O

(
(0.96n)n

)
, and by Yan [29] to improve the lower com-

plexity bound to Ω
(
(0.76n)n

)
. Schewe [18] has provided a matching upper bound, showing tightness

up to an O(n2) factor.
In recent works, more succinct acceptance mechanism have been studied, where the most important

ones are parity and generalised Büchi automata, as they occur naturally in the translation of µ-calculi
and LTL specifications, respectively. In [22], we gave tight bounds for the determinisation and comple-
mentation of generalised Büchi automata. For Rabin, Streett, and parity automata, there has been much
progress [4, 3, 2], in particular establishing an nθ(n) bound for parity complementation with state-based
acceptance, which has been a great improvement and pushed tightness of parity comple- mentation to
the level known from Büchi complementation since the late 80s [15, 11].
Contribution. In this paper, we establish tight bounds for the complementation of parity automata with
transition-based acceptance. A generalisation of the ranking-based complementation procedures quoted
above to transition-based acceptance is straight forward, and the Safra-style determinisation procedures
from the literature [15, 16, 13, 19, 22] have a natural representation with an acceptance condition on
transitions. Their translation to state-based acceptance is by multiplying the acceptance from the last
transition to the state space.

A similar observation can be made for other automata transformations, like the removal of ε-
transitions from translations of µ-calculi [28, 20] and the treatment of asynchronous systems [21], where
the state-space grows by multiplication with the acceptance information (e.g., maximal priority on a fi-
nite sequence of transitions), while it cannot grow in case of transition-based acceptance. Similarly, tools
like SPOT [5] offer more concise automata with transition-based acceptance mechanism as a translation
from LTL. Using state-based acceptance in the automaton that we want to complement would also com-
plicate the presentation of the complementation procedure. But first and foremost, using transition-based
acceptance provides cleaner results.

This is the case because in state-based acceptance, the role of the states is overloaded. In finite
automata over infinite structures, each state represents the class of tails of the word that can be accepted
from this state. In state-based acceptance, they have to account for the acceptance mechanism itself, too,
while they are relieved from this burden in transition-based acceptance. In complementation techniques
based on rankings, this results in a situation where states with certain properties, such as final states for
Büchi automata, can only occur with some ranks, but not with all.

As transition-based acceptance separates these concerns, the presentation becomes cleaner. The
natural downside is that we lose the nO(n) bound [3] for parity complementation, as the number of
priorities in a parity automaton with transition-based acceptance can grow arbitrarily. But in return, we
do get a clean and simple complementation procedure based on a data structure we call flattened nested
history trees (FNHTs), which is inspired by a generalisation of history trees [19] to multiple levels, one
for each even priority ≥ 2.

In [22], we showed a connection between optimal determinisation and complementation for gener-
alised Büchi automata, where we exploit the nondeterministic power of a Büchi automaton to devise a
tight complementation procedure. In this paper, we follow this connection between tight determinisa-
tion [23] and complementation to devise a tight complementation construction from parity to nondeter-
ministic Büchi automata.

We show that any procedure that complements full parity automata with states Q and maximal pri-
ority π has at least |fnht(Q, π)|/2 states, where fnht(Q, π) is the set of FNHTs for a given set Q of
states and maximal priority π of the parity automaton that is to be complemented. Our complemen-
tation construction uses a marker in addition for its acceptance mechanism. Essentially, it is used to
mark some position of interest in an FNHT. It accounts for the O(n) gap between the upper and lower
bound. We show that, for π ≥ 2 (and hence for Büchi automata upwards) the number of states of our
complementation construction is bounded by 4n+ 1 times the lower bound.

2

2 Preliminaries

We denote the non-negative integers by ω = {0, 1, 2, 3, ...}. For a finite alphabet Σ, an infinite word
α is an infinite sequence α0α1α2 · · · of letters from Σ. We sometimes interpret ω-words as functions
α : i 7→ αi, and use Σω to denote the ω-words over Σ.

ω-automata are finite automata that are interpreted over infinite words and recognise ω-regular lan-
guagesL ⊆ Σω. Nondeterministic parity automata are quintuplesP = (Q,Σ, I, T, pri : T → Π), where
Q is a finite set of states with a non-empty subset I ⊆ Q of initial states, Σ is a finite alphabet,
T ⊆ Q × Σ × Q is a transition relation that maps states and input letters to sets of successor states,
and pri is a priority function that maps transitions to a finite set Π ⊂ ω of non-negative integers.

A run ρ of a nondeterministic parity automaton P on an input word α is an infinite sequence ρ :
ω → Q of states of P , also denoted ρ = q0q1q2 · · · ∈ Qω, such that the first symbol of ρ is an initial
state q0 ∈ I and, for all i ∈ ω, (qi, αi, qi+1) ∈ T is a valid transition. For a run ρ on a word α, we
denote with ρ : i 7→

(
ρ(i), α(i), ρ(i + 1)

)
the transitions of ρ. Let infin(ρ) = {q ∈ Q | ∀i ∈ ω ∃j >

i such that ρ(j) = q} denote the set of all states that occur infinitely often during the run ρ. Likewise,
let infin(ρ) = {t ∈ T | ∀i ∈ ω ∃j > i such that ρ(j) = t} denote the set of all transitions that are taken
infinitely many times in ρ. Acceptance of a run is defined through the priority function pri. A run ρ of a
parity automaton is accepting if lim supn→∞ pri

(
ρ(n)

)
is even, that is, if the highest priority that occurs

infinitely often in the transitions of ρ is even. A word α is accepted by a parity automaton P iff it has an
accepting run, and its language L(P) is the set of words it accepts.

Parity automata with Π ⊆ {1, 2} are called Büchi automata. Büchi automata are denoted B =
(Q,Σ, I, T, F), where F ⊆ T are called the final or accepting transitions. A run is accepting if it
contains infinitely many accepting transitions. B is thus a rendering of the parity automaton, where
pri : t 7→ 2 if t ∈ F and pri : t 7→ 1 if t /∈ F .

We assume w.l.o.g. that the set Π of priorities satisfies that min Π ∈ {0, 1}. If this is not the case, we
can simply change pri accordingly to pri′ : t 7→ pri(t)− 2 several times until this constraint is satisfied.
We likewise assume that Π has no holes, that is, Π = {i ∈ ω | max Π ≥ i ≥ min Π}. If there is
a hole h /∈ Π with max Π > h > min Π, we can change pri to pri′ : t 7→ pri(t) if pri(t) < h and
pri′ : t 7→ pri(t)− 2 if pri(t) > h. Obviously, these changes do not affect the acceptance of any run, and
applying finitely many of these changes brings Π into this normal form.

The different priorities have a natural order <, where i � j if i is even and j is odd; i is even and
i > j; or j is odd and i < j. For a non-empty set Π′ ⊆ Π of priorities, optΠ′ = {i ∈ Π′ | ∀j ∈ Π′. i <
j} denotes the optimal priority for acceptance.

The complexity of a parity automatonP = (Q,Σ, I, T, pri : T → Π) is measured by its size n = |Q|
and its set of priorities Π. For a given size n and set of priorities Π, there is an automaton that recognises
a hardest language. This automaton is referred to as the full automaton PΠ

n = (Q,Σ, I, T, pri : T → Π),
with |Q| = n, I = Q, Σ = Q×Q→ 2Π, T = {q, σ, q′) | σ(q, q′) 6= ∅, and pri(q, σ, q′) = optσ(q, q′).

Note that partial functions from Q×Q to Π would work as well as the alphabet. The larger alphabet
is chosen for technical convenience in the proofs. Any other language recognised by a nondeterministic
parity automaton P with n states and priorities Π can essentially be obtained by a language restriction
via alphabet restriction from PΠ

n .

3 Complementing parity automata

The construction described in this section draws from two main sources of inspiration. One source is
the introduction of efficient techniques for the determinisation of parity automata in [23]. The nested
history trees used there have been our inspiration for the flattened nested history trees that form the core
data structure in the complementation from Subsection 3.2 and are the backbone of the lower bound
proof from Subsection 3.4. The second source of inspiration is the connection [22] between the efficient
determinisation based on history trees [19] for Büchi automata and generalised Büchi automata [22] and
their level ranking based complementation [8, 6, 18, 22].

3

The intuition for the complementation is to use the nondeterministic power of a Büchi automaton to
reduce the size of the data stored for determinisation. As usual, this nondeterministic power is intuitively
used to guess a point in time, where all nodes of the nested history trees from parity determinisation
[23], which are eventually always stable, are henceforth stable. Alongside, the set of stable nodes can
be guessed.

Like in the construction for Büchi automata, the structure can then be flattened, preserving the
‘nicking order’, the order in which older nodes and descendants take preference in taking states of the
nondeterministic parity automaton that is determinised. The complement automaton runs in two phases:
a first phase before this guessed point in time, and a second phase after this point, where the run starts
in such a flattened tree.

In the first subsection, we introduce flattened nested history trees as our main data structure. While
we take inspiration from nested history trees [23], the construction is self-contained. In the second sub-
section, we show that Büchi automata recognising the complement language of the full nondeterministic
parity automaton PΠ

n need to be large by showing disjointness properties of accepting runs for a large
class of words, one for each full flattened nested history tree introduced in Subsection 3.1. The definition
of this language is also instructive in how the data structure is exploited.

We extend our data structure by markers, resulting in marked flattened trees, which are then used as
the main part of the state space of the natural complementation construction introduced in Subsection
3.2. We show correctness of our complementation construction in Subsection 3.3 and tightness up to an
O(n) factor in Subsection 3.4.

Note that all our constructions assume max Π ≥ 2, and therefore do not cover the less expressive
CoBüchi automata.

3.1 Flattened nested history trees & marked flattened trees

Flattened nested history trees (FNHTs) are the main data structure used in our complementation al-
gorithm. For a given parity automaton P = (Q,Σ, I, T, pri : T → Π), an FNHT over the set
Q of states, maximal priority πm = max Π and maximal even priority πe = optΠ, is a tuple
(T , ls : T → 2Q, ll : T → 2N, lp : T → 2Q, lr : T → 2Q), where T (an ordered, labelled tree)
is a non-empty, finite, and prefix closed subset of finite sequences of natural numbers and a special sym-
bol s (for stepchild), ω∪{s}, that satisfies the constraints given below. We call a node vs ∈ T a stepchild
of v, and refer to all other nodes vc with c ∈ ω as the natural children of v. nc(v) = {vc | c ∈ ω and
vc ∈ T } is the set of natural children of v. The root is a stepchild.

The constraints an FNHT quintuple has to satisfy are as follows:

• Stepchildren have only natural children, and natural children only stepchildren.

• Only natural children and, when the highest priority π is odd, the root may be leafs.

• T is order closed: for all c, c′ ∈ ω with c < c′, vc′ ∈ T implies vc ∈ T .

• For all v ∈ T , ls(v) 6= ∅.

• If v is a stepchild, then lp(v) = ∅.

• If v is a stepchild, then ls(v) = lr(v) ∪
⋃
v′∈nc(v) ls(v

′).

The sets ls(v′) and ls(v′′) are disjoint for all v′, v′′ ∈ nc(v) with v′ 6= v′′, and lr(v) is disjoint
with

⋃
v′∈nc(v) ls(v

′).

• If v is a natural child, then lp(v) 6= ∅, ls(v) = lp(v) ∪ lr(v), and lp(v) ∩ lr(v) = ∅.

• If a natural child v is not a leaf, then ls(vs) = lp(v).

• ll(ε) = πe and, for all v ∈ T , ll(v) ≥ 2.

4

• If vs ∈ T , then ll(vs) = ll(v)− 2, and if vc ∈ T for c ∈ ω, then ll(vc) = ll(v).

The elements in ls(v) are called the states, lp(v) the pure states, and lr(v) the recurrent states of a
node v, and ll(v) is called its level. Note that the level follows a simple pattern: the root is labelled
with the maximal even priority, ll(ε) = πe, the level of natural children is the same as the level of their
parents, and the level of a stepchild vs of a node v is two less than the level of v. For a given maximal
even priority πe, the level is therefore redundant information that can be reconstructed from the node
and πi. For a given set Q and maximal priority π, fnht(Q, π) denotes the flattened nested history trees
over Q. An FNHT is called full if the states ls(ε) = Q of the root is the full set Q.

To include an acceptance mechanism, we enrich FNHTs to marked flattened tress (MFTs), which
additionally contain a marker vm and a marking set Qm, such that

• either vm = (v, r) with v ∈ T is used to mark that we follow a breakpoint construction on the
recurrent states, in this case lr(v) ⊇ Qm 6= ∅,

• or vm = (v, p) such that v is a leaf in T is used to mark that we follow a breakpoint construction
on the pure states of a leaf v, in this case lp(v) ⊇ Qm 6= ∅.

The marker is used to mark a property to be checked. For markers vm = (v, r), the property is that
a particular node would not spawn stable children in a nested history tree [23]. As usual in Safra like
constructions, this is checked with a breakpoint, where a breakpoint is reached when all children of a
node spawned prior to the last breakpoint die. For markers vm = (v, p), the property is that all runs
that are henceforth trapped in the pure nodes of v must eventually encounter a priority ll(v) − 1. This
priority is then dominating, and implies rejection as an odd priority. We check these properties round
robin for all nodes in T , skipping over nodes, where the respective sets lr(v) or lp(v) are empty, as the
breakpoint there is trivially reached immediately.

For a given FNHT (T , ls, ll, lp, lr), next(vm) is a mapping from a marker vm to a marker/marking
set pair (v, r), lr(v) or (v, p), lp(v). The new marker is the first marker after vm in some round robin
order such that the set lr(v) or lp(v), resp., is non-empty.

If (T , ls, ll, lp, lr) is an FNHT and vm and Qm satisfy the constraints for markers and marking sets
from above, then (T , ls, ll, lp, lr; vm, Qm) is a marked flattened tree. For a given set Q and priorities Π
with maximal priority π = max Π, mft(Q, π) denotes the marked flattened trees over Q. A marking is
called full if either vm = (v, r) and Qm = lr(v), or vm = (v, p) and Qm = lp(v).

3.2 Construction

For a given nondeterministic parity automaton P = (Q,Σ, I, T, pri : T → Π) with maximal even prior-
ity πe > 1, we construct a nondeterministic Büchi automaton C = (Q′,Σ, {I}, T ′, F) that recognises the
complement language of P as follows. First we set Q′ = Q1 ∪Q2 with Q1 = 2Q and Q2 = mft(Q, π),
and T ′ = T1 ∪ Tt ∪ T2, where

• T1 ⊆ Q1 × Σ×Q1 are transitions in an initial part Q1 of the states of C,

• Tt ⊆ Q1 × Σ×Q2 are transfer transitions that can be taken only once in a run, and

• T2 ⊆ Q2 × Σ×Q2, are transitions in a final part Q2 of the states of C,

where T1 and T2 are deterministic. We first define a transition function δ for the subset construction and
functions δi for all priorities i ∈ Π, and then the sets T1, Tt, and T2.

• δ : (S, σ) 7→ {q ∈ Q | ∃s ∈ S. (s, σ, q) ∈ T},

• δi : (S, σ) 7→
{
q ∈ Q | ∃s ∈ S. (s, σ, q) ∈ T and pri

((
s, σ, q)

)
< i
}

,

• T1 =
{

(S, σ, S′) ∈ Q1 × Σ×Q1 | S′ = δ(S, σ)
}

,

where only transitions (∅, σ, ∅) are accepting.

5

• Tt =
{(
S, σ, (T , ls, ll, lp, lr; vm, Qm)

)
∈ Q1 × Σ × Q2 | ls(ε) = δ(S, σ)

}
and we have

that(T , ls, ll, lp, lr; vm, Qm) is a marked flattened tree.

• T2 =
{(

(T , ls, ll, lp, lr; vm, Qm), σ, s
)
∈ Q2 × Σ×Q2 |

– if v is a stepchild, then l′′s (v) = δll(v)+1

(
ls(v), σ

)
– if v is a natural child, then l′′s (v) = δll(v)−1

(
ls(v), σ

)
– if v is a natural child, then l′′r (v) = δll(v)−1

(
lr(v), σ

)
∪ δll(v)

(
ls(v), σ

)
,

– starting at the root, we then define inductively:

∗ l′s(ε) = l′′s (ε),
∗ if vc is a natural child, then l′s(vc) =

(
l′′s (vc)∩l′s(v)

)
r
⋃
c′<c l

′′
s (vc′), l′r(vc) = l′′r (vc)∩

l′s(vc), and l′p(vc) = l′s(vc) r l′r(vc), and
∗ if vs is a stepchild, then l′s(vs) = l′p(v).

– if one exists, we extend the functions to obtain the unique FNHT (T , l′s, ll, l′p, l′r) (otherwise
C blocks)

– if vm = (v, r) then Q′m = δll(v)−1(Qm, σ) ∩ l′r(v), and
if vm = (v, p) then Q′m = δll(v)−3(Qm, σ) ∩ l′p(v),

– if Q′m = ∅, then the transition is accepting and s =
(
T , l′s, ll, l′p, l′r; next(vm)

)
,

– if Q′m 6= ∅, then the transition is not accepting and s = (T , l′s, ll, l′p, l′r; vm, Q′m).

3.3 Correctness

To show that L(C) is the complement of L(P), we first show that a word accepted by C is rejected by P
and then, vice versa, that a word accepted by P is rejected by C.

Lemma 3.1 If C has an accepting run on α, then P rejects α.

Proof. Let ρ = S0S1 . . . be an accepting run of C on α that stays in Q1. Thus, there is an i ∈ ω such
that, for all j ≥ i, Sj = ∅. But if we consider any run ρ′ = q0q1q2 . . . of P on α, then it is easy to show
by induction that qk ∈ Sk holds for all k ∈ ω, which contradicts Si = ∅; that is, in this case P has no
run on α.

Let us now assume that ρ = S0S1 . . . Sisi+1si+2 . . . is an accepting run of C on α, where
(Si, αi, si+1) ∈ Tt is the transfer transition taken. (Recall that runs of C must either stay in Q1 or
contain exactly one transfer transition.)

Let us assume for contradiction that P has an accepting run ρ′ = q0q1q2 . . . with even dominating
priority e = lim supj→∞ pri

(
(qj , αj , qj+1)

)
. Let, for all j > i, sj = (T , ljs, ll, ljp, ljr; vjm, Qjm

)
and

Sj = ljs(ε). It is again easy to show by induction that qj ∈ Sj for all j ∈ ω. Let now vj ∈ T be the
longest node with ljl (vj) ≥ e and qj ∈ ljs(vj). Note that such a node exists, as qj ∈ Sj = ljs(ε) holds.
We now distinguish the two cases that the vj do and do not stabilise eventually.
First case. Assume that there are an i′ > i and a v ∈ T such that, for all j ≥ i′, vj = v. We choose i′

big enough that pri(qj−1, αj−1, qj) � e+ 1 holds for all j ≥ i′.
If v is a stepchild, then qj ∈ ljr(v) for all j ≥ i′. Using the assumption that ρ is accepting, there

is an i′′ > i′ such that (si′′−1, αi′′−1, si′′) is accepting, and vi
′′
m = (v, r). (Note that qi′′ ∈ li

′′
r (v)

implies li
′′
r (v) 6= ∅.) But then we have qi′′ ∈ Qi

′′
m = li

′′
r (v), and an inductive argument provides

(sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′′. This contradicts that ρ is accepting.
If v is a natural child, then we distinguish three cases. The first one is that there is a j′ ≥ i′ such

that qj′ ∈ lj
′
r (v). Then we can show by induction that qj ∈ ljr(v) for all j ≥ j′ and follow the same

argument as for stepchildren, using i′′ > j′.
The second is that qj ∈ ljp(v) holds for all j ≥ i′. There are now again a few sub-cases that

each lead to contradiction. The first is that ll(v) = e. But in this case, we can choose a j > i′ with

6

pri
(
(qj , αj , qj+1)

)
= e and get qj+1 ∈ lj+1

r (v) (contradiction). The second is that ll(v) > e and v is
not a leaf. But in that case, ll(vs) ≥ e holds and qj ∈ ljp(v) implies qj ∈ ljp(vs), which contradicts the
maximality of v. Finally, if ll(v) > e and v is a leaf of T , we get a similar argument as for stepchildren:
Using the assumption that ρ is accepting, there is an i′′ > i′ such that (si′′−1, αi′′−1, si′′) is accepting,
and vi

′′
m = (v, p). (Note that qi′′ ∈ li

′′
p (v) implies li

′′
p (v) 6= ∅.) But then we have qi′′ ∈ Qi

′′
m = li

′′
p (v), and

an inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′′. This contradicts that ρ
is accepting.

Second case. Assume that the vj do not stabilise. Let v be the longest sequence such that v is an initial
sequence of almost all vj , and let i′ > i be an index such that v is an initial sequence of vj for all j ≥ i′.
Note that qj is in ls(v′j) for all ancestors v′j of vj .

First, we assume for contradiction that there is a j > i′ with pri
(
(qj , αj , qj+1)

)
= e′ � ll(v) (note

that the ‘better than’ relation implies that e′ > ll(v) is even). Then we select a maximal ancestor v′ of
v with ll(v′) = e′; note that such an ancestor is a natural child, as a stepchild has only natural children,
and all of them have the same level.

As v′ is an ancestor of vj and vj+1, qj ∈ ljs(v′) and qj+1 ∈ lj+1
s (v′) hold, and by the transition rules

thus imply qj+1 ∈ lj+1
r (v′), which contradicts qj+1 ∈ lj+1

s (vj+1). (Note that ll(v′) > ll(v) ≥ ll(vj+1)
holds.)

Second, we show that pri
(
(qj , αj , qj+1)

)
4 ll(v) + 1 holds infinitely many times. For this, we first

note that the non-stability of the sequence of vj-s implies that at least one of the following three events
happen for infinitely many j > i′.

1. v is a stepchild, qj ∈ ljs(vc) for some child vc of v, but, for all children vc′ of v, qj+1 /∈ lj+1
s (vc′),

2. v is a stepchild, qj ∈ ljs(vc) for some child vc of v, and qj+1 ∈ lj+1
s (vc′) for some older sibling

vc′ of vc, that is, for c′ > c, or

3. v is a natural child, qj /∈ ljs(vs), but qj+1 ∈ lj+1
s (vs).

Note that this is just the counter position to “vj stabilises or v is not maximal”. In all three cases, the
definition of T2 requires that pri

(
(qj , αj , qj+1)

)
4 ll(v) + 1.

As the first observation implies that there may only be finitely many transitions with even priority
> ll(v) and the second observation implies that there are infinitely many transitions in ρ′ with odd
priority > ll(v), they together imply that lim supj→∞ pri

(
(qj , αj , qj+1)

)
is odd, which leads to the final

contradiction. �

Lemma 3.2 If P has an accepting run on α, then C rejects α.

Proof. Let ρ = q0q1q2 . . . be an accepting run of P on α with even dominating priority e =
lim supj→∞ pri

(
(qj , αj , qj+1)

)
.

Let us first assume for contradiction that C has an accepting run ρ′ = S0S1 . . . which is entirely in
Q1. It is then easy to show by induction that qi ∈ Si holds for all i ∈ ω, such that no transition of
(Si, αi, Si+1) is accepting.

Let us now assume for contradiction that C has an accepting run ρ′ = S0S1 . . . Sisi+1si+2 . . ., where
(Si, αi, si+1) ∈ Tt is the transfer transition taken. (Recall that runs of C must either stay inQ1 or contain
exactly one transfer transition.) Let further sj = (T , ljs, ll, ljp, ljr; vjm, Qjm

)
and Sj = ljs(ε) for all j > i.

It is easy to show by induction that, for all j ∈ ω, qj ∈ Sj holds. We choose an iε > i such that, for
all k ≥ iε, pri

(
(qk−1, αk−1, qk)

)
≤ e holds.

Let us now look at the nodes v ∈ T , such that qj ∈ ljs(v), where j ≥ iε.
Construction basis. We have already shown qj ∈ Sj = ljs(ε) for all j > i, and thus in particular for
all j ≥ iε.

7

Construction step. If, for some stepchild v ∈ T with ll(v) ≥ e and some iv ≥ iε, it holds for all
j ≥ iv that qj ∈ ljs(v), then the following holds for all j ≥ iv: if v′ ∈ nc(v) is a natural child of
v and qj ∈ ljs(v′), then either qj+1 ∈ lj+1

s (v′), or there is a younger sibling v′′ of v′ in T such that
qj+1 ∈ lj+1

s (v′′).
As transitions to younger siblings can only occur finitely often without intermediate transitions to

older siblings, we have one of the following two cases:

1. for all j ≥ iv, qj ∈ ljs(v), but for every natural child v′ of v, qj /∈ ljs(v′), or

2. there is a natural child v′ of v and an index iv′ ≥ iv such that, for all j ≥ iv′ , qj ∈ ljs(v′).

As v is a stepchild, the first case implies that qj ∈ ljr(v) for all j ≥ iv. However, using the assumption
that ρ′ is accepting, there is an i′v > iv such that (si′v−1, αi′v−1, si′v) is accepting, and vi

′
v
m = (v, r), as the

marker is circulating in a round robin fashion. (Note that qi′v ∈ l
i′v
r (v) implies li

′
v
r (v) 6= ∅.) But then we

have qi′v ∈ Q
i′v
m = l

i′v
r (v), and an inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qjm for all

j ≥ i′v.
In the second case, we continue with v′ and the index iv′ .

If, for some natural child v ∈ T with ll(v) > e and some iv ≥ iε, it holds for all j ≥ iv that
qj ∈ ljs(v), then one of the following holds.

1. There is an i′v ≥ iv such that qi′v ∈ l
i′v
r (v).

2. For all j ≥ iv, qj ∈ ljp(v).

In the first case, it is easy to show by induction that qj ∈ ljr(v) holds for all j ≥ iv′ . We can then again
use the assumption that ρ′ is accepting. Consequently, there is an i′′v > i′v such that (si′′v−1, αi′′v−1, si′′v) is

accepting, and vi
′′
v
m = (v, r), as the marker is circulating in a round robin fashion. (Note that qi′′v ∈ l

i′′v
r (v)

implies li
′′
v
r (v) 6= ∅.) But then we have again qi′′v ∈ Q

i′′v
m = l

i′′v
r (v), and an inductive argument provides

(sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′′v .
In the second case, if v is not a leaf, then it holds for all j ≥ ivs = iv that qj ∈ ljs(vs), and we can

continue with vs. If v is a leaf, we again use the assumption that ρ′ is accepting. Consequently, there is
an i′v > iv such that (si′v−1, αi′v−1, si′v) is accepting, and vi

′
v
m = (v, p), as the marker is circulating in a

round robin fashion. (Note that v is a leaf and that qi′v ∈ l
i′v
p (v) implies li

′
v
p (v) 6= ∅.) But then we have

qi′v ∈ Q
i′v
m = l

i′v
p (v), and an inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qjm for all j ≥ i′v.

If, for some natural child v ∈ T with ll(v) = e and some iv ≥ iε, it holds for all j ≥ iv
that qj ∈ ljs(v), then there is, by the definition of e, a j > iv with pri(qj−1, αj1 , qj) = e. But then
qj−1 ∈ lj−1

s (v) and qj ∈ ljs(v) imply qj ∈ ljr(v). It is then easy to establish by induction that qj′ ∈ lj
′
r (v)

for all j′ ≥ j. We can then again use the assumption that ρ′ is accepting. Consequently, there is a j′ > j

such that (sj′−1, αj′−1, sj′) is accepting, and vj
′
m = (v, r), as the marker is circulating in a round robin

fashion. (Note that qj′ ∈ lj
′
r (v) implies lj

′
r (v) 6= ∅.) But then we have again qj′ ∈ Qj

′
m = lj

′
r (v), and an

inductive argument provides (sk, αk, sk+1) /∈ F and qk ∈ Qkm for all k ≥ j′.
Contradiction. As the level is reduced by two every second step, one of the arguments that contradict
the assumption that ρ′ is accepting is reached in at most πe steps. �

Corollary 3.3 C recognises the complement language of P . �

8

3.4 Lower bound and tightness

In order to establish a lower bound, we use a sub-language of the full automaton PΠ
n , and show that an

automaton that recognises it must have at least as many states as there are full FNHTs in fnht(Q, π) for
n = |Q| and π = max Π.

To show this, we define two letters for each full FNHT t = (T , ls, ll, lp, lr) ∈ fnht(Q, π). βt :
Q×Q→ 2Π is the letter where:

• if v is a stepchild and p, q ∈ ls(v), then ll(v)+1 ∈ βt(p, q) (provided ll(v)+1∈Π),

• if v is a stepchild, p ∈ lr(v), and q ∈ ls(vc) for some c ∈ ω, then ll(v) ∈ βt(p, q),

• if v is a stepchild, c, c′ ∈ ω, c < c′, vc′ ∈ T , p ∈ ls(vc′), and q ∈ ls(vc), then ll(v) ∈ βt(p, q),

• if v is a natural child, p ∈ lp(v), and q ∈ lr(v) then ll(v) ∈ βt(p, q).

• if v is a natural child and p, q ∈ lr(v), then ll(v)− 1 ∈ βt(p, q), and

• if v is a natural child and p, q ∈ lp(v), then ll(v)− 1 ∈ βt(p, q).

γt : Q×Q→ 2Π is the letter where i ∈ γt(p, q) if i ∈ βt(p, q) and additionally:

• if v is a natural child, ll(v)− 2 ∈ Π, and p, q ∈ lr(v), then ll(v)− 2 ∈ γt(p, q),

• if v is a stepchild and p, q ∈ lr(v), then ll(v) ∈ γt(p, q), and

• if v is a natural child, ll(v)− 2 ∈ Π, and p, q ∈ lp(v), then ll(v)− 2 ∈ γt(p, q).

For a high integer h > |fnht(Q, π)|, we now define the ω-word αt = (βtγt
h−1)ω, which consists of

infinitely many sequences of length h that start with a letter βt and continue with h − 1 repetitions of
the letter γt, for each full FNHT t ∈ fnht(Q, π).

We first observe that αt is rejected by PΠ
n .

Lemma 3.4 αt /∈ L(PΠ
n).

Proof. By Lemma 3.3, it suffices to show that the complement automaton C of PΠ
n , as

defined in Section 3.2 accepts αt. The language is constructed such that C has a run ρ =
Q(t; v1

m, Q
1
m)(t; v2

m, Q
2
m)(t; v3

m, Q
3
m) . . ., such that the transition

(
(t; vim, Q

i
m), αti, (t; v

i+1
m , Qi+1

m)
)

is
accepting for i > 0 if i mod h = 0. �

Let B be some automaton with states S that recognises the complement language of PΠ
n . We now

fix an accepting run ρt = s0s1s2 . . . for each word αt and define the set At of states in an ‘accepting
cycle’ as At =

{
s ∈ S | ∃i, j, k ∈ ω with 1 ≤ j < k ≤ h such that s = sih+j = sih+k

}
holds, and

define the interesting states It = At∩ infin(ρt).

Lemma 3.5 For t 6= t′, It and It′ are disjoint (It ∩ It′ = ∅).

Proof idea. The proof idea is to assume that a state s ∈ It ∩ It′ , and use it to construct a word from
αt and αt′ and an accepting run of B on the resulting word from ρt and ρt′ , and then show that it is also
accepted by PΠ

n .

Proof. Let us assume for contradiction that s ∈ It∩ It′ for t = (T , ls, ll, lp, lr) 6= t′ = (T ′, l′s, l′l, l′p, l′r).
Noting that we can change the role of t and t′, we fix two positions i and i′ in the run ρt of αt such

that s = si = si′ , and there is a j ∈ ω such that jh < i < i′ ≤ j(h + 1), and two positions j and
j′ in ρt′ = s′0s

′
1s
′
2 . . . such that j < j′, s = s′j = s′j′ and there is a k ∈ ω with j ≤ k < j′ such that

(s′k, α
t′
k , s
′
k+1) is an accepting transition of B. Note that the definition of It provides the first and the

definition of It′ the latter.

9

For the finite words β1 = αt0α
t
1 . . . α

t
i−1, γ1 = s0s1 . . . si−1, β2 = γt

i′−1, γ2 = sisi+1 . . . si′−1,
β3 = αt

′
j α

t′
j+1 . . . α

t′
j′−1, and γ3 = sjsj+1 . . . sj′−1, ρt

′
t = γ1(γ2γ3)ω is an accepting run of the input

word αt
′
t = β1(β2β3)ω = α0α1α2

We now show that αt
′
t or αtt′ is accepted by PΠ

n .
We start with the degenerated case that T = {ε} is the FNHT where the root is a leaf, and thus

π = max Π odd. (The case T ′ = {ε} is similar.) We select a q ∈ l′s(0), and consider the run ρ = qω of
PΠ
n on αt

′
t . By construction, pri(q, αk, q) ≤ optΠ = ll(ε) holds for all k ≥ i. Moreover, αk = γt holds

for infinitely many k ∈ ω. (In particular, it holds if k ≥ i and (k − i) mod (i′ − i+ j′ − j) < i′ − i.)
For all of these transitions, pri(q, αk, q) = optΠ = ll(ε) holds, such that lim supn→∞

(
ρ(i)

)
= optΠ is

even.
Starting with the level λ = optΠ of the root and the whole trees T and T ′, we now run through the

following construction.
We firstly look at the case that there is some difference in the label of some natural child v ∈

T ∩ T ′ on the level λ. If there is an oldest child v ∈ T ∩ T ′ with ls(v) 6= l′s(v), we assume w.l.o.g.
that there is a q ∈ ls(v) r l′s(v). Then there are two sub-cases, first that there is a q′ ∈ ls(v) ∩ l′s(v),
and second that ls(v) ∩ l′s(v) = ∅. In the latter case we choose a q′ ∈ l′s(v). In both sub-cases, the run
ρ = qi

′
(q′j

′−jqi
′−i)ω = q0q1q2 . . . of PΠ

n on αt
′
t satisfies pri(qk, αk, qk+1) < λ − 1 for all k ∈ ω, and

pri(qk, αk, qk+1) < λ when qk = q and qk+1 = q′. (Note that in this case αk ∈ {βt′ , γt′} holds.)
Otherwise ls(v) = l′s(v) holds for all natural children v ∈ T ∩T ′ on level λ, and there is a v ∈ T ∩T ′

on level λ such that lr(v) 6= l′r(v). We assume w.l.o.g. that there is a q ∈ lr(v) r l′r(v). We choose a
q′ ∈ lp(v). (Note that q 6= q′ ∈ ls(v) = l′s(v).) Then the run ρ = qi

′
(q′j

′−jqi
′−i)ω = q0q1q2 . . . of PΠ

n

on αt
′
t satisfies pri(qk, αk, qk+1) < λ − 1 for all k ∈ ω, and pri(qk, αk, qk+1) < λ when qk = q and

qk+1 = q′. (Note that in this case αk = γt holds.)
We secondly look at the case where ls(v) = l′s(v) and lr(v) = l′r(v) holds for all natural children

v ∈ T ∩ T on level πe, but there is a natural child v on level λ in the symmetrical difference of T
and T ′. Let us assume w.l.o.g. that v ∈ T ′. Let q ∈ l′s(v) and let v be the child of v′. This immediately
implies that q ∈ lr(v). Thus, the run ρ = qω of PΠ

n on αt
′
t satisfies pri(q, αk, q) < λ − 1 for all k > i,

and pri(q, αk, q) < λ whenever αk = γt, which happens infinitely often.
We finally look at the case where the nodes of T and T ′ on level λ are the same, and where ls(v) =

l′s(v) and lr(v) = l′r(v) hold for all nodes v of T on level λ, but there is a node v on level λ which
is a leaf in T but not in T ′. (The case “leaf in T ′ but not in T ” is entirely symmetric.) Thus, vs0 is
a node in T ′, and we select a q ∈ ls(vs0). If we now consider the run ρ = qω of PΠ

n on αt
′
t , then

pri(q, αk, q) < λ − 3 holds for all k > i. At the same time pri(q, αk, q) < λ − 2 holds whenever
αk = γt, which happens infinitely often.

If neither of these cases holds, then there must be a natural child v on level λ such that vs ∈ T ∩ T ′
and ls(vs) = lp(v) = l′p(v) = l′s(vs), such that t and t′ differ on the descendants of v. We then
continue the construction by reducing λ to λ− 2 and intersecting T and T ′ with the descendants of v in
t and t′, respectively, and restrict the co-domain of the labelling functions of t and t′ accordingly. This
construction will lead to a difference in at most 0.5 · optΠ steps. �

Theorem 3.6 B has at least as many states as fnht(Q,max Π) contains full FNHTs.

Proof. We prove the claim with a case distinction. The first case is that It 6= ∅ holds for all full
FNHT t ∈ fnht(Q,max Π). Lemma 3.5 shows that the sets of interesting states are pairwise disjoint for
different trees t 6= t′, such that, as none of them is empty, B has at least as many states as fnht(Q,max Π)
contains full FNHTs.

The second case is there is a full FNHT t ∈ fnht(Q,max Π) such that It = ∅. By Lemma 3.4, each
ρt = s0s1s2 . . . is an accepting run. Let now i ∈ ω be an index, such that, for all j ≥ i, sj ∈ infin(ρt),
and k ≥ i an integer with k mod h = 0. It = ∅ implies that sk+j 6= sk+j′ for all j, j′ with 1 ≤
j < j′ ≤ h. Then B, and even infin(ρt), has at least h − 1 different states, and the claim follows with
h > |fnht(Q,max Π)|. �

10

To show tightness, we proceed in three steps. In a first step, we provide an injection from MFTs
with non-full marking to MFTs with full marking.

Next, we argue that the majority of FNHTs is full. Taking into account that there are at most |Q|
different markers makes it simple to infer that the states of our complementation construction divided
by the lower bound from Theorem 3.6 is in O(n).

Lemma 3.7 There is an injection from MFTs with non-full marking to MFTs with full marking in
mft(Q, π).

Proof. For non-trivial trees T 6= {∅}, we can simply map an MFT (T , ls, ll, lp, lr; vm, Qm)

• for vm = (v, p) to the MFT
(
T ′, l′s, l′l, l′p, l′r; vm, l′p(v)

)
and

• for vm = (v, r) to the MFT
(
T ′, l′s, l′l, l′p, l′r; vm, l′r(v)

)
, where

T ′ differs from T only in that it has a fresh node v, which is the youngest sibling of vm. l′s, l
′
p, l
′
r differ

from ls, lp, lr only in v and v (where v is only in the pre-image of l′s, l
′
l, l
′
p, l
′
r). We set l′s(v) = l′p(v) =

Qm and, consequently, l′r(v) = ∅. We also set l′s(v) = ls(v) rQm.
For vm = (v, p), we set l′r(v) = lr(v) and l′p(v) = lp(v) r Qm. Note that, by the definition of

markers, v is a leaf, and l′p(v) is non-empty because the marking in (T , ls, ll, lp, lr; vm, Qm) is not full.
For vm = (v, r), we set l′r(v) = lr(v)rQm and l′p(v) = lp(v). Note that l′r(v) is non-empty because

the marking in (T , ls, ll, lp, lr; vm, Qm) is not full.
It is easy to see that the resulting MFT is well formed in both cases. What remains is the corner case

of T = {ε}.
(T , ls, ll, lp, lr; (ε, r), Qm) and map it to (T ′, l′s, l′l, l′p, l′r; (ε, r), Qm) for T ′ = {ε, 0} and l′s(ε) =

ls(ε), l′s(ε) = Qm, l′p(ε) = l′p(0) = ∅, and consequently l′s(0) = l′r(0) = ls(ε) r Qm. (Note that the
latter is non-empty because the marking in (T , ls, ll, lp, lr; (ε, r), Qm) is not full.) This is again a well
formed MFT with full marking.

It is easy to see that the resulting function is injective. �

In Lemma 3.7, we have shown that the majority of MFTs have a full marking. Next we will see that
the majority of FNHTs is full. (Note that neither mapping is surjective.)

Lemma 3.8 There is an injection from non-full to full FNHTs in fnht(Q, π).

Proof. To obtain such an injection, it suffices to map a non-full FNHT (T , l′s, l′l, l′p, l′r) to the FNHT
(T ′, l′s, l′l, l′p, l′r) where T ′ differs from T only in that it has a fresh youngest child v of the root.

l′s agrees with ls on every node of T except for the root ε, and l′p, l
′
r agree with lp, lr on every node

of T . We set l′s(ε) = Q, l′s(v) = l′p(v) = Qr ls(ε), and l′r(v) = ∅.
It is obvious that the resulting FNHT (T ′, l′s, l′l, l′p, l′r) is full and well formed, and it is also obvious

that the mapping is injective. �

Theorem 3.9 The complementation construction from this section is tight up to a factor of 4n+1, where
n = |Q| is the number of states of the complemented parity automaton.

Proof. For the number of MFTs, Lemma 3.7 shows that they are at most twice the number of MFTs
with full marking. Note that the marker (vm, p) can only refer to leafs where lp(vm) is non-empty
and markers (vm, r) can only refer to nodes where lr(vm) is non-empty. It is easy to see that all sets
described in this way are pairwise disjoint. This implies that there are at most |Q| such markers. Thus,
the number of MFTs with full marking is at most n times the number of FNHTs.

By Lemma 3.8, the number of FNHTs is in turn at most twice as high as the number of all full
FNHTs. Thus we have bounded the number of MFTs by 4n times the number of full FNHTs used to
estimate the lower bound in Theorem 3.6, irrespective of the priorities.

What remains is the trivial observation that the second part of the state-space, the subset construction,
is dwarfed by the number of MFTs. Consequently, we can estimate the state-space of the complement
automaton divided by the lower bound from Theorem 3.6 by 4n+ 1. �

11

References

[1] J. R. Büchi. On a decision method in restricted second order arithmetic. Proc. of the Int. Congress
on Logic, Methodology, and Philosophy of Science 1960, pp. 1–11, 1962.

[2] Y. Cai and T. Zhang. A tight lower bound for streett complementation. In Proc. of FSTTCS 2011,
volume 13 of LIPIcs, pages 339–350, 2011.

[3] Y. Cai and T. Zhang. Tight upper bounds for streett and parity complementation. In Proc. of CSL
2011, volume 12 of LIPIcs, pages 112–128, 2011.

[4] Y. Cai, T. Zhang, and H. Luo. An improved lower bound for the complementation of rabin au-
tomata. In Proc. of LICS 2009, 2009.

[5] A. Duret-Lutz. Ltl translation improvements in spot. In Proc. of VECoS 2011, pages 72–83. British
Computer Society, 2011.

[6] E. Friedgut, O. Kupferman, and M. Y. Vardi. Büchi complementation made tighter. International
Journal of Foundations of Computer Science, 17(4):851–867, 2006.

[7] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing nondeterministic
Büchi automata. In Proc. of CHARME 2003, pages 96–110, 2003.

[8] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM Transactions
on Computational Logic, 2(2):408–429, July 2001.

[9] R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-theoretic
approach. Princeton University Press, 1994.

[10] C. Löding. Optimal bounds for transformations of ω-automata. In Proc. of FSTTCS 1999, volume
1738 of Lecture Notes in Computer Science, pages 110–121. Springer-Verlag, 1999.

[11] M. Michel. Complementation is more difficult with automata on infinite words. Technical report,
CNET, Paris (Manuscript), 1988.

[12] J.-P. Pécuchet. On the complementation of Büchi automata. TCS, 47(3):95–98, 1986.

[13] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata.
Journal of Logical Methods in Computer Science, 3(3:5), 2007.

[14] M. O. Rabin and D. S. Scott. Finite automata and their decision problems. IBM Journal of Research
and Development, 3:115–125, 1959.

[15] S. Safra. On the complexity of ω-automata. In Proc. of FOCS 1988, pages 319–327, 1988.

[16] S. Safra. Exponential determinization for omega-automata with strong-fairness acceptance condi-
tion (extended abstract). In Proc. of STOC 1992, pages 275–282, 1992.

[17] W. J. Sakoda and M. Sipser. Non-determinism and the size of two-way automata. In Proc. of STOC
1978, pages 274–286. ACM Press, 1978.

[18] S. Schewe. Büchi complementation made tight. In Proc. of STACS 2009, volume 3 of LIPIcs,
pages 661–672, 2009.

[19] S. Schewe. Tighter bounds for the determinisation of Büchi automata. In Proc. of FoSSaCS 2009,
volume 5504 of LNCS, pages 167–181. Springer-Verlag, 2009.

[20] S. Schewe and B. Finkbeiner. Satisfiability and finite model property for the alternating-time µ-
calculus. In Proc. of CSL 2006, volume 4207 of LNCS, pages 591–605, 2006.

12

[21] S. Schewe and B. Finkbeiner. Synthesis of asynchronous systems. In Proc. of LOPSTR 2006,
volume 4407 of LNCS, pages 127–142. Springer-Verlag, 2006.

[22] S. Schewe and T. Varghese. Tight bounds for the determinisation and complementation of gener-
alised Büchi automata. In Proc. of ATVA 2012, pages 42–56, 2012.

[23] S. Schewe and T. Varghese. Determinising parity automata. In Proc. of MFCS 2014, pages xx–xx,
2014.

[24] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science, 49(3):217–239, 1987.

[25] W. Thomas. Complementation of Büchi automata revisited. In Jewels are Forever, Contributions
on Theoretical Computer Science in Honor of Arto Salomaa, pages 109–122, 1999.

[26] M.-H. Tsai, Y.-K. Tsay, and Y.-S. Hwang. Goal for games, omega-automata, and logics. volume
8044 of LNCS, pages 883–889. Springer-Verlag, 2013.

[27] M. Y. Vardi. The Büchi complementation saga. In Proc. of STACS 2007, pages 12–22, 2007.

[28] T. Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bulletin of the Belgian
Mathematical Society, 8(2), May 2001.

[29] Q. Yan. Lower bounds for complementation of omega-automata via the full automata technique.
Journal of Logical Methods in Computer Science, 4(1:5), 2008.

13

	1 Introduction
	2 Preliminaries
	3 Complementing parity automata
	3.1 Flattened nested history trees & marked flattened trees
	3.2 Construction
	3.3 Correctness
	3.4 Lower bound and tightness

