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Abstract

Monotonicity in concurrent systems stipulates that, in any global state, system actions
remain executable when new processes are added to the state. This concept is both
natural and useful: if every thread’s memory is finite, monotonicity often guarantees
the decidability of safety properties even when the number of running threads is un-
known. In this paper, we show that finite-data thread abstractions for model checking
can be at odds with monotonicity: predicate-abstracting monotone software can re-
sult in non-monotone Boolean programs — the monotonicity is lost in the abstraction.
As a result, pertinent well-established safety checking algorithms for infinite-state sys-
tems become inapplicable. We demonstrate how monotonicity in the abstraction can
be restored, without affecting safety properties. This improves earlier approaches of
enforcing monotonicity via overapproximations. We implemented our solution in the
unbounded-thread model checker monabs and applied it to numerous concurrent pro-
grams and algorithms, whose predicate abstractions are often fundamentally beyond
existing tools.

Keywords: multi-threaded software; parameterized verification; monotonicity;
predicate abstraction

1. Introduction

Multi-threading is becoming a premier technology for accelerating computations
in a post frequency-scaling era. The widespread availability of thread libraries for
mainstream languages including C and Java, as well as for all major operating systems,
makes this technology easily accessible. This can entrap the inexperienced programmer
to create code with puzzling and irreproducible behavior. The software community
needs to respond to this threat in part by providing formal technology that exposes
potential bugs in concurrent programs before deployment.
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Towards this end, this paper proposes a safety analysis method for non-recursive
procedures executed by multiple threads (e.g. dynamically generated, and possibly un-
bounded in number), which communicate via shared variables and higher-level mecha-
nisms such as mutexes. OS-level code, including Windows, UNIX, and Mac OS device
drivers, makes frequent use of such concurrency APIs, whose correct use is therefore
critical to ensure a reliable programming environment.

The verification method we propose is based on predicate abstraction. The utility
of this technique is known to depend critically on the choice of predicates: the conse-
quences of a poor choice range from inferior performance to flat-out unprovability of
certain properties. We introduce an extension of predicate abstraction to multi-threaded
programs that enables reasoning about intricate data relationships, namely

shared-variable: “shared variables s and t are equal”,

single-thread: “local variable l of thread i is less than shared variable s”, and

inter-thread: “local variable l of thread i is less than variable l in all other threads”.

Why such a rich predicate language? For certain concurrent algorithms such as the
widely used ticket busy-wait lock algorithm [1] (the default locking mechanism in the
Linux kernel since 2008; see Fig. 1), the verification of elementary safety properties
requires inter-thread relationships (see Sect. 2.2). They are needed to express, for
instance, that a thread holds the minimum ticket value, an inter-thread relationship.

In the main part of the paper, we address the problem of full parameterized (un-
bounded-thread) program verification with respect to our predicate language. Such
reasoning requires first that the n-thread abstract program P̂n, obtained by existential
predicate abstraction of the n-thread concrete program Pn, is rewritten into a generic
template program P̃ to be executed by (any number of) multiple threads. In order to
capture the semantics of these programs in the template P̃ , the template programming
language, too, must permit variables that refer to the currently executing thread, or to
all passive (non-executing) threads; we call such programs dual-reference (DR). We
describe how to obtain P̃ , namely as an overapproximation of P̂b, for a constant b that
grows linearly with the number of inter-thread predicates used in the abstraction.

Given a Boolean dual-reference program P̃ (obtained from predicate abstraction),
we might expect the unbounded-thread replicated program P̃∞ to form a classical well
quasi-ordered transition system [2], enabling the fully automated, algorithmic safety
property verification in the abstract. This turns out not to be the case: the expressive-
ness of dual-reference programs renders parameterized program location reachability
undecidable, despite the finite-domain variables. The root cause is the lack of mono-
tonicity of the transition relation with respect to the standard partial order over the
space of unbounded thread counters. That is, adding passive threads to the source state
of a valid transition can invalidate this transition. Since the input C programs are, by
contrast, typically monotone, we say the monotonicity is lost in the abstraction. As a
result, our abstract programs are in fact not well quasi-ordered.

Inspired by earlier work on monotonic abstractions [3], we address this problem by
restoring the monotonicity using a simple closure operator, which enriches the transi-
tion relation of the abstract program P̃ such that the obtained program P̃m gives rise
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struct Spinlock {
natural s := 1; // ticket being served
natural t := 1; }; // next free ticket

struct Spinlock lock; // shared

void spin_lock() {
natural l := 0; // local

`1: l := fetch_and_add(lock.t);
`2: while (l 6= lock.s)

/∗ spin ∗/ ; }

void spin_unlock() {
`3: lock.s++; }

The ticket algorithm: Shared variable
lock has two natural-number components:
s holds the number of the ticket currently
being served, while t holds the next free
number (if no thread is currently served, we
have s = t).
To request access to the protected region,
a thread atomically retrieves the value of t
into local variable l and then increments t.
The thread then spins until l equals s. To
unlock, s is incremented.

Figure 1: The ticket algorithm — Our goal is to verify standard parameterized mutual exclu-
sion: no matter how many threads try to acquire and release the lock concurrently, no two of
them are simultaneously between the calls to functions spin_lock and spin_unlock.

to a monotone (and thus well quasi-ordered) system. The closure operator essentially
terminates passive threads that block transitions allowed by other passive threads. In
contrast to earlier work [3], which enforces monotonicity in genuinely non-monotone
systems, we exploit the monotonicity of the input programs. As a result, the monotone
closure P̃m can be shown to be safety-equivalent to the non-monotone program P̃ .

To summarize, the core contribution of this paper is a predicate abstraction strategy
for asynchronous unbounded-thread C programs, with respect to the rich language of
inter-thread predicates. This language allows the abstraction to track properties that
are essentially universally quantified over all passive threads. We have implemented
our technique in the infinite-state model checker monabs. We observe that our tool is
able to verify certain parameterized programs (such as the ticket algorithm) that are
fundamentally beyond existing tools we are aware of [4, 5, 6, 7, 8, 9, 10, 11]. The
reasons vary from their inability to deal with unbounded threads, to lacking support for
inter-thread predicates. We include an extensive experimental evaluation on system-
level concurrent software and synchronization algorithms.

2. Inter-Thread Predicate Abstraction

In this section we introduce single- and inter-thread predicates, with respect to
which we then formalize existential predicate abstraction. Except for the extended
predicate language, these concepts are mostly standard and lay the technical founda-
tions for the contributions of this paper.

2.1. Input Programs and Predicate Language

Asynchronous Programs. An asynchronous program P allows only one thread at a
time to change its local state; the executability of the state change does not depend on
the state of other threads. We model P , designed for execution by n ≥ 1 concurrent
threads, as follows. The variable set V of a program P is partitioned into sets S and L.
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The variables in S, called shared, are accessible jointly by all threads, and those in L,
called local, are accessible by the individual thread that owns the variable. We assume
the statements of P are given by a transition formula R over unprimed (current-state)
and primed (next-state) variables, V and V ′ = {v′ : v ∈ V}. Further, the initial states
are characterized by a formula I over V. We assume I is expressible in a suitable logic
for which existential quantification is computable (required later for the abstraction).

As usual, the computation may be controlled by a local program counter pc; it
may also involve non-recursive function calls. When executed by n threads, P gives
rise to n-thread program states consisting of the valuations of the variables in Vn =
S∪L1∪ . . . Ln, where Li = {li : l ∈ L}. We call a variable set uniquely indexed if its
variables either all have no index, or all have the same index. For a formula f and two
uniquely-indexed variable sets X1 and X2, let f{X1 . X2} denote f after replacing
every occurrence of a variable in X1 by the variable in X2 with the same base name,
if any; unreplaced if none. We write f{X1 ..X2} short for f{X1 . X2}{X1

′ . X2
′}.

As an example, given S = {s} and L = {l}, we have (l′ = l + s){L ..La} = (l′a =
la + s). Finally, let X ◦= X ′ stand for ∀x ∈ X :x = x′.

The n-thread instantiation Pn is defined for n ≥ 1 as

Pn = (Rn, In) =
(∨n

a=1
(Ra)n,

∧n

i=1
I{L . Li}

)
(1)

where (Ra)n :: R{L ..La} ∧
∧
p∈[1..n]\{a} Lp

◦= L′p . (2)

Formula (Ra)n asserts that the shared variables and the local variables of the active
(executing) thread a are updated according to R, while those of passive threads p 6= a
are unchanged. A state is initial if all threads are in a state satisfying I. An n-thread
execution is a finite sequence of n-thread program states whose first state is initial, and
whose adjacent states are related byRn. We assume the existence of an error program
location in P; an error state of Pn is one with some thread in the error location. P is
safe if no execution in Pn, for any n, ends in an error.

Predicate Language. We extend the predicate language from [9] by introducing pas-
sive-thread variables LP = {lP : l ∈ L}; here P is a fixed symbol (not a variable).
Each passive-thread variable represents a local variable owned by a generic passive
thread. The presence of variables of various categories gives rise to the following
predicate classification.

Definition 1. A predicate Q over S, L and LP is shared if it contains variables from
S only, local if it contains variables from L only, single-thread if it contains variables
from L but not from LP, and inter-thread if it contains variables from L and from LP.

Assuming each predicate contains at least one variable, the classifications shared,
single-thread, and inter-thread are mutually exclusive. Note that single- and inter-
thread predicates may contain variables from S; local predicates are a special case
of single-thread predicates. As an example, in the ticket algorithm (Fig. 1), with
S = {s, t} and L = {l, pc}, examples of shared, local, single- and inter-thread
predicates are: s = t, l = 5, s = l and l 6= lP, respectively.
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Semantics. Let Q[1], . . . , Q[m] be m predicates (any class). Predicate Q[j] is eval-
uated in a given n-thread state (n ≥ 2) with respect to a choice of active thread a:

Q[j]a ::
∧
p∈[1..n]\{a}Q[j]a,p (3)

where Q[j]a,p :: Q[j]{L . La}{LP . Lp} . (4)

As special cases, for single-thread and shared predicates (no LP variables), we have
Q[j]a = Q[j]{L . La} and Q[j]a = Q[j], respectively. We write u |= Q[j]a if Q[j]a
holds in state u. Predicate Q[j] gives rise to an abstraction function α, mapping each
n-thread program state u to an m× n bit matrix with entries

α(u)j,a = u |= Q[j]a . (5)

Function α partitions the n-thread program state space via m predicates into 2m×n
equivalence classes. Consider the inter-thread predicates l ≤ lP, l > lP, and l 6= lP
for a local variable l, n = 4 and the state u :: (l1, l2, l3, l4) = (4, 4, 5, 6):

α(u) =

T T F F
F F F T
F F T T

 . (6)

In the matrix, row j ∈ {1, 2, 3} lists the truth of predicate Q[j] for each thread a ∈
{1, 2, 3, 4} in the active role. Predicate l ≤ lP captures whether a thread owns the
minimum value for local variable l (true for a = 1, 2); l > lP tracks whether a thread
is the unique owner of the maximum value (true for a = 4) ; finally l 6= lP captures
the uniqueness of a thread’s value of l (true for a = 3, 4).

According to Eq. (3), the semantics of inter-thread predicates is defined via uni-
versal thread quantification. As a result, our predicate language is not closed under
negation. For example, the predicate formulas l ≤ lP and l > lP both evaluate to
false under (3), for a = 3. (On the other hand, a predicate and its formal negation
cannot both evaluate to true.)

2.2. Limits of Single-Thread Predicate Abstraction

The use of the expressive and presumably expensive inter-thread predicates intro-
duced in Sect. 2.1 is motivated: automated methods that cannot reason about them
[12, 9, 7] fail for the ticket algorithm:

Lemma 2. Consider the parameterized ticket algorithm (Fig. 1) where threads call
spin_lock and spin_unlock arbitrarily often. There is no quantifier-free invariant over
finitely many shared and single-thread predicates that implies mutual exclusion.

Proof. We formalize the statement of the lemma. Let Q[1], . . . , Q[m] be predicates
formulated over the shared variables s, t and the local variables pc, l of any one thread.
Define a set of Boolean variables {b[j]a : 1 ≤ j ≤ m∧a ∈ N}, with semantics b[j]a ⇔
Q[j]{L . La}. Suppose I is an invariant formula over the b[j]a, i.e. Reach ⇒ I for the
(infinite) set Reach of reachable global states. We show that I does not imply safety.
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For i ∈ N, consider the global states ui with

ui.s = 1, ui.t = 2, ui.pci = `3, ui.li = 1,
ui.pck = `1, ui.lk = 0 for k 6= i

(7)

(where x.y denotes the value of variable y in state x ; an index points to a local variable
owned by the corresponding thread; `3 stands for the protected code region). All ui are
reachable, witnessed by thread i pulling the first ticket and proceeding to the protected
region; the other threads remain in `1.

Let C1, . . . , Cw be the cubes in the DNF representation of I: I = C1 ∨ . . . ∨ Cw.
Since, for each i, ui is reachable and thus satisfies I , it satisfies at least one cube of I .
Since we have infinitely many ui to choose from, by the pigeon hole principle there
exist a cube C and ui, uk with i 6= k such that both ui, uk satisfy C. Now let u be the
state equal to ui except that, on thread-k variables, u agrees with uk: u.pck = uk.pck
(= `3) and u.lk = uk.lk (= 1). Since u.pci = ui.pci = `3, state u violates mutual
exclusion. We argue that u satisfies I , which shows that I does not imply safety.

To this end, we note that C is a conjunction of literals over the b[j]a. We partition
C into the sub-cubes Ci and Ck of literals containing pci, li and pck, lk, resp., and
the remaining literalsCr: C = Ci∧Ck∧Cr. Since u is equal to ui except for thread-k
variables, and ui satisfies C and hence Ci and Cr, and the latter two do not refer to any
thread-k variables, u also satisfies Ci and Cr. It remains to show that u satisfies Ck

(hence C, hence I): u agrees with uk on all variables s, t, pck, lk, and uk satisfies C
and hence Ck, and the latter refers only to those four variables. �

We discuss the sensitivity of this proof to the program being investigated, and to
the expressiveness of the predicate language.

• The proof generalizes to the class of safe unbounded-thread asynchronous pro-
grams (i) with a mutual exclusion safety property that does not depend on the
shared variables (as is the case for local state section reachability), and (ii) with
an unbounded supply of reachable states ui such that thread i is in its critical
section (and all other threads are not, since the program is safe).

• The proof generalizes to the case of arbitrary c-thread predicates (instead of
only single-thread predicates), for a constant c: these are predicates over the
(shared and) local states of any c-tuple of threads. To see this, observe that
formula I refers to only a finite number of predicate variables b[j]a1..ac

and thus
can track only a finite number of thread c-tuple relationships. More precisely,
there always exists an unbounded supply of states ui, uk with i 6= k such that no
predicate j used in I (via the corresponding variable b[j]a1..ac ) relates threads i
and k (we can pick i and k “large enough”). This enables partitioning cube C as
in the proof into sub-cubes that refer to i but not k, to k but not i, and to neither.
State u as in the proof now satisfiesC and hence I , but violates mutual exclusion.

• The proof breaks down if we permit quantifiers, e.g. in the form of inter-
thread predicates: individual predicates can now reason about any number of
threads; the partitioning of cube C is no longer possible.
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• The proof breaks down under a thread bound: in this case the “state pool” ui
is bounded, too; the pigeon hole principle may fail.

A general treatment of the limits of thread-modular and Owicki-Gries style proof sys-
tems (which do not use inter-thread predicates) is available in the literature [13].

2.3. Existential Inter-Thread Predicate Abstraction

Embedded into our formalism, the goal of existential predicate abstraction [14, 15]
is to derive an abstract program P̂n by treating the equivalence classes induced by
Eq. (5) as abstract states. P̂n thus has m× n Boolean variables:

V̂n =
⋃n
a=1 L̂a =

⋃n
a=1{b[j]a : 1 ≤ j ≤ m} .

Variable b[j]a tracks the truth of predicate Q[j] for active thread a (if m = 1 we
simply write ba). This is formalized in (8), relating concrete and abstract n-thread
states (valuations of Vn and V̂n, resp.):

Dn ::
m∧
j=1

n∧
a=1

b[j]a ⇔ Q[j]a . (8)

For a formula f , let f ′ denote f after replacing each variable by its primed version. We
then have P̂n = (R̂n, În) =

(∨n
a=1(R̂a)n, În

)
where

(R̂a)n :: ∃VnV ′n : (Ra)n ∧ Dn ∧ (Dn)′, (9)
În :: ∃Vn : In ∧ Dn . (10)

In the abstraction, all variables are local1, and variables b[j]a are owned by abstract
thread a. As an example, consider the decrement operation l := l−1 on a local integer
variable l, and the inter-thread predicate l < lP. Using Eq. (9) with n = 2, a = 1,
we get four abstract transitions, listed in Table 1. The table shows that asynchrony is
lost in the abstraction: in the highlighted transition, the executing thread 1 changes its
local state by advancing its pc, and thread 2 changes its local state by changing b2.
By contrast, on the right we have l2 = l′2 (and pc2 = pc′2) in all rows. The loss of
asynchrony will become relevant in Sect. 3, where we define an abstract Boolean pro-
gramming language that necessarily must accommodate non-asynchronous programs.

Proving the ticket algorithm for the fixed-thread case. As in any existential abstrac-
tion, the abstract program P̂n overapproximates (the set of executions of) the concrete
program Pn; the former can therefore be used to verify safety of the latter. We illus-
trate this using the ticket algorithm (Fig. 1). Consider the predicates Q[1] :: l 6= lP,
Q[2] :: t > max(l, lP), and Q[3] :: s = l. The first two are inter-thread; the third is

1If predicate Q[j] is shared, the semantics of terms Q[j]a is the same for all a; we could track Q[j]
using a single Boolean variable. To keep the notation compact, we ignore this redundancy here
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b1 b2 b′
1 b′

2 l1 l2 l′
1 l′

2

F F T F 1 1 0 1
F T F F ← 1 0 0 0
F T F T 2 0 1 0
T F T F 1 2 0 2

Table 1: Abstraction (R̂1)2 for stmt. l := l−1 against predicate l < lP (left); concrete witness
transitions, i.e. elements of (R1)2 (right). The highlighted row indicates asynchrony violations

single-thread. The predicates assert the uniqueness of a ticket (Q[1]), that the next free
ticket is larger than all tickets currently owned by threads (Q[2]), and that a thread’s
ticket is currently being served (Q[3]). The (symmetry-reduced and slightly partial)
abstract reachability tree for P̂n and these predicates is shown in Fig. 2. It tells us that
mutual exclusion is satisfied: there is no state with both threads in location `3. The tree
has about a dozen nodes, a number that grows exponentially with n.

(`1/FTF)
(`1/FTF)

(`2/TTF)
(`2/TTF)

(`2/TTF)
(`2/TTT)

(`1/TTF)
(`2/TTT)

(`1/TTT)
end

(`2/TTF)
end

(`2/TTF)
(`3/TTT)

(`1/TTF)
end

(`1/TTF)
(`2/TTF)

(`2/TTT)
end

(`3/TTT)
end

end
end

(`1/TTF)
(`3/TTT)

Figure 2: Abstract reachability tree for the ticket algorithm for 2 threads. Local variables of
abstract thread 1 are shown atop those of thread 2. (There are no shared abstract variables.)

3. From Existential to Parametric Abstraction

Classical existential abstraction as described in Sect. 2.3 obliterates the parametric-
ity present in the concrete concurrent program: the program is given as an instantiation
of a template P , while the abstraction is formulated via predicates over the explicitly
expanded n-thread program Rn. As a result, parametric reasoning over an unknown
number of threads is impossible.

To overcome these problems, we now derive an overapproximation of P̂n via a
generic program template P̃ that can be instantiated for any n. To this end we note
that the programs P̂n resulting from inter-thread predicate abstraction are no longer
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asynchronous, as Table 1 has shown. As a result, we need an abstract programming
language more powerful than the asynchronous language of Sect. 2.1.

3.1. Dual-Reference Programs

In contrast to asynchronous programs, the variable set Ṽ of a dual-reference (DR)
program P̃ is partitioned into two sets: L̃, the local variables of the active thread
as before, and L̃P = {lP : l ∈ L̃}, where again P is a fixed symbol. The latter
set contains passive-thread variables, which, intuitively, regulate the behavior of non-
executing threads. To simplify reasoning about DR programs, we exclude classical
shared variables from the description: they can be simulated using the active and pas-
sive flavors of local variables, as we discuss at the end of Sect. 3.1.

The statements of P̃ are given by a transition formula R̃ over Ṽ and Ṽ ′, now poten-
tially including passive-thread variables. Similarly, Ĩ may contain variables from L̃P.
The n-thread instantiation P̃n of a DR program P̃ is defined for n ≥ 2 as

P̃n = (R̃n, Ĩn) =
(∨n

a=1
(R̃a)n,

∨n

a=1
(Ĩa)n

)
(11)

where (R̃a)n ::
∧
p∈[1..n]\{a} R̃{L̃ ..L̃a}{L̃P ..L̃p} (12)

(Ĩa)n ::
∧
p∈[1..n]\{a} Ĩ{L̃ . L̃a}{L̃P . L̃p} (13)

Recall that f{X1 ..X2} denotes index replacement of both current-state and next-state
variables. Eq. (12) encodes the effect of a transition on the active thread a, and n − 1
passive threads p. The conjunction ensures that the transition formula R̃ holds no
matter which thread p 6= a takes the role of the passive thread in R̃: transitions that
effectively depend on the identity of the passive thread are rejected.

Simulating shared via local variables. Our exclusion of shared variables from the de-
scription of dual-reference programs is not a restriction: such variables can be sim-
ulated via active- and passive-thread local variables, as follows. To eliminate shared
variable s, we introduce a fresh local variable l ∈ L̃, and replace a statement like
s := 5 by the atomic statement l := 5, lP := 5. That is, each thread keeps a local
copy of what used to be the shared variable; the semantics of passive-thread variables
ensures that the values are synchronized across all threads. An example of this con-
struction is given in the proof of Thm. 6 in Sect. 4.1.

3.2. Computing an Abstract Dual-Reference Template

From the existential abstraction P̂n we derive a Boolean dual-reference template
program P̃ such that, for all n ≥ 2, the n-fold instantiation P̃n overapproximates P̂n.
The variables of P̃ are L̃ = {b[j] : 1 ≤ j ≤ m} and L̃P = {b[j]P : 1 ≤ j ≤ m}.
Intuitively, the transitions of P̃ are those that are feasible, for some n, in P̂n, given
active thread 1 and passive thread 2. The semantics of dual-reference programs then
ensures that the transitions are valid for any choice of passive thread.
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We first compute the set R̃(n) of these transitions for fixed n. Formally, the com-
ponents of P̃(n) = (R̃(n), Ĩ(n)) are, for n ≥ 2,

R̃(n) :: ∃L̂3, L̂
′
3, . . . , L̂n, L̂

′
n : (R̂1)n{L̂1 ..L̃}{L̂2 ..L̃P} (14)

Ĩ(n) :: ∃L̂3, . . . , L̂n : În {L̂1 . L̃}{L̂2 . L̃P} (15)

We apply this strategy to the earlier example of the decrement statement l := l−1.
To compute Eq. (14) first with n = 2, we need (R̂1)2, which was enumerated in
Table 1. Simplification results in a Boolean DR program with variables b and bP and
transition relation

R̃(2) = (¬b ∧ bP ∧ ¬b′) ∨ (¬bP ∧ b′ ∧ ¬b′P) . (16)

Using (16) as the template R̃ in (12) generates existential abstractions of many concrete
decrement transitions; for instance, for n = 2 and a = 1 we get back the transition
relation in Table 1. The question is now: does (16) suffice as a template, i.e. does
(R̃(2))n overapproximate R̂n for all n? The answer is no: the abstract 3-thread transi-
tions shown in Table 2 are not permitted by (R̃(2))n for any n, since neither ¬b ∧ bP
nor b′ ∧ ¬b′P are satisfied for all choices of passive threads. We thus increase n to 3,
recompute Eq. (14), and obtain

R̃(3) :: R̃(2) ∨ (¬b ∧ ¬bP ∧ ¬b′ ∧ ¬b′P) . (17)

The new disjunct accommodates the abstract transitions in Table 2, which were missing
before.

b1 b2 b3 b′
1 b′

2 b′
3 l1 l2 l3 l′

1 l′
2 l′

3

F F F F F F 1 0 0 0 0 0
F F T F F F 1 1 0 0 1 0
F F T F F T 2 1 0 1 1 0

Table 2: Part of the abstraction (R̂1)3 for stmt. l := l− 1 against predicate l < lP (left); con-
crete witness transitions (right). The abstract transitions are inconsistent with (16) as a template

Does (R̃(3))n overapproximate R̂n for all n? When does the process of increasing
n stop? To answer these questions, we first state the following diagonalization lemma,
which helps us prove the overapproximation property for the template program.

Lemma 3. (P̃(n))n overapproximates P̂n: For every n ≥ 2 and every a, (R̂a)n ⇒
(R̃(n)a)n and În ⇒ (Ĩ(n)a)n.
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Proof. For the initial states, by equations (10), (13) and (15) the implication becomes

În ⇒
∧
p∈[1..n]\{a} Ĩ(n){L̃ . L̃a}{L̃P . L̃p}

≡
În ⇒

∧
p∈[1..n]\{a}

((
∃L̂3, . . . , L̂n : În

)
{L̂1 . L̃}{L̂2 . L̃P}

)
{L̃ . L̃a}{L̃P . L̃p}

≡
În ⇒

∧
p∈[1..n]\{a}

(
∃L̂3, . . . , L̂n : În

)
{L̂1 . L̃a}{L̂2 . L̃p} .

The final implication is a formula over the Boolean variable set V̂n = {b[j]i : 1 ≤ j ≤
m, 1 ≤ i ≤ n}. Consider any assignment Ân to these variables that satisfies În. Let
p ∈ {1, . . . , n}\{a} be arbitrary, and assign to the variables in L̂3∪ . . .∪L̂n = {b[j]i :
1 ≤ j ≤ m, 3 ≤ i ≤ n} the values given by Ân. Then the final implication holds since
the initial condition I is identical for all threads (1), so replacing thread ids 1 and 2 by
thread ids a and p preserves truth. The case of the transition relation is similar. �

We finally give a linear saturation bound for the sequence (P̃(n)). Along with the
diagonalization lemma, the bound allows us to obtain a template program P̃ indepen-
dent of n, which in turn enables parametric reasoning in the abstract.

Theorem 4. Let #IT be the number of inter-thread predicates among the Q[j]. Then
the sequence (P̃(n)) stabilizes at b = 2× (#IT + 1), i.e. for n ≥ b, P̃(n) = P̃(b).

Proof. It suffices to prove this theorem for the special case that all predicates are
inter-thread: m = #IT . Sect. 3.1 explained how to eliminate shared predicates, and
any single-thread predicate can syntactically be turned into an inter-thread predicate by
conjoining it with the redundant expression lP = lP; applying formula (3) gives us
single-thread predicate semantics.

For the duration of this proof, let Q[1], . . . , Q[m] be the list of predicates, all of
which are inter-thread, and the formula R̃(∞) over the variable set L̃ ∪ L̃P denote
a finite characterization of

∨∞
n=1 R̃(n). The existence of a finite encoding of R̃(∞)

is guaranteed, since the sequence (P̃(n)) is monotonously increasing and the variable
sets L̃ and L̃P are finite.

We show that stabilization occurs at b = 2 × (m + 1), i.e., R̃(∞) = R̃(b). The
proof is by induction on m, we begin with m = 1. Let t = (b, bP, b′, b′P) be some
abstract transition in the dual-reference relation R̃(∞), and ŵ and w be the abstract
and concrete n-thread witness transitions for t, respectively, and finally u = (ŵ, w).
Hence u is — in analogy with the presentation in Table 2 — of the form

u = (
ŵ︷ ︸︸ ︷

b1, . . . , bn︸ ︷︷ ︸
V̂n

, b′1, . . . , b
′
n︸ ︷︷ ︸

V̂ ′
n

,

w︷ ︸︸ ︷
l1, . . . , ln︸ ︷︷ ︸

Vn

, l′1, . . . , l
′
n︸ ︷︷ ︸

V ′
n

)

and such that it satisfies (R1)n ∧Dn ∧ (Dn)′ of the expanded R̃(n); see (9) and (14).1

1Expanding (14) yields R̃(n) :: ∃Vn, V ′
n, L̂3, L̂′

3..L̂
′
n : (R1)n ∧ Dn ∧ (Dn)′{L̂1 ..L̃}{L̂2 ..L̃P} .
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We call u an (n-thread) witness for t, and in particular a minimal one if no (n − 1)-
thread witness exists. Due to the final substitution in (14) it is t = (b1, b2, b′1, b

′
2), and

due to asynchrony li = l′i for i ∈ [2..n].
Next, we proof by cases that we can derive for any t with given witness u an

≤ 4-thread witness uM = (ŵM, wM), and thus that t ∈ R̃(4). Case t = (T, T, T, T). Ac-
cording to Eq. (3), Q[1]1 evaluates to true (and hence b1) if and only if all its conjuncts
Q[1]1,p evaluate to true (analog for b2 and primed versions). As in this case, remov-
ing any of the conjuncts preserves the overall’s truth value, ŵM = (b1, b2, b′1, b

′
2) and

wM = (l1, l2, l′1, l
′
2) induce the 2-thread witness uM for t.

Case t = (F, F, F, F). According to Eq. (3), Q[1]1 evaluates false (and hence b1) if
and only if there exists a p ∈ [2..n] such that each of the Q[1]1,p evaluates false (again,
analog for b2 and primed versions). Without loss of generality, let π : {1, . . . , 4} →
{3, . . . , 6} identify 4 passive threads in w that falsify each of the 4 conjuncts Q[1]1,
Q[1]2, Q[1]′1 and Q[1]′2, i.e., π is such that Q[1]1,π1 , Q[1]2,π2 , Q[1]′1,π3

, and Q[1]′2,π4
evaluate false. Then a 6-thread witness uM for t is induced by ŵM = (b, b′) with
b = (b1, b2, bπ1 , .., bπ4) and wM = (l, l′) with l = (l1, l2, lπ1 , .., lπ4).

For the inductive step fromm tom+1 predicates, we extend the obtained permuta-
tion by (at most) 4 = 6−2 elements (we can reuse the first and second thread). We can
conclude that stabilization occurs at 2× (2×m+ 1) for any m ≥ 1. Moreover, since
for each single-thread predicate that was syntactically turned into inter-thread one, just
the corresponding thread’s local state (1st or 2nd) determines the truth of Eq. (3), and
their state is untouched, we obtain that stabilization occurs at 2× (2×#IT + 1), and
hence single-thread predicates do not “count”.

Note that the previous bound holds for non-asynchronous input programs as well,
as we did not assume any immutability of passive-thread variables so far. For asyn-
chronous input programs, which exhibit this property, we can do better: First, we elim-
inate the reference to thread π2 by defining π2 := π1 and setting l2 := l1. Then, if
Q[1]1,π1 evaluates false, Q[1]2,π2 still evaluates false. Second, we eliminate the need
for thread π4. Due to asynchrony, which implies l2 = l′2 and lπ2 = l′π2

, by defin-
ing π4 := π2, it still holds that if Q[1]2,π2 evaluates false, so does Q[1]′2,π4

. Hence,
ŵM = (b, b′) with b = (b1, b2, bπ1 , bπ2), and wM = (l, l′) with l = (l1, l2, lπ1 , lπ2)
induce a 4-thread witness uM for t. The proofs for the remaining 14 cases is analogous,
always yielding < 4-thread witnesses.

With the same inductive step as before we can conclude that stabilization occurs at
b = 2× (#IT +1) for anym ≥ 1. The proof for the stabilization of Ĩ is analogous. �

The bound established in Thm. 4 is asymptotically tight: consider the following
concocted scenario with local variables l ∈ {1, . . . , 5}:

R :: (l = 1) ∧ (l′ = 4) (18)
Q :: (l 6= 1 ∨ lP 6= 2) ∧ (l 6= 4 ∨ lP 6= 3) . (19)

Eq. (14) does not stabilize for less than 4 threads. The obtained DR program has 7
transitions, which are enumerated in Table 3. The generalization that shows tightness
for arbitrary numbers of inter-thread predicates is straightforward.

12



t wM π
b bP b′ b′

P l1 l2 l3 l4 l′
1 l′

i 6=1 π1 π2 π3 π4

F F F F 1 1 2 3 4 li 3 3 4 3
F F T F 1 1 2 ∗ 4 li 3 3 - 3
T F F F 1 4 2 ∗ 4 li 2 - 3 -
F T F T 1 2 3 ∗ 4 li 2 - - -
F T T T 1 2 ∗ ∗ 4 li - 3 3 3
T T F T 1 3 ∗ ∗ 4 li - - 2 -
T T T T 1 5 ∗ ∗ 4 li - - - -

Table 3: Tightness example: The input transition relation (18) with inter-thread predicate (19).
The obtained abstract dual-reference program template R̃(∞) is shown on the left, with the
concrete part of a minimal witness from V4 and V ′

4 for each abstract transition in the middle
(∗ = unconstrained value), and on the right the mapping π as used in the proof of Thm. 4

Corollary 5. Let P̃ := P̃(b), for b as in Thm. 4. The components of P̃ are thus
(R̃, Ĩ) = (R̃(b), Ĩ(b)). Then, for n ≥ 2, P̃n overapproximates P̂n.

Proof. We have P̃n = (P̃(b))n
(∗)
w (P̃(n))n

(∗∗)
w P̂n , where w means “overapproxi-

mates”. Step (∗) follows, for b > n, from the monotonicity of sequence (P̃(n)) and,
for b ≤ n, from Thm. 4 (in which case w is = ). Step (∗∗) is Lem. 3. �

As a consequence of losing asynchrony in the abstraction, many existing model
checkers for concurrent software are not applicable to P̃ [16, 17, 10]. For a fixed
thread count n, the problem can be circumvented by forgoing the replicated nature of
the concurrent programs, as done in [9] in the boom tool: it proves the ticket algorithm
correct up to n = 3, but takes a defeating 30 minutes. The goal of the following section
is to design an efficient and fully parametric solution.

4. Unbounded-Thread Dual-Reference Programs

4.1. Undecidability of Boolean DR Program Verification

The multi-threaded Boolean dual-reference programs P̃n resulting from predicate-
abstracting asynchronous programs against inter-thread predicates are symmetric and
free of recursion. The symmetry can be exploited using classical methods that counter-
abstract the state space [18]: a global state is encoded as a vector of counter variables,
each recording the number of threads currently occupying a particular local state.

These methods are applicable to unbounded thread numbers as well, in which case
the local state counters are unbounded. The fact that the DR program executed by
each thread is finite-state might suggest that the resulting infinite-state counter systems
can be modeled as vector addition systems (as done in [18]) or, more generally, as
well quasi-ordered transition systems [19, 20] (defined below). This would give rise to
sound and complete algorithms for local-state reachability in such programs.

This strategy turns out to fail: the full class of Boolean DR programs is expressive
enough to render safety checking for an unbounded number of threads undecidable:
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Theorem 6. Program location reachability for Boolean DR programs run by an un-
bounded number of threads is undecidable.

Proof: by reducing the Halting problem for the Turing-powerful deterministic 2-count-
er Minsky machines [21] with k control states to the program location reachability
problem in DR programs with 3 locations and a local variable with k values.

We demonstrate the reduction using the Minsky machine in Fig. 3; the formalism
is from [22]. The machine consists of five control states {0, . . . , 4} (0 = initial), two
natural-number counters c1 and c2 (initially 0), and increment, decrement, and zero-test
operations, denoted by ci++, ci-- and ci

?=0, respectively. Each operation changes the
control state and counter value as indicated in the figure (the decrement and zero-test
operation block if c is zero and non-zero, respectively).

Control states are encoded in a local variable l of P̃ ranging over 0, . . . , 4. (This
makes P̃ non-Boolean but still finite-domain.) As can be seen from the figure, these
local variables are synchronized across the threads: they simulate a single shared vari-
able that tracks the control state (see end of Sect. 3.1). Control state changes thus turn
into synchronized local variable updates.

The two counters are encoded in program locations d1, d2 of the DR program P̃
such that counter value ci equals the number of threads in location di, for i ∈ {1, 2}.
In addition, location d0 is the single initial program location, thus with an unbounded
number of threads; it serves as thread pool. For program counter modifications ci++
and ci--, a thread moves from d0 to di and vice versa, respectively. To simulate ci

?=0,
we test whether any active or any passive thread resides in location di.

Let finally `e be a special program location of P̃ that is reached if and only if a
local variable has the value that encodes the Minsky machine’s halting control state.
The machine halts if and only if program location `e is reached in P̃ . �

2

0 13 4

l = lP = 2 ∧ l′ = l′
P = 0 ∧

pc = d0 ∧ pc′ = d1 ∧
pc′

P = pcP

c1++

. . .
c1--

. . .

c2++

l = lP = 0 ∧ l′ = l′
P = 1 ∧

pc = pc′ ∧ pcP = pc′
P ∧

pc 6= d1 ∧ pcP 6= d1

c1
?=0

l = lP = 1 ∧ l′ = l′
P = 4 ∧

pc = d2 ∧ pc′ = d0 ∧
pc′

P = pcP

c2--

. . .

c1++

. . .
c2

?=0

Figure 3: Minsky machine and (part of) its DR program encoding, shown as formulas labeling
control transitions. The initial state Ĩ of the DR encoding is l = lP = 0 ∧ pc = pcP = d0

Note how program P̃ used in the above proof is highly non-asynchronous. Thm. 6
implies that its unbounded-thread instantiation is not even well quasi-ordered. Can
this problem be fixed for the unbounded-counter systems obtained from asynchronous
programs, in order to permit a complete verification method? If so, at what cost?
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4.2. Monotonicity in Dual-Reference Programs
For a transition system (Σ,�) to be well quasi-ordered, we need two conditions

to be in place [19, 20, 2]:

well quasi-orderedness: there exists a reflexive and transitive binary relation � on Σ
such that for every infinite sequence u0, u1, . . . of states in Σ there exist i, j with
i < j and ui � uj .

monotonicity: for any u, u′, w with u � u′ and u � w there exists w′ such that
w � w′ and u′ � w′.

We apply this definition to the case of dual-reference programs. Representing global
states of the abstract system P̃n defined in Sect. 3 as counter tuples, we define � as

(n1, . . . , nΛ) � (n′1, . . . , n′Λ) :: ∀i = 1..Λ : ni ≤ n′i

where Λ is the total number of thread-local states, i.e. the number of local variable eval-
uations. We now call a DR program P̃ monotone if the induced infinite-state transition
system ∪∞i=1P̃i is monotone with respect to�. Monotonicity of P̃ can be characterized
as follows:

Lemma 7. A DR program with transition set R̃ is monotone exactly if, for all n ≥ 2:

(u, u′) ∈ R̃n ⇒ ∀ln+1 ∃l′n+1, π :
(
〈u, ln+1〉, π(〈u′, l′n+1〉)

)
∈ R̃n+1 . (20)

In (20), the quantifiers ∀ln+1,∃l′n+1 range over local states (i.e. valuations of the local
variables). The notation 〈u, ln+1〉 denotes a (n + 1)-thread state that agrees with u in
the first n local states and whose last local state is ln+1; similarly 〈u′, l′n+1〉. Symbol π
denotes a permutation on {1, . . . , n+ 1} that acts on states by acting on thread indices,
which effectively reorders local states.
Proof of Lem. 7.

“⇒”: suppose ∪∞i=1P̃i is monotone. Let u = (l1, . . . , ln), u′ = (l′1, . . . , l′n) with
(u, u′) ∈ R̃n, and w = 〈u, ln+1〉. We have u � w, hence by the monotonicity of
∪∞i=1R̃i there exists w′ such that (a) (w,w′) ∈ ∪∞i=1R̃i and (b) u′ � w′. From (a)
we conclude that in fact (w,w′) ∈ R̃n+1. From (b) we conclude that w′ contains n
threads in local states as in u′. Let l′n+1 be the local state of the additional thread (not
necessarily the (n + 1)st) in w′, and σ be a permutation such that (l′1, . . . , l′n+1) =
σ(w′). That is, σ reorders the local states of w′ such that the n local states in u′ come
first, l′n+1 comes last. With π := σ−1, we then have(
〈u, ln+1〉, π(〈u′, l′n+1〉)

)
=
(
〈u, ln+1〉, σ−1(〈u′, l′n+1〉)

)
= (w,w′) ∈ R̃n+1 .

“⇐”: suppose (u, u′) ∈ ∪∞i=1R̃i, say (u, u′) ∈ R̃n, so we write u = (l1, . . . , ln) and
u′ = (l′1, . . . , l′n). Let further u � w. If w has exactly n threads, like u, then u � w
implies u � w: the states are symmetry equivalent, say w = π(u), for a permutation π
on {1, . . . , n}. In this case w′ := π(u′) satisfies the monotonicity conditions.

If w has n+1 threads, then observe that w contains n threads in local states as in u;
let ln+1 be the local state of the additional thread (not necessarily the n+ 1st). Let fur-
ther l′n+1 and π be as provided in (20). With y = 〈u, ln+1〉 and y′ = π(〈u′, l′n+1〉), we
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get (y, y′) ∈ R̃n+1 by (20). Since y and w contain the same local states, let σ be a per-
mutation such that σ(y) = w. Definew′ = σ(y′). Thenw′ ∼ y′ = π(〈u′, l′n+1〉) � u′,
where ∼ is symmetry equivalence. Further, (y, y′) ∈ R̃n+1 implies (σ(y), σ(y′)) ∈
R̃n+1 by symmetry, so (w,w′) ∈ R̃n+1 ⊆ ∪∞i=1R̃i, demonstrating that the mono-
tonicity conditions are satisfied.

The case that w has more than n+ 1 threads follows by induction. �

Asynchronous programs are trivially monotone (and DR): Eq. (20) is satisfied by
choosing l′n+1 := ln+1 and π the identity. Table 4 shows instructions found in non-
asynchronous programs that destroy monotonicity. For example, the swap instruction
in the first row gives rise to a DR program with a 2-thread transition (0, 0, 0, 0) ∈ R̃2.
Choosing l3 = 1 in (20) requires the existence of a transition in R̃3 of the form
(l1, l2, l3, l′1, l

′
2, l
′
3) = (0, 0, 1, π(0, 0, l′3)). By equations (11) and (12), there must

further exist a ∈ {1, 2, 3} such that for {p, q} = {1, 2, 3} \ {a}, both “a swaps with p”
and “a swaps with q” hold, i.e.

l′p = la ∧ l′a = lp ∧ l′q = la ∧ l′a = lq ,

which is equivalent to l′a = lp = lq ∧ la = l′p = l′q . This formula is inconsistent
with the partial assignment (0, 0, 1, π(0, 0, l′3)), no matter what π and l′3.

Dual-reference program Monotonicity

instruction variables mon.? assgn. violating (21)

l, lP := lP, l l ∈ B no l = 0, l′ = 1
l, lP := l + 1, lP − 1 l ∈ N yes

lP := lP + l l ∈ N yes
l := l + lP l ∈ N no l = l′ = 1

lP := c l, c ∈ N yes

Table 4: Examples of monotonicity, and violations of it — Each row shows a single-instruction
program, whether the program gives rise to a monotone system and, if not, an assignment that
violates Eq. (21). (For ease of illustration, some of these programs are not finite-state.)

More interesting for us is the fact that asynchronous programs (= our input lan-
guage) are monotone, while their parametric predicate abstractions may not be; this
demonstrates that the monotonicity is in fact lost in the abstraction. Consider again the
decrement instruction l := l−1, but this time abstracted against the inter-thread pred-
icate Q :: l = lP. Parametric abstraction results in the two-thread and three-thread
template instantiations

R̃2 = (¬b1 ∨ ¬b′1) ∧ (b1 = b2) ∧ (b′1 = b′2)
R̃3 = (¬b1 ∨ ¬b′1) ∧ (b1 = b2 = b3) ∧ (b′1 = b′2 = b′3) .

Consider the transition (0, 0) → (1, 1) ∈ R̃2 and the R̃3-state u = (0, 0, 1) � (0, 0) :
u has no successor (it is in fact inconsistent), violating monotonicity.

The monotonicity can be lost even without inter-thread predicates: the assignment
s := l abstracted with respect to the predicates Q[1] :: s = l (single-thread) and
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Q[2] :: l = 4 (local) gives rise to a non-asynchronous abstraction that is not even
monotone: while (1, 1)→ (1, 1) ∈ R̃1 is a valid transition, the R̃2-state (1, 1, 1, 0) �
(1, 1) is inconsistent and hence has no successors.

4.3. Restoring Monotonicity in the Abstraction
The cover relation � defined over local state counter tuples turns monotone Bool-

ean DR programs into instances of well quasi-ordered transition systems. Program
location reachability is then decidable, even for unbounded threads. Therefore, our
goal now is to restore the monotonicity that was lost in the parametric abstraction.

In order to do so, we first derive a sufficient condition for monotonicity that can be
checked locally over R̃, as follows.

Theorem 8. Let R̃ be the transition relation of a DR program. Then the infinite-state
transition system ∪∞i=1R̃i is monotone if the following formula over L̃ × L̃′ is valid:

∃L̃P∃L̃′P : R̃ ⇒ ∀L̃P∃L̃′P : R̃ . (21)

Unlike the monotonicity characterization given in Lem. 7, Eq. (21) is formulated only
over the template program R̃. It suggests that, if R̃ holds for some variable assignment,
then no matter how we replace the current-state passive-thread variables L̃P, we can
find next-state passive-thread variables L̃′P such that R̃ still holds. This is true for
asynchronous programs, since here L̃P = ∅. It fails for the swap instruction in the first
row of Table 4: the instruction gives rise to the DR program R̃ :: l′ = lP ∧ l′P = l.
The assignment l = 0, l′ = 1 in the table satisfies ∃L̃PL̃

′
PR̃, but for lP = 0, R̃ is

violated no matter what value is assigned to l′P ∈ L̃′P.
Proof of Thm. 8. We show monotonicity using Lem. 7. Suppose (u, u′) ∈ R̃n,

and let ln+1 be given. By (11), there exists a ∈ {1, . . . , n} such that (u, u′) ∈ (R̃a)n.
By (12), we have

∀p ∈ {1, . . . , n} \ {a} R̃{L̃ ..L̃a}{L̃P ..L̃p} . (22)

Since n ≥ 2, the quantification in (22) is not empty and hence satisfies the left-hand
side of (21). By the right-hand side, there exists a valuation l′n+1 of all L̃′P vari-
ables such that, replacing the L̃P variables by the valuation ln+1, R̃ still holds, i.e.
R̃{L̃ ..L̃a}{L̃P ..L̃n+1}. Merging this with (22), we obtain

∀p ∈ {1, . . . , n+ 1} \ {a} R̃{L̃ ..L̃a}{L̃P ..L̃p} ,

and thus (〈u, ln+1〉, 〈u′, l′n+1, )〉 ∈ (R̃a)n+1 ⊆ R̃n+1, establishing the right-hand side
of (20) with the identity permutation π. �

We are now ready to transform the possibly non-monotone abstract DR program
P̃ into a monotone abstraction P̃m. Our solution is similar in spirit to, but different in
effect from, earlier work on monotonic abstractions [3]. The idea is to terminate pro-
cesses that violate universal guards and thus block a transition. Exploiting the mono-
tonicity of the concrete program P , we can build a monotone program P̃m that is safe
exactly when P̃ is, thus fully preserving soundness and precision of the abstraction P̃ .
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Definition 9. The non-monotone fragment (NMF) of a DR program with transition
relation R̃ is the following formula F(R̃) over L̃ × L̃P × L̃′:

F(R̃) :: ¬∃L̃′P : R̃ ∧ ∃L̃P∃L̃′P : R̃ . (23)

The NMF encodes partial assignments (l, lP, l′,−) that cannot be extended to a full
assignment satisfying R̃, but such that (l,−, l′,−) can be. We observe that Eq. (23)
is slightly stronger than the negation of (21): the NMF binds the values of the L̃P
variables for which a violation of R̃ is possible.

We revisit the two non-monotone instructions from Table 4. The NMF of l, lP :=
lP, l is l′ 6= lP: this clearly cannot be extended to an assignment satisfying R̃, but
when lP is changed to l′, we can choose l′P = l to satisfy R̃. The non-monotone
fragment of l := l + lP is l′ ≥ l ∧ l′ 6= l + lP.

The NMF can be used to “repair” R̃: the program with transition relation R̃∨F(R̃)
is monotone, as we will see shortly. This suggests to add transitions (l, lP, l′, l′P)
to R̃ that allow arbitrary passive-thread state changes whenever (l, lP, l′) belongs
to the non-monotone fragment, thus lifting the blockade previously caused by some
passive threads. The problem is of course that such additions will generally modify the
program behavior; in particular, an added transition might lead a thread directly into an
error state that used to be unreachable.

In order to instead obtain a safety-equivalent program, we prevent passive threads
that block a transition in P̃ from affecting the future execution. This can be realized by
redirecting them to an auxiliary sink state. Let `⊥ be a fresh program location.

Definition 10. The monotone closure of DR program P̃ = (R̃, Ĩ) is the DR program
P̃m = (R̃m, Ĩ) with the transition relation R̃m :: R̃ ∨ (F(R̃) ∧ pc′P = `⊥).

Lemma 11. The monotone closure P̃m of a DR program P̃ is monotone.

Proof. Appealing to Thm. 8, we show that R̃m satisfies (21), i.e.

∃L̃P∃L̃′P : R̃m ⇒ ∀L̃P∃L̃′P : R̃m . (24)

We first simplify the following expression occurring on both sides of (24):

∃L̃′P : R̃m = ∃L̃′P : (R̃ ∨ (¬∃L̃′P : R̃ ∧ ∃L̃PL̃
′
P : R̃ ∧ pc′P = `⊥))

= ∃L̃′P : R̃ ∨ (¬∃L̃′P : R̃ ∧ ∃L̃PL̃
′
P : R̃ ∧ ∃L̃′P : pc′P = `⊥)

= ∃L̃′P : R̃ ∨ (¬∃L̃′P : R̃ ∧ ∃L̃PL̃
′
P : R̃)

= ∃L̃′P : R̃ ∨ ∃L̃PL̃
′
P : R̃

= ∃L̃PL̃
′
P : R̃ .

Eq. (24) is now seen to be valid: the above derivation shows that the expression
∃L̃′P : R̃m is semantically independent of L̃P variables. Hence the quantifications ∃L̃P
and ∀L̃P on both sides of (24) can be omitted, making the two sides equal. �
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Sect. 4 so far reports results on arbitrary DR programs. We now return to DR pro-
grams P̃ that are obtained via predicate abstraction from asynchronous input programs,
as described in Sect. 3. It is these types of DR programs for which we can guarantee
that the monotone closure is not only monotone, but equivalent to P̃ in the sense of
safety preservation.

To state this result, we stipulate that the abstract program P̃ inherit the error loca-
tion from P (predicate abstraction preserves control locations). Also note that location
`⊥ is “fresh” and hence different from the error location.

Theorem 12. Let P be an asynchronous program, and P̃ its parametric predicate ab-
straction (Cor. 5). Given P̃’s monotone closure P̃m, (P̃m)n is safe exactly if P̃n is.

Proof. Since R̃ ⇒ R̃m, if (P̃m)n is safe, so is P̃n. For the converse argument, we
assume P̃n is safe and consider a path π in (P̃m)n, split into segments as follows:

π = t1, . . . , r1 , t2, . . . , r2 , . . . , tj , . . . , rj , . . . (25)

where the transitions in each segment tj , . . . , rj belong to relation R̃, and the transi-
tions (rj , ti+1) belong to F(R̃) ∧ pc′P = `⊥.

Call a state safe if there is no path from that state to an error state. State safety
is closed under reachability: if state s is safe, any state reachable from s is also safe.
Moreover, Since the asynchronous input program P is monotone, state safety is down-
ward-closed for P: if state r is safe in P and s � r then s is also safe. This property
also holds for the (possibly non-monotone) abstract DR program P̃: let R be the con-
cretization of state r̃ of P̃ , i.e. a set of programs states of input program P . Then P̃’s
overapproximation properties (Sect. 2.3 and Cor. 5) guarantee the safety of states in R,
and downward-closedness of state safety in P implies the safety of states in the down-
ward closure of R. From the fact that s’s concretization is in that closure we conclude
s is safe, too.

Using this result we now show that all states along trace π in Eq. (25) are safe. The
proof is by induction on the number of R̃-segments in π. The initial segment t1, . . . , r1
is a path in P̃n and hence no state in it leads to an error state (P̃n is safe). For the
inductive step, consider segment ti, . . . , ri and transition (ri, ti+1). By the definition
of segments, state ti+1 contains at least one passive thread “stuck” in pc′P = `⊥. Let r′i
be the state obtained from ri by removing stuck threads; hence r′i ≺ ri. Since safety
is downward-closed in P̃ and ri is safe by the induction hypothesis, r′i is safe, too, and
hence all states in segment ti+1, . . . , ri+1, by reachability closure. �

Thm. 12 justifies our strategy for reachability analysis of an asynchronous pro-
gram P: form its parametric predicate abstraction P̃ described in Sections 2 and 3,
build the monotone closure P̃m, and analyze (P̃m)∞ using any technique for monotone
systems. Applying this strategy to the ticket algorithm yields a well quasi-ordered tran-
sition system of about 28 local states and 50 transitions (see www.cprover.org/
bfc/ticketlock/ticketabs.tts for the full spec). The backward reachabil-
ity method described in [20] returns “uncoverable” on this system, confirming that the
ticket algorithm ensures mutual exclusion, this time for arbitrary thread counts.

As a more compact example, we revisit again the decrement instruction l := l−1,
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abstracted against the inter-thread predicateQ :: l = lP. The DR template program is:

R̃ :: b = bP ∧ b′ = b′P ∧ (¬b ∨ ¬b′) . (26)

As illustrated near the end of Sect. 4.2, R̃ does not give rise to a monotone system:
we have (0, 0) → (1, 1) ∈ R̃2, but the R̃3-state (0, 0, 1) � (0, 0) has no successor:
b = bP is violated for some passive threads, no matter who is active. The NMF
¬∃L̃′P : R̃ ∧ ∃L̃P∃L̃′P : R̃ simplifies to b 6= bP. The closure operation adds to R̃
all transitions satisfying b 6= bP ∧ pc′P = `⊥. Now we have for example (0, 0, 1) →
(⊥,⊥, 0) ∈ R̃3 (⊥ = any state satisfying pc′P = `⊥) — the monotonicity is restored.

5. Practical Evaluation

We evaluate our approach on a set of 37 non-recursive shared-memory C programs.
The experiments are performed on a 3 GHz Intel Xeon machine with 20 GB memory,
running 64-bit Linux, with a timeout of 30 minutes. We first provide an overview of
the benchmark set.

Benchmark description. Threads communicate asynchronously through shared mem-
ory and synchronize via locks or atomic compare-and-swap instructions. We also ex-
perimented with monotone input programs that are not asynchronous, featuring more
complex synchronization primitives such as condition variables and broadcasts.1

For each program, we verify a safety property, specified as an assertion. To mea-
sure performance for unbounded-thread verification, we chose primarily assertions that
hold. (Those that fail usually fail for small thread counts, requiring little verification
resources.) In total, the programs comprise 4583 lines of code, featuring 2.5 shared and
4.6 local variables on average. Five programs use broadcast operations on condition
variables. We briefly describe the program benchmarks:

1–10: thread-safe algorithms: atomic counters (1–2); operations to find the maximum
element in an array (3–6); concurrent pseudo-random number generators (7–8);
stack data structure with concurrent pushes and pops (9–10). For each type,
we consider a version with Locks, and one with Compare-and-swap primitives
(marked -L or -C in Table 5, resp.).

11–15: OS code: code from the FreeBSD (11–12), NetBSD (13), and Solaris (14)
open-source operating systems that is related to RDMA ZFS file system support
and interface/system monitoring (multiple kernel threads are simultaneously un-
blocked via condition variables); Linux driver skeleton that mimics concurrent
open, close and ioctl calls (15).

1All technical results described in this paper hold in fact for all monotone DR programs; note that the
proofs of the key results in Lem. 11 and Thm. 12 depend on monotonicity but not on asynchrony. For non-
asynchronous input programs the stabilization bound b increases from 2×(#IT +1) to 2×(2×#IT +1),
which is the first bound established in the proof of Thm. 4.
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16–26: mutex algorithms: multiple locks protecting a shared resource (16–18); the
ticket algorithm in Fig. 1 (19); classical algorithms due to Szymanski, Peterson
and Dekker (20–22); a readers-writers and timed mutex (23–24); high-contention
ticket algorithm with proportional back-off (25); test-and-set lock (26).

27–32: misc: two programs that require single-thread predicates (27-28); threads syn-
chronizing via broadcasts (29); a program amenable to thread-modular verifica-
tion (30); a vulnerability fix from the Mozilla repository (31); a program used to
illustrate incremental coverability proofs (32).

33–37: pthread: programs using the C POSIX Thread library.

Most programs contain procedures run by an arbitrary number of threads dynamically
spawned by the (single) initial thread. Exceptions are 20–24 and 31 from [8], which
are designed for a fixed thread count of two; the program behavior stabilizes for n ≥ 2.
These examples do not exploit the power of our approach to deal with unbounded
threads.

Implementation. We implemented our abstraction method in the verifier monabs. The
verifier takes a shared-memory program annotated with assertions in the C language,
which uses the pthreads library for dynamic thread creation and synchronization ob-
jects (mutexes and condition variables). Our tool monabs combines medium-precision
Cartesian abstractions [23] (default cube length is 3) and handles function calls by in-
lining. If the abstractions lack precision, monabs performs a monotonicity-preserving
variant of Das/Dill-style refinement. This is achieved by constraining passive-thread
variables in the abstraction only if needed, i.e. if the spurious transition is not spu-
rious for all valuations of passive-thread variables. Predicate discovery is done in a
CEGAR loop: initially the predicate set is empty; the Boolean program represents only
the control flow. Predicates are then discovered based on spurious counterexamples;
basic discovery heuristics are sufficient for the benchmarks. Since existing well quasi-
ordered system model checkers do not support monotone Boolean DR programs, we
use an extension of the breach tool [24] as verification back-end.

5.1. Detailed evaluation of monabs
Table 5 gives detailed experimental results. Within 187s and at most 8 abstraction-

refinement iterations, monabs succeeds in certifying correctness of all 34 safe pro-
grams for arbitrary thread counts, and reporting counterexamples for the three remain-
ing buggy instances BOOP, BS-LOOP and PTHREAD. As usual, the model-checking
time dominates the total run time, among the various CEGAR phases. The cost of the
monotone closure computation is negligible and not shown.

Shared and single-thread predicates were needed to succeed in 28 of the 37 cases,
and inter-thread predicates for the two ticket algorithms. Roughly half of the bench-
marks exhibit abstractions that are “truly DR”, i.e. they permit no asynchronous en-
coding. As a consequence, existing model checkers for concurrent software are inap-
plicable. In five of these cases (marked in the Cnd? column), passive-thread variable
updates are used in the input program to model broadcast operations. These are then
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passed on to the abstraction via local predicates. For the other 11, originally asynchro-
nous programs, asynchrony is lost after inter- or single-thread predicates are discovered
during refinement: programs with IT 6= 0, and programs with ST > L. Only 5 pro-
grams whose abstraction is “truly DR” turned out monotone; the majority, namely 11,
require the application of the closure operation from Def. 10 in order to be passed to
the back-end model checker (recall that loss of monotonicity is possible even without
any inter-thread predicates). Single-thread predicates of the form s = l are, e.g., re-
quired to track the success of the compare-and-swap primitive for programs INC-C,
MAXSIMP-C and MAXOPT-C.

The results also demonstrate the appropriateness of our predicate language: ban-
ning any one of the predicate types supported by our approach renders some of our C
programs unprovable.

5.2. Comparison with symmpa and cream
Existing tools for programs with unbounded threads, such as duet, are insufficient

for our benchmarks (Sect. 6 has details). Instead, we compare against four recent fixed-
thread approaches and measure at which point the search for monotone, unbounded-
thread proofs pays off compared to checking increasing constant thread counts. Our
points of comparison are:

symmpa ([9]): predicate abstraction for fixed threads.

cream-mono ([25, 26]): cream with monolithic proofs.

cream-rely ([8, 26]): cream with rely-guarantee proofs.

cream-owicki ([25, 26]): cream with Owicki-Gries proofs.

Front-end capabilities of cream and symmpa are similar to that of monabs, facilitating
a comparison. Neither cream nor symmpa support broadcasts, as used by 5 of our
benchmarks; we instead apply them to broadcast-free overapproximations.

Fig. 4 plots the fraction of programs checked successfully by different methods
for given thread numbers. Each subfigure shows five curves: one for monabs and un-
bounded thread count (n = ∞), and four corresponding to the respective fixed-thread
tool with n = 2, . . . , 5 concurrent threads: an entry of the form (k, t) gives the time t
it took to solve the k easiest (for the given method) of the C programs. The results
show that our unbounded approach quickly outperforms each of the fixed-thread veri-
fiers, even for very small thread counts. For symmpa and cream the proof time grows
exponentially with the thread count. The single timeout for symmpa with n = 2 is for
the high-contention variant of the ticket algorithm (TICKET-HC): symmpa is unable to
track the uniqueness of a ticket, and as a result times out while attempting to enumer-
ate the possible ticket values. For the simpler variant, where every thread acquires and
releases the lock only once (TICKET), symmpa succeeds for up to 3 threads.

The complete set of benchmark programs used in this section is available online, at
www.cprover.org/bfc. Our tool monabs is tightly integrated into the satabs ver-
ifier (www.cprover.org/satabs). For information on the novel satabs features,
and on using breach as model-checker back-end, visit www.cprover.org/bfc.
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n = 2; n = 3; n = 4; n = 5 (other tool); n =∞ (monabs)
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Figure 4: Comparison with fixed-thread tools — Cactus plots comparing monabs with four
recent fixed-thread proof methods

6. Comparison with Related Work

Algorithmic solutions for verifying safety properties of multi-threaded programs
have been intensively studied. We survey work related to concurrent program verifica-
tion in general, and monotonicity in particular.

Existing approaches for verifying asynchronous shared-memory programs typi-
cally do not exploit the monotone structure that source-level multi-threaded programs
often naturally exhibit [4, 5, 6, 7, 8, 9, 10, 11]. Table 6 provides a feature comparison
of our work with these methods. For example, the constraint-based approach in [8],
implemented in cream, generates Owicki-Gries and rely-guarantee type proofs. It uses
predicate abstraction in a CEGAR loop to generate environment invariants for fixed
thread counts, whereas our approach directly checks the interleaved state space and
exploits monotonicity. Whenever possible, cream generates thread-modular proofs by
prioritizing predicates that do not refer to the local variables of other threads. For the
parametric benchmarks we used in Sect. 5, however, this was never successful.

A CEGAR approach for fixed-thread symmetric concurrent programs has been im-
plemented in symmpa [9]. It uses predicate abstraction to generate a Boolean broadcast
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Input Relationships Output

Verifier ∞ CV SM ASST SP ST IT CEX ¬FP TA(n)

cream [8, 25] m m l l l l l l l expon.
symmpa [9] m m l l l l m l l expon.
iDFG (unimpl.) [11] m m l l l l l l l quadr.
duet [10] l m l l l m m m m false pos.
boppo/satabs [6] l m l l l m m l m N/A
ddv/satabs [7] m m l l l m m l l N/A
blast [4] m m l m N/A N/A N/A l l N/A
magic [5] m m m l N/A N/A N/A l l N/A

monabs (this work) l l l l l l l l l constant

Table 6: Comparison with existing methods — Input features:∞, CV, SM, ASST = unbounded
threads, condition variables, shared-memory, assertions; variable relationship in the generated
proofs: SP, ST, IT = shared, single-thread, inter-thread; Output: CEX, ¬FP, TA(n) = counterex-
amples, absence of false positives, asymptotic run time for the ticket algorithm

program (a special case of DR program). Their approach cannot reason about relation-
ships between local variables across threads, which is crucial for verifying the ticket
lock algorithm. Nevertheless, even the restricted predicate language of [9] can give rise
to non-asynchronous programs. (This possibility is acknowledged but not addressed
in [9].) As a result, their technique cannot be extended to unbounded thread counts
with well quasi-ordered systems techniques.

Recent work on data flow graph representations of fixed-thread concurrent pro-
grams has been applied to safety property verification [11]. The inductive data flow
graphs can serve as succinct correctness proofs for safety properties; for the ticket ex-
ample they generate correctness proofs of size quadratic in n. Similar to [11], the
technique in [10] uses data flow graphs to compute invariants of concurrent programs
with unbounded threads (implemented in duet). In contrast to monabs, duet constructs
proofs from relationships between either solely shared or solely local variables. These
are insufficient for most benchmarks we used in Sect. 5.

The ticket lock algorithm is unbounded both in the number of participating threads,
and in the domain of program variables; a program class targeted in early work by
Bozzano and Delzanno [27]. They present a sound symbolic backward search method
that does not rely on monotonicity of the input programs and thus is not guaranteed to
terminate. An abstraction can guarantee termination at the cost of overapproximation;
a refinement loop can presumably re-introduce non-termination issues. The technique
works well for the ticket algorithm, but has apparently not been applied to other pro-
grams; an implementation is not available.

Predicates that, like our inter-thread predicates, reason over all participating pro-
cesses/threads have been used extensively in invariant generation methods [28, 29, 30].
As a recent example, an approach that relies on abstract interpretation instead of model
checking is [31]. Starting with a set of candidate invariants (assertions), the approach
builds a reflective abstraction, from which invariants of the concrete system are ob-
tained in a fixed point process. These approaches and ours share the insight that com-
plex relationships over all threads may be required to prove easy-to-state properties
such as mutual exclusion. They differ fundamentally in the way these relationships
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are used: abstraction with respect to a given set Q of quantified predicates determines
the strongest invariant expressible as a Boolean formula over the set Q; the result is
unlikely to be expressible in the language that defines Q.

The monotonicity property of asynchronous (and other) programs is often exploited
in infinite-state search algorithms to ensure termination. In the absence of monotonic-
ity, an option is to detect cutoffs [32], i.e. bounds on the number of processes sufficient
to guarantee correctness for the unbounded case. The option of “making” systems
monotone was pioneered in earlier work [33, 3]. Bingham and Hu deal with guards
that require universal quantification over thread indices, by transforming such systems
into broadcast protocols. This is achieved by replacing conjunctively guarded actions
by transitions that, instead of checking a universal condition, execute it assuming that
any thread not satisfying it “resigns”. This happens via a designated local state that
isolates such threads from participation in the future computation. The same idea was
further developed by Abdulla et al. in the context of monotonic abstractions. Our solu-
tion to the loss of monotonicity was in some way inspired by these works, but differs in
two crucial aspects: first, our concrete input systems are asynchronous and thus mono-
tone, so our incentive to preserve monotonicity in the abstract is strong. Second, ex-
ploiting the input monotonicity, we can achieve a monotonic abstraction that is safety-
equivalent to the non-monotone abstraction and thus not merely an error-preserving
approximation. This is essential, to avoid spurious counterexamples in addition to
those unavoidably introduced by the predicate abstraction.

7. Concluding Remarks

We presented in this paper a comprehensive verification method for arbitrarily-
threaded asynchronous shared-variable programs. Our method is based on predicate
abstraction and permits expressive universally quantified inter-thread predicates, which
track relationships such as “my ticket number is the smallest among all threads”.
Such predicates are required to verify, via predicate abstraction, the widely used ticket
lock algorithm. We found that the abstractions with respect to these predicates result
replicated Boolean programs lacking monotonicity, a property often relied upon dur-
ing infinite-state system verification. To fix this problem, we strengthened the earlier
method of monotonic abstractions such that it does not introduce spurious errors into
the abstraction. We have implemented our technique in the monabs verifier and exper-
imentally demonstrated the efficiency of our unbounded-thread analysis compared to
several earlier methods, both unbounded and fixed-thread.

We view the treatment of monotonicity as the major contribution of this work.
Program design often naturally gives rise to “monotone concurrency”, where adding
passive components cannot disable existing actions. Abstractions that interfere with
this feature are limited in usefulness. Our paper shows how the feature can be in-
expensively restored, allowing such abstraction methods and powerful infinite-state
verification methods to coexist peacefully.

26



References

References

[1] G. R. Andrews, Concurrent programming: principles and practice, Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1991.

[2] P. A. Abdulla, K. Cerans, B. Jonsson, Y.-K. Tsay, General decidability theorems
for infinite-state systems., in: LICS, 1996, pp. 313–321.
URL db/conf/lics/lics96.html#AbdullaCJT96

[3] P. A. Abdulla, G. Delzanno, A. Rezine, Monotonic abstraction in parameterized
verification., Electr. Notes Theor. Comput. Sci. 223 (2008) 3–14.
URL db/journals/entcs/entcs223.html#AbdullaDR08

[4] T. A. Henzinger, R. Jhala, R. Majumdar, Race checking by context inference., in:
PLDI, 2004, pp. 1–13.
URL db/conf/pldi/pldi2004.html#HenzingerJM04

[5] S. Chaki, E. M. Clarke, N. Kidd, T. W. Reps, T. Touili, Verifying concurrent
message-passing C programs with recursive calls., in: TACAS, 2006, pp. 334–
349.
URL db/conf/tacas/tacas2006.html#ChakiCKRT06

[6] B. Cook, D. Kroening, N. Sharygina, Verification of boolean programs with un-
bounded thread creation., Theor. Comput. Sci. 388 (1-3) (2007) 227–242.
URL db/journals/tcs/tcs388.html#CookKS07

[7] T. Witkowski, N. Blanc, D. Kroening, G. Weissenbacher, Model checking con-
current Linux device drivers., in: ASE, 2007, pp. 501–504.
URL db/conf/kbse/ase2007.html#WitkowskiBKW07

[8] A. Gupta, C. Popeea, A. Rybalchenko, Predicate abstraction and refinement for
verifying multi-threaded programs., in: POPL, 2011, pp. 331–344.
URL db/conf/popl/popl2011.html#GuptaPR11

[9] A. F. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, T. Wahl,
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams., Formal Methods in System Design 41 (1) (2012) 25–44.
URL db/journals/fmsd/fmsd41.html#DonaldsonKKTW12

[10] A. Farzan, Z. Kincaid, Verification of parameterized concurrent programs by
modular reasoning about data and control., in: POPL, 2012, pp. 297–308.
URL db/conf/popl/popl2012.html#FarzanK12

[11] A. Farzan, Z. Kincaid, A. Podelski, Inductive data flow graphs., in: POPL, 2013,
pp. 129–142.
URL db/conf/popl/popl2013.html#FarzanKP13

27

db/conf/lics/lics96.html#AbdullaCJT96
db/conf/lics/lics96.html#AbdullaCJT96
db/conf/lics/lics96.html#AbdullaCJT96
db/journals/entcs/entcs223.html#AbdullaDR08
db/journals/entcs/entcs223.html#AbdullaDR08
db/journals/entcs/entcs223.html#AbdullaDR08
db/conf/pldi/pldi2004.html#HenzingerJM04
db/conf/pldi/pldi2004.html#HenzingerJM04
db/conf/tacas/tacas2006.html#ChakiCKRT06
db/conf/tacas/tacas2006.html#ChakiCKRT06
db/conf/tacas/tacas2006.html#ChakiCKRT06
db/journals/tcs/tcs388.html#CookKS07
db/journals/tcs/tcs388.html#CookKS07
db/journals/tcs/tcs388.html#CookKS07
db/conf/kbse/ase2007.html#WitkowskiBKW07
db/conf/kbse/ase2007.html#WitkowskiBKW07
db/conf/kbse/ase2007.html#WitkowskiBKW07
db/conf/popl/popl2011.html#GuptaPR11
db/conf/popl/popl2011.html#GuptaPR11
db/conf/popl/popl2011.html#GuptaPR11
db/journals/fmsd/fmsd41.html#DonaldsonKKTW12
db/journals/fmsd/fmsd41.html#DonaldsonKKTW12
db/journals/fmsd/fmsd41.html#DonaldsonKKTW12
db/conf/popl/popl2012.html#FarzanK12
db/conf/popl/popl2012.html#FarzanK12
db/conf/popl/popl2012.html#FarzanK12
db/conf/popl/popl2013.html#FarzanKP13
db/conf/popl/popl2013.html#FarzanKP13


[12] A. Farzan, Z. Kincaid, Duet: Static analysis for unbounded parallelism., in: CAV,
2013, pp. 191–196.
URL db/conf/cav/cav2013.html#FarzanK13

[13] A. Malkis, Cartesian abstraction and verification of multithreaded programs.,
Ph.D. thesis, University of Freiburg (2010).
URL http://www.freidok.uni-freiburg.de/volltexte/7356/

[14] E. M. Clarke, O. Grumberg, D. E. Long, Model checking and abstraction., ACM
Trans. Program. Lang. Syst. 16 (5) (1994) 1512–1542.
URL db/journals/toplas/toplas16.html#ClarkeGL94

[15] S. Graf, H. Saïdi, Construction of abstract state graphs with PVS., in: CAV, 1997,
pp. 72–83.
URL db/conf/cav/cav97.html#GrafS97

[16] S. L. Torre, P. Madhusudan, G. Parlato, Model-checking parameterized concur-
rent programs using linear interfaces., in: CAV, 2010, pp. 629–644.
URL db/conf/cav/cav2010.html#TorreMP10

[17] K. Dräger, A. Kupriyanov, B. Finkbeiner, H. Wehrheim, SLAB: A certifying
model checker for infinite-state concurrent systems., in: TACAS, 2010, pp. 271–
274.
URL db/conf/tacas/tacas2010.html#DragerKFW10

[18] S. M. German, A. P. Sistla, Reasoning about systems with many processes., J.
ACM 39 (3) (1992) 675–735.
URL db/journals/jacm/jacm39.html#GermanS92

[19] A. Finkel, P. Schnoebelen, Well-structured transition systems everywhere!, Theor.
Comput. Sci. 256 (1-2) (2001) 63–92.
URL db/journals/tcs/tcs256.html#FinkelS01

[20] P. A. Abdulla, Well (and better) quasi-ordered transition systems., Bulletin of
Symbolic Logic 16 (4) (2010) 457–515.
URL db/journals/bsl/bsl16.html#Abdulla10

[21] M. L. Minsky, Computation: finite and infinite machines, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

[22] P. Schnoebelen, Lossy counter machines decidability cheat sheet., in: RP, 2010,
pp. 51–75.
URL db/conf/rp/rp2010.html#Schnoebelen10

[23] T. Ball, A. Podelski, S. K. Rajamani, Boolean and cartesian abstraction for model
checking C programs., in: TACAS, 2001, pp. 268–283.
URL db/conf/tacas/tacas2001.html#BallPR01

[24] A. Kaiser, D. Kroening, T. Wahl, Efficient coverability analysis by proof mini-
mization., in: CONCUR, 2012, pp. 500–515.
URL db/conf/concur/concur2012.html#KaiserKW12

28

db/conf/cav/cav2013.html#FarzanK13
db/conf/cav/cav2013.html#FarzanK13
http://www.freidok.uni-freiburg.de/volltexte/7356/
http://www.freidok.uni-freiburg.de/volltexte/7356/
db/journals/toplas/toplas16.html#ClarkeGL94
db/journals/toplas/toplas16.html#ClarkeGL94
db/conf/cav/cav97.html#GrafS97
db/conf/cav/cav97.html#GrafS97
db/conf/cav/cav2010.html#TorreMP10
db/conf/cav/cav2010.html#TorreMP10
db/conf/cav/cav2010.html#TorreMP10
db/conf/tacas/tacas2010.html#DragerKFW10
db/conf/tacas/tacas2010.html#DragerKFW10
db/conf/tacas/tacas2010.html#DragerKFW10
db/journals/jacm/jacm39.html#GermanS92
db/journals/jacm/jacm39.html#GermanS92
db/journals/tcs/tcs256.html#FinkelS01
db/journals/tcs/tcs256.html#FinkelS01
db/journals/bsl/bsl16.html#Abdulla10
db/journals/bsl/bsl16.html#Abdulla10
db/conf/rp/rp2010.html#Schnoebelen10
db/conf/rp/rp2010.html#Schnoebelen10
db/conf/tacas/tacas2001.html#BallPR01
db/conf/tacas/tacas2001.html#BallPR01
db/conf/tacas/tacas2001.html#BallPR01
db/conf/concur/concur2012.html#KaiserKW12
db/conf/concur/concur2012.html#KaiserKW12
db/conf/concur/concur2012.html#KaiserKW12


[25] A. Gupta, C. Popeea, A. Rybalchenko, Threader: A constraint-based verifier for
multi-threaded programs., in: CAV, 2011, pp. 412–417.
URL db/conf/cav/cav2011.html#GuptaPR11

[26] A. Gupta, C. Popeea, A. Rybalchenko, The Cream tool,
www.model.in.tum.de/~popeea/research/threader.html.

[27] M. Bozzano, G. Delzanno, Beyond parameterized verification, in: Tools and Al-
gorithms for the Construction and Analysis of Systems, 8th International Confer-
ence, TACAS 2002, Held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Pro-
ceedings, 2002, pp. 221–235.

[28] T. Arons, A. Pnueli, S. Ruah, J. Xu, L. D. Zuck, Parameterized verification with
automatically computed inductive assertions., in: CAV, 2001, pp. 221–234.
URL db/conf/cav/cav2001.html#AronsPRXZ01

[29] C. Flanagan, S. Qadeer, Predicate abstraction for software verification., in: POPL,
2002, pp. 191–202.
URL db/conf/popl/popl2002.html#FlanaganQ02

[30] S. K. Lahiri, R. E. Bryant, Constructing quantified invariants via predicate ab-
straction., in: VMCAI, 2004, pp. 267–281.
URL db/conf/vmcai/vmcai2004.html#LahiriB04

[31] A. Sánchez, S. Sankaranarayanan, C. Sánchez, B.-Y. E. Chang, Invariant genera-
tion for parametrized systems using self-reflection - (extended version)., in: SAS,
2012, pp. 146–163.
URL db/conf/sas/sas2012.html#SanchezSSC12

[32] P. A. Abdulla, F. Haziza, L. Holík, All for the price of few, in: Verification, Model
Checking, and Abstract Interpretation, 14th International Conference, VMCAI
2013, Rome, Italy, January 20-22, 2013. Proceedings, 2013, pp. 476–495.

[33] J. D. Bingham, A. J. Hu, Empirically efficient verification for a class of infinite-
state systems., in: TACAS, 2005, pp. 77–92.
URL db/conf/tacas/tacas2005.html#BinghamH05

29

db/conf/cav/cav2011.html#GuptaPR11
db/conf/cav/cav2011.html#GuptaPR11
db/conf/cav/cav2011.html#GuptaPR11
http://www.model.in.tum.de/~popeea/research/threader.html
db/conf/cav/cav2001.html#AronsPRXZ01
db/conf/cav/cav2001.html#AronsPRXZ01
db/conf/cav/cav2001.html#AronsPRXZ01
db/conf/popl/popl2002.html#FlanaganQ02
db/conf/popl/popl2002.html#FlanaganQ02
db/conf/vmcai/vmcai2004.html#LahiriB04
db/conf/vmcai/vmcai2004.html#LahiriB04
db/conf/vmcai/vmcai2004.html#LahiriB04
db/conf/sas/sas2012.html#SanchezSSC12
db/conf/sas/sas2012.html#SanchezSSC12
db/conf/sas/sas2012.html#SanchezSSC12
db/conf/tacas/tacas2005.html#BinghamH05
db/conf/tacas/tacas2005.html#BinghamH05
db/conf/tacas/tacas2005.html#BinghamH05

	Introduction
	Inter-Thread Predicate Abstraction
	Input Programs and Predicate Language
	Limits of Single-Thread Predicate Abstraction
	Existential Inter-Thread Predicate Abstraction

	From Existential to Parametric Abstraction
	Dual-Reference Programs
	Computing an Abstract Dual-Reference Template

	Unbounded-Thread Dual-Reference Programs
	Undecidability of Boolean DR Program Verification
	Monotonicity in Dual-Reference Programs
	Restoring Monotonicity in the Abstraction

	Practical Evaluation
	Detailed evaluation of monabs
	Comparison with symmpa and cream

	Comparison with Related Work
	Concluding Remarks

